Regional variation in oophorectomy induced trabecular bone osteopenia in the distal femur of the rat.

Paul Andrew Jason Baldock

Submitted for the degree of
Doctor of Philosophy

Institute of Medical and Veterinary Science and Physiology Department,
Adelaide University

January 2001
Table of Contents

Chapter 1

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Function of bone</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Composition of bone</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Anatomy and ultrastructure</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Cells of bone</td>
<td>3</td>
</tr>
<tr>
<td>1.4.1 The Osteoclast</td>
<td>3</td>
</tr>
<tr>
<td>1.4.1.1 Origin</td>
<td>3</td>
</tr>
<tr>
<td>1.4.1.2 Structure</td>
<td>3</td>
</tr>
<tr>
<td>1.4.1.3 Function</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2 The Osteoblast</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2.1 Origin</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2.2 Structure</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2.3 Function</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3 The Osteocyte</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3.1 Origin</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3.2 Structure</td>
<td>7</td>
</tr>
<tr>
<td>1.4.3.3 Function</td>
<td>7</td>
</tr>
<tr>
<td>1.4.4 The Lining cell</td>
<td>8</td>
</tr>
<tr>
<td>1.4.4.1 Origin</td>
<td>8</td>
</tr>
<tr>
<td>1.4.4.2 Structure</td>
<td>8</td>
</tr>
<tr>
<td>1.4.4.3 Function</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Development and growth</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Bone remodelling</td>
<td>11</td>
</tr>
<tr>
<td>1.6.1 Activation</td>
<td>11</td>
</tr>
<tr>
<td>1.6.2 Resorption</td>
<td>13</td>
</tr>
<tr>
<td>1.6.3 Reversal</td>
<td>14</td>
</tr>
<tr>
<td>1.6.4 Formation</td>
<td>14</td>
</tr>
<tr>
<td>2.10 Consequences of altered remodelling on trabecular structure</td>
<td>15</td>
</tr>
<tr>
<td>1.7.1 Activation frequency</td>
<td>15</td>
</tr>
<tr>
<td>1.7.2 Resorption</td>
<td>16</td>
</tr>
<tr>
<td>1.7.3 Formation</td>
<td>17</td>
</tr>
<tr>
<td>1.8 Methods for studying bone remodelling</td>
<td>18</td>
</tr>
<tr>
<td>1.8.1 Parameters measured</td>
<td>18</td>
</tr>
<tr>
<td>1.8.2 Advantages</td>
<td>20</td>
</tr>
<tr>
<td>1.8.3 Limitations</td>
<td>20</td>
</tr>
<tr>
<td>1.9 Models for studying bone remodelling</td>
<td>21</td>
</tr>
</tbody>
</table>
1.10 Factors influencing remodelling
 1.10.1 Ovarian hormone deficiency
 1.10.1.1 Studies in the Rat
 1.10.2 Increased ovarian hormone levels
 1.10.2.1 Studies in the rat
 1.10.3 Mechanical forces
 1.10.3.1 Decreased mechanical usage
 1.10.3.2 Studies in the Rat
 1.10.3.3 Increased mechanical usage
 1.10.3.4 Studies in the rat
 1.10.4 Dietary calcium intake
 1.10.4.1 Increased calcium intake
 1.10.4.2 Studies in the rat

1.11 Summary and hypotheses

Chapter 2
Materials and Methods

2.1 Animals

2.2 Diet

2.3 Fluorochrome labelling

2.4 Surgery
 2.4.1 Anaesthesia
 2.4.2 Prepubertal oophorectomy: Ventral approach
 2.4.3 Mature oophorectomy: Dorsal approach
 2.4.4 Recovery

2.5 17β oestradiol supplementation

2.6 Bone harvesting and fixation

2.7 Bone sample cutting

2.8 Scanning electron microscope

2.9 Histology
 2.9.1 Resin processing
 2.9.1.2 Glycol-methyl methacrylate resin processing for bone samples
 2.9.1.2 Resin processing MMA
 2.9.2 Section production
 2.9.3 Staining methods
 2.9.3.1 Modified von Kossa method for identification of calcified tissue
2.9.3.2 Von Kossa method for sites of calcium deposition with haematoxylin and eosin counterstain
2.9.3.3 Enzyme localisation of acid phosphatase

2.10 Histomorphometry
2.10.1 Sample areas for trabecular bone morphometry
2.10.2 Trabecular bone indices: Estimation using the semi-automated image analysis system
2.10.3 Formation indices: Estimation using fluorochrome labelled sections

2.11 Resorption indices: Comparison of three methods for estimation of bone resorption following oophorectomy
2.11.1 Introduction
2.11.2 Materials and Methods
2.11.3 Results
2.11.4 Discussion

2.12 Growth plate thickness

2.13 Serum oestradiol estimation

2.14 Calculations
2.14.1 Static trabecular indices
2.14.2 Cellular indices

2.15 Statistics

Chapter 3
Variation in the short-term changes in bone cell activity following oophorectomy in three regions of the distal femur.

3.1 Introduction

3.2 Materials and Methods
3.2.1 Animals
3.2.2 Surgery
3.2.3 Histomorphometry
3.2.4 Calculations and statistics

3.3 Results
3.3.1 Trabecular bone structure
3.3.1.1 Diaphysis
3.3.1.2 Metaphysis
3.4.1.3 Epiphysis
3.3.2 Osteoclast surface
3.3.3 Osteoclast extent
Chapter 4
Long term variation following oophorectomy in two regions of the distal femur of the rat.

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Animals
 4.2.2 Surgery
 4.2.3 Histomorphometry
 4.2.4 Calculations and statistics

4.3 Results
 4.3.1 Trabecular bone structure
 4.3.1.1 Metaphysis
 4.3.1.2 Epiphysis
 4.3.2 Osteoclast surface
 4.3.3 Osteoclast extent
4.4 Discussion

4.4.1 Comparison of age related changes in bone and bone cell activity

4.4.2 Comparison of osteopenia induced by the remodelling transient and steady state changes

4.4.3 Steady state changes in trabecular bone structure following oophorectomy

4.4.4 Regional comparison of changes in osteoclast activity following oophorectomy

4.4.4.1 percentage data

4.4.4.2 Linear extent data

4.4.5 Regional comparison of the changes in osteoblast activity following oophorectomy

4.4.5.1 Surface percentage data

4.4.5.2 Linear extent data

4.4.6 Influence of changes in mineral apposition rate on trabecular structure

4.4.7 Comparison of turnover ratio between operative groups, implications for resorption depth and mechanical strain

Chapter 5
Effects of 17β-oestradiol administration on bone cell activity and trabecular structure

5.1 Introduction

5.2 Materials and Methods

5.2.1 Animals

5.2.2 Experimental protocol

5.2.3 Histomorphometry

5.2.4 Calculations and statistics

5.3 Results

5.3.1 Bone cell activity

5.3.1.1 Resorption indices

5.3.1.2 Formation indices

5.3.2 Trabecular bone structure

5.3.3 Inter-region comparison

5.3.4 The effect of oestradiol supplementation on dietary calcium induced bone loss

5.3.5 Scanning electron microscopy
5.4 Discussion

5.4.1 The effect of 17b oestradiol supplementation on bone cell activity
5.4.1.1 Surface percentage data
5.4.1.2 Linear extent data

5.4.2 The effect of 17b oestradiol supplementation on the development of osteopenia following oophorectomy

5.4.3 The effect of low bone turnover on trabecular bone structure

5.4.4 Regional comparison of the effect of 17b oestradiol supplementation on the development of osteopenia due to decreased dietary calcium

5.4.5 The effect of low bone turnover on trabecular bone structure: Implications for fracture rate

Chapter 6
Effect of dietary calcium restriction on oophorectomy induced bone loss

6.1 Introduction

6.2 Materials and Methods
6.2.1 Animals
6.2.2 Surgery
6.2.3 Histomorphometry
6.2.4 Calculations and statistics

6.3 Results
6.3.1 Trabecular bone structure
6.3.1.1 Metaphysis
6.3.1.2 Epiphysis
6.3.2 Osteoclast surface
6.3.3 Osteoclast extent
6.3.4 Fluorochrome double labelled surface
6.3.5 Fluorochrome double labelled extent
6.3.6 Mineral apposition rate
6.3.7 Bone formation rate
6.3.8 Comparison with age equivalent animals consuming 0.8% Ca diet
6.3.9 Scanning electron microscopy

6.4 Discussion
6.4.1 Regional comparison of the development of osteopenia following dietary calcium deficiency
6.4.2 Effect of oophorectomy on regional development of osteopenia following dietary calcium deficiency
6.4.3 Effect of reducing dietary calcium intake on trabecular structure
6.4.4 Effect of reducing dietary calcium on osteoclast activity: Surface referent indices
6.4.5 Effect of reducing dietary calcium on osteoblast activity:
Surface referent indices. 213
6.4.6 Effect of reducing dietary calcium on bone cell activity:
Comparison to chow fed animals 215
6.4.7 Effect of reducing dietary calcium on bone cell activity:
Linear extent indices 216

Chapter 7
The effect of prepubertal oophorectomy on trabecular structure during growth and aging

7.1 Introduction 218

7.2 Materials and Methods
7.2.1 Animals 220
7.2.2 Surgery 220
7.2.3 Histomorphometry 220
7.2.4 Scanning electron microscopy 220
7.2.5 Calculations and statistics 221

7.3 Results
7.3.1 Serum oestradiol levels 222
7.3.2 Epiphyseal growth plate thickness 222
7.3.3 Femoral length 222
7.3.4 Body weight 225
7.3.5 Trabecular bone structure
7.3.5.1 Diaphysis 227
7.3.5.2 Metaphysis 230
7.3.5.3 Epiphysis 233
7.3.6 Scanning electron microscopy 236

7.4 Discussion
7.4.1 Influence of oophorectomy on femoral length and body mass during growth and aging 239
7.4.2 Regional comparison of the development of trabecular structure in ovary intact animal during growth 240
7.4.3 Influence of oophorectomy on developmental pattern induced changes in trabecular bone during growth 242
7.4.4 Comparison of the changes in trabecular structure in ovary intact animals during aging 245
7.4.5 Influence of oophorectomy on aging induced changes in trabecular bone structure 246
7.4.6 Influence of body weight on trabecular bone loss following oophorectomy 247
Chapter 8
Summary and conclusions

8.1 Summary 250
8.2 Limitations 252
8.3 Future Directions 253

Bibliography

Cited References 256

Appendix

Published papers and Awards 300
Abstract

Postmenopausal osteoporosis is a condition resulting from altered bone turnover, producing excessive bone loss following the menopause. Characteristically atraumatic fractures are particularly evident in regions of trabecular bone. The oophorectomised rat has been established as an accepted model of this condition. The use of this model has revealed heterogeneity in response to ovarian hormone deficiency in trabecular bone.

This thesis examines regional variations in trabecular bone remodelling and bone loss following oophorectomy in the distal femur of the rat. The primary focus is the comparison of the weight bearing epiphyseal region to the less mechanically loaded diaphyseal and metaphyseal regions. This is performed using both static and dynamic histomorphometric techniques. Studies characterize the short term and long term response to oophorectomy in adult rats. The effects of oestradiol supplementation, dietary calcium restriction and prepubertal oophorectomy are also been investigated.

In the diaphysis and metaphysis, oophorectomy results in a rapid and permanent loss of trabecular bone, with no loss in the epiphysis, despite increased bone turnover. This epiphyseal immunity to osteopenia is consistent with the weight bearing activity within this region and the greater thickness of trabeculae.

The supplementation of oophorectomised animals with 17β-oestradiol (E₂) reduced bone turnover, thickening trabecuale. This increase in thickness is proposed as a factor in the antifracture efficacy of antiresorptive therapies, such as oestradiol.

The epiphysis was shown to be resistant to osteopenia resulting from calcium restriction. Dietary calcium restriction and oophorectomy produced extensive bone loss in the metaphysis and the epiphysis, highlighting the additive effects of calcium and ovarian hormone deficiency. Prepubertal oophorectomy stopped development of trabecular bone in the diaphysis. In the metaphysis and epiphysis, the accretion of bone was not affected, with Tb.Th similar between operative groups. The production of trabecuale was viretually. Tb.Th was correlated with body weight in the metaphysis and epiphysis, suggesting that ovarian hormones are not obligatory for development of bone in weight bearing regions.

The studies of this thesis reveal a complex interaction between weight bearing and ovarian hormone deficiency, and show that physiological signals exist which can negate all adverse effects of postmenopausal osteoporosis.