PHOTOCHEMIZATION IN CASES

by

A.J. Blake B.Sc.(Hons.)

Department of Physics

A thesis
submitted for the degree of
Doctor of Philosophy
in the
University of Adelaide

August, 1966
CONTENTS

Summary
Preface
Acknowledgements

Chapter I. Review of the Processes of Photoionization

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I.2</td>
<td>Calculation of Photoionization Cross-Sections</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>I.2.1 The dipole approximation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>I.2.2 The hydrogen atom</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>I.2.3 Approximations to other wavefunctions</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>I.2.4 Sua Rules</td>
<td>12</td>
</tr>
<tr>
<td>I.3</td>
<td>Atomic Photoionization Cross-sections</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>I.3.1 Comparison between experimental and theoretical cross-sections</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>I.3.2 Autoionization</td>
<td>16</td>
</tr>
<tr>
<td>I.4</td>
<td>Molecular Photoionization Cross-sections</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>I.4.1 Molecular spectra</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>I.4.2 The Frank-Condon principle</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>I.4.3 Ionization potentials of molecules</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>I.4.4 Threshold behaviour of ionization</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>I.4.5 Total photoionization cross-sections</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>I.4.6 Dissociative ionization</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>I.4.7 Thresholds of excited ionic states</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>I.4.8 Partial photoionization cross-sections</td>
<td>29</td>
</tr>
</tbody>
</table>
Chapter II. Measurement of Total Photoionization Cross-Sections

II.1 Light Sources for the Ultraviolet Region 33
II.2 Absorption Measurements 35
 II.2.1 Detectors for the ultraviolet region 35
 II.2.2 Procedure for measuring molecular oxygen absorption cross-sections 37
 II.2.3 Total absorption cross-sections for molecular oxygen in the region 1050 Å to 1250 Å 41
II.3 Photoionization Yield Measurements 42
 II.3.1 The single ion chamber method 43
 II.3.2 The double ion chamber method 44
 II.3.3 Intensity measurements in the ultraviolet region 45
 II.3.4 Procedure for measuring the total photoionization cross-section of nitric oxide 46
 II.3.5 Nitric oxide total photoionization cross-section in the 1150 Å to 1350 Å region 48

Chapter III. The Photoelectron Spectrometer

III.1 Introduction 51
III.2 Requirements of the Spectrometer 52
 III.2.1 Choice of spectrometer 53
III.3 Construction of the Apparatus 57
 III.3.1 The collimator 57
 III.3.2 The analysing grid and anode 58
III.3.3 Construction of the spectrometer 59
III.3.4 The vacuum chamber 60
III.3.5 The monochromator 61
III.4 Operation of the Spectrometer 62
 III.4.1 Electrode voltages 62
 III.4.2 Recording of the spectra 64
 III.4.3 Digital noise averaging 65
 III.4.4 Time constants of the apparatus 68
III.5 Performance of the Spectrometer 70
 III.5.1 The monoenergetic electron spectrum 70
 III.5.2 Factors effecting the resolution 73
 III.5.3 Calibration of the energy scale 75
 III.5.4 Electron collecting efficiency 76

Chapter IV. Partial photoionization cross-sections

IV.1 Molecular oxygen 79
 IV.1.1 Oxygen photoelectron energy spectra 79
 IV.1.2 Identification of the peaks 80
 IV.1.3 Unfolding the spectra 83
 IV.1.4 The partial photoionization cross-sections of oxygen 84
 IV.1.5 Variation of the partial photoionization cross-sections with wavelength 86
 IV.1.6 Autoionizing processes 89
IV.2 Molecular nitrogen

 IV.2.1 Photoelectron energy spectra of molecular nitrogen 94

 IV.2.2 Variation of the partial photionization cross-sections of molecular nitrogen with wavelength 95

IV.3 Water vapour

 IV.3.1 Photoelectron energy spectra of water vapour 96

 IV.3.2 Variation of the partial photionization cross-sections of water vapour with wavelength 98

Chapter V. Photoionization in the Atmosphere

V.1 Introduction 99

V.2 Photoelectrons in the ionosphere 100

 V.2.1 Calculation of the photoelectron energy distribution 101

 V.2.2 The primary photoelectron energy distribution 103

V.3 Fluorescence in the Ionosphere 106

 V.3.1 Fluorescent transitions 106

 V.3.2 Intensity of fluorescent emission 108

Chapter VI. Suggestions for further study of photoionization

VI.1 Future development of photoelectron spectroscopy 111

 VI.1.1 Improvements to the experimental technique 112

 VI.1.2 Further experiments 113

VI.2 Fluorescent radiation 116
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.2.1</td>
<td>Radiation from fluorescent autoionization</td>
<td>116</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Ultraviolet spectroscopy with a photoelectron spectrometer</td>
<td>129</td>
</tr>
<tr>
<td>Appendix II</td>
<td>Resolution of the analysing grid</td>
<td>121</td>
</tr>
<tr>
<td>Appendix III</td>
<td>Publications</td>
<td>125</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>126</td>
</tr>
</tbody>
</table>
This thesis describes the measurement of partial photoionisation cross-sections for processes which lead to the formation of the ion in a particular quantum state. Partial cross-sections for oxygen, nitrogen and water vapour have been measured.

Previous determinations of photoionization cross-sections have been limited to measurements of the total cross-section for a multiplicity of processes corresponding to transitions to any one of a number of quantum states of the ion. Two examples of total cross-section measurements are presented in this thesis. Total cross-sections of molecular oxygen have been measured in the region from 1050 Å to 1250 Å. This region includes the wavelength of hydrogen Lyman-α, an important emission line in the solar spectrum. A double parallel plate ion chamber has been used to measure total photoionization cross-sections of nitric oxide in the region 1150 Å to 1350 Å. This chamber has also been used with argon to measure absolute beam intensities according to the method of Samson.

The partial photoionization cross-sections have been determined by recording the energy spectra of the photo-electrons. The spectrometer, which was of the
retarding potential type, consisted of three concentric cylindrical electrodes: a collimating electrode, an analyzing grid, and an anode. A one-metre near normal incidence monochromator has been used with a slit width corresponding to a resolution of 10 Å. The monochromator has been equipped with a helium capillary discharge lamp powered by a condensed spark discharge.

Electron energy spectra have been recorded by differentiating the output of the electrometer which measured the electron current at the anode, and applying this signal and the retarding voltage to the Y and X axes respectively of an X-Y co-ordinate plotter. Smoothed spectra have been obtained by digitising the spectra and using the memory storage of a multichannel analyser to add several scans of the spectrum.

Interpretation of the spectra has been aided by a study of the spectra of argon and hydrogen, which contain a single line and a single band respectively in the range of wavelengths used. The peak in the argon spectrum had a width at half height of 0.4 eV under the best conditions.

Spectra have been obtained over a wavelength range from the threshold for the first excited state of the ion to 584 Å for oxygen, nitrogen and water vapour.
The relative area associated with each peak has been measured, and this information combined with the total photoionization cross-section data of Cook and Metzger to produce partial cross-sections.

The partial cross-sections of oxygen show the thresholds of the $b^3\Sigma^+_g$ and $a^3\Pi_u$ states of O_2^+; the $A^2\Pi_u$ and the $a^3\Pi_u$ states are not properly resolved. The continua are seen to have the form of a step function modified by competition between the continua, and by autoionizing processes. At wavelengths longer than the $a^3\Pi_u$ threshold the spectra have a large peak at low energy as well as the peak corresponding to the $2\Pi_g$ ground state. It is suggested that fluorescence occurs from a highly excited level of O_2 before autoionization to the $X^2\Pi_g$ state of O_2^+.

The nitrogen results show the thresholds of the $B^2\Pi_u^+$ and $A^2\Pi_u$ states of N_2^+. All the continua have a maximum just below the threshold. The $B^2\Sigma_u^+$ continuum has a maximum value which is less than half the maximum values of the $A^2\Pi_u$ and $X^2\Sigma_g^+$ continua.

The water vapour results show the continua corresponding to the $2\Sigma_A$ and $2\Pi_A$ levels of H_2O^+, and another corresponding to dissociative ionization. These continua have little structure, and the onset is more
gradual than in the case of oxygen and nitrogen.

The partial photoionization cross-sections have been used in calculations of the energy distribution of primary photoelectrons in the ionosphere, and in calculations of the overhead intensities of various fluorescent band systems emitted in the ionosphere.