STUDIES ON EXTRACELLULAR PROTEASE FORMATION

BY BACILLUS AMYLOLIQUEFACIENS

A Thesis
Submitted for the Degree of
Doctor of Philosophy
in the
University of Adelaide
by
GERALD WAYNE BOTH, B.Sc.(Hons.),
Department of Biochemistry.

JUNE 1, 1973.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>vi</td>
</tr>
<tr>
<td>STATEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>x</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER 1.

INTRODUCTION

A. Mechanism of secretion of mammalian secretory proteins

1. Site of synthesis

2. Evidence for simultaneous synthesis and secretion of proteins made on the endoplasmic reticulum

3. Model for secretion of proteins through the endoplasmic reticulum

4. Binding of ribosomes to the endoplasmic reticular membrane

5. Models for cellular discrimination between secretory and non-secretory protein synthesis

B. Mechanism of protein secretion by bacteria.

1. Evidence that the cytoplasmic membrane is a site of protein synthesis
(2) Possible models for protein secretion in bacteria
 (a) Models for penicillinase secretion
 (b) Model for extracellular enzyme secretion in \textit{B. amyloliquefaciens}.
C. Properties of bacterial extracellular enzymes
 (a) General properties
 (b) Properties of \textit{Bacillus amyloliquefaciens} extracellular enzymes
D. The aims of the work in this thesis

CHAPTER 2.
MATERIALS AND METHODS.
A. Methods
 (1) Growth of the organism
 (2) Washed-cell experiments
 (3) Measurement of total protein and RNA synthesis
 (4) Enzyme assay methods
 (5) Sephaphore polyacetate strip electrophoresis
 (6) Polyacrylamide gel electrophoresis
 (7) Preparation of equipment for isolation of RNA
 (8) Sucrose density gradients
 (9) Zonal centrifugation
 (10) Preparation of \textit{E. coli} ribosomal RNA
 (11) Estimation of DNA and RNA
B. Materials
CHAPTER 3.

EVIDENCE FOR AN ACCUMULATION OF mRNA SPECIFIC FOR EXTRACELLULAR PROTEASE IN BACILLUS AMYLOLIQUEFACIENS

A. Introduction 39
B. The nature of the proteases produced by B. amylo-
liquefaciens 39
C. Insensitivity of B. amyloliquefaciens extracellular protease formation to rifampicin and actinomycin D 42
D. Incorporation of L-[^14]C]leucine into protease in the presence of rifampicin 44
E. Studies on the accumulation and stability of the protease-specific mRNA pool 49
 (1) Amino acid repression of transcription of protease mRNA 49
 (2) Increased protease production by washed-cells in high amino acids medium in the presence of rifampicin 52
F. Discussion 55

CHAPTER 3

ADDENDUM

RECOVERY OF B. AMYLOLIQUEFACIENS PROTEIN SYNTHESIS FROM INHIBITION BY PACTAMYCIN

A. Introduction 64
B. Characterisation of the recovery phenomenon 64
C. Discussion. 67

CHAPTER 4.

DEVELOPMENT OF TECHNIQUES FOR THE ATTEMPTED ISOLATION OF EXTRACELLULAR PROTEASE mRNA FROM B. AMYLOLIQUEFACIENS

A. Introduction 70

B. Attempted isolation of RNA in the presence of ethanol 71

C. The use of alkaline conditions in RNA isolation 74

D. RNA isolation from lysozyme-treated cells 74
 (1) Establishment of conditions for cell breakage 74
 (2) Extraction of RNA 75

E. Recovery of bacteriophage MS2 RNA in the RNA of B. amyloliquefaciens 77

F. Attempts to label the protease mRNA pool 78

G. Isolation of labelled RNA 81

H. Incubation of labelled cells with rifampicin 82

I. Translation of possible mRNA species in an E. coli cell-free system measured by amino acid incorporation into proteins. 84

J. Large-scale preparation of total RNA from B. amyloliquefaciens 86

K. Fractionation of crude total RNA from B. amyloliquefaciens using zonal centrifugation 88

L. Messenger activity of RNA fractions from large-scale preparations measured by amino acid
incorporation into proteins

M. Preliminary attempts to obtain exogenous mRNA-directed protease synthesis

N. Discussion.

CHAPTER 5.

FINAL SUMMARY AND DISCUSSION

REFERENCES
SUMMARY

1. Extracellular protease synthesis by B. amyloliquefaciens continues for 80 minutes in the presence of rifampicin or actinomycin D concentrations sufficient to prevent mRNA synthesis. Despite this the transcription-independent protease production is inhibited by antibiotics specific for protein synthesis and direct labelling studies have confirmed that de novo synthesis of protease occurs under these conditions.

2. The evidence indicates that there exists in harvested cells, a pool of protease-specific mRNA, capable of supporting protease synthesis, in the absence of RNA synthesis, for up to 80 minutes.

3. The protease mRNA is not intrinsically long-lived and has a half-life of the order of a few minutes.

4. The results imply that the mRNA pool is being constantly turned over by a degradation process unrelated to translation, and therefore the mRNA pool may be a result of a dynamic equilibrium between mRNA synthesis, degradation and translation.

5. The time course of protease production in a medium containing a high level of amino acids is biphasic due to
amino acid repression, while that in the presence of a low level of amino acids is essentially linear. The results presented here are compatible with amino acids acting at the level of transcription of the protease mRNA. The biphasic production of protease in a medium containing a high level of amino acids can be accounted for in the following way. The first phase of synthesis, which is insensitive to rifampicin, is due to amino acid repression of mRNA transcription and the translation to exhaustion of the accumulated pool of mRNA. Subsequent derepression of mRNA synthesis and translation of nascent mRNA accounts for the second phase of synthesis which is therefore sensitive to rifampicin and actinomycin D.

6. The protein synthesis inhibitors, pactamycin and fusidic acid, at certain concentrations, completely inhibit protease production without affecting general intracellular protein synthesis. This is interpreted as supporting the concept that protease synthesis occurs on ribosomes located at the periphery of the cell.

7. Pactamycin, at higher concentrations, inhibits general protein synthesis in B. amyloquefaciens but the cells recover from this inhibition. The recovery is not due to the acquisition of resistance; the results are compatible with the metabolic removal of the antibiotic from the cells.

8. Preliminary attempts to isolate the protease mRNA species have been made. RNA has been recovered apparently
intact from *B. amyloliquefaciens* and from this, fractions containing some mRNA-like RNA species have been isolated. Preliminary attempts to identify the protease mRNA by translating it *in vitro* were unsuccessful.