A FABRY-PEROT INTERFEROMETER AND ITS APPLICATIONS
TO MEASUREMENT OF THE THERMOSPHERIC
TEMPERATURES AND WINDS

A Thesis for the Degree of Doctor of Philosophy
in the University of Adelaide

submitted by

Anthony Richard David Bower B.Sc. (Hons)

The Mawson Institute for Antarctic Research
August 1974
CONTENTS

SUMMARY (i)

STATEMENT (ii)

ACKNOWLEDGEMENTS (iii)

CHAPTER

1. INTRODUCTION 1

2. THE FABRY-PEROT INTERFEROMETER 4
 2.1 Introduction 4
 2.2 Priniciples of the Fabry-Perot Interferometer 6
 2.2.1 The étalon 6
 2.2.2 Recording the Spectrum 7
 2.2.3 Scanning the Spectrum 8
 2.3 Instrument Function 11
 2.3.1 The Airy Function 12
 2.3.2 Defect Functions 13
 2.3.3 Aperture Function 13
 2.3.4 Recorded Function 14
 2.4 Resolving Power and Light Gathering Power 15

3. DEVELOPMENT OF THE FABRY-PEROT INTERFEROMETER 17
 3.1 Introduction 17
 3.2 Piezoelectric Stacks 17
 3.3 Parallelism Control 19
 3.3.1 Test on Original Design 20
 3.3.2 Design Modifications 21
 3.4 Separation Control 21
 3.4.1 Differential Transformer Displacement Transducer 22
 3.4.2 Capacitance Transducer 22
 3.5 Temperature Control 25
 3.5.1 Air Temperature Control 25
 3.5.2 Ancillary Heaters 27
 3.6 Installation at Mount Torrens 27

4. THE MAWSON INSTITUTE FABRY-PEROT INTERFEROMETER 30
 4.1 Optical and Mechanical Design 30
 4.1.1 Optical Design and Adjustment 30
 4.1.2 Mechanical Details 32
 4.2 The Plates 33
 4.2.1 Testing for Flatness 34
 4.2.2 Coatings 36
 4.3 Parallelism Control 38
 4.3.1 Basic Principles 38
 4.3.2 Collimated Light Sources and Detectors 40
 4.3.3 Gain Requirements 41
 4.4 Separation Control 41
 4.4.1 Capacitance Displacement Transducer 42
 4.4.2 The Servo Loop 43
 4.4.3 Barometer 44
 4.4.4 Scanning the FPI 45
5. DETECTION OF VERY LOW LIGHT LEVELS

5.1 Introduction
5.2 The Photomultiplier Tube
5.3 Quantum Efficiency Enhancement by Total Internal Reflection
 5.3.1 Introduction
 5.3.2 Preliminary Measurements
 5.3.2.1 Measurements on Photomultiplier Tube
 5.3.2.2 Design Considerations
 5.3.3 Hirschfeld Cone

5.4 Reduction of Dark Current
 5.4.1 Temperature Dependence
 5.4.2 Magnetic Defocusing
 5.4.3 Electrostatic Shielding

5.5 Detection Systems
 5.5.1 Analogue Detection
 5.5.2 Pulse Counting

5.6 Photomultiplier Chamber
 5.6.1 Shutter Control
 5.6.2 Cooling System

5.7 Concluding Remarks

6. OPERATIONAL PROCEDURE AND ANALYSIS OF THE RESULTS

6.1 Selection of the Order of Interference
6.2 Calibration
 6.2.1 Mercury Lamp and He-Ne Laser
 6.2.2 Procedure
 6.2.3 Results

6.3 Collection of Results
6.4 Analysis of Results
 6.4.1 Manipulation of the Data
 6.4.1.1 Indexed Sequential Filing System
 6.4.2 Analysis Technique

6.5 Operational Characteristics

7. THERMOSPHERIC TEMPERATURES AND WINDS

7.1 Introduction
7.2 Review of Earlier Observations
 7.2.1 FPI Measurements
 7.2.1.1 Temperatures
 7.2.1.2 Winds
 7.2.2 Measurements by Other Methods
 7.2.2.1 Satellite Observations
 7.2.2.2 Chemical Releases
 7.2.2.3 Thomson Scattering
 7.2.2.4 Michelson Interferometer

7.3 Results Obtained at Mount Torrens
 7.3.1 Contamination by Hydroxyl Emissions
 7.3.2 Kinetic Temperatures
 7.3.2.1 Diurnal Variation
 7.3.2.2 Dependence on Magnetic Activity
 7.3.3 Neutral Winds
 7.3.3.1 Diurnal and Seasonal Variation
 7.3.3.2 Winds During Magnetic Disturbances
 7.3.3.3 Comparison with Models

7.4 Concluding Remarks
APPENDIX. ELECTRONIC CIRCUITRY

Parallelism Control
Three Phase Oscillator
PIN Diode Preamplifier
Bandpass Filter and Phase Sensitive Detector
The Equalizer
600V Supply
Stabilized Power Supplies
Adjustments

Separation Control
10 kHz Oscillator
Differential Amplifier
10 kHz Rectifier
Equalizer
Scan Input Attenuator

Temperature Control
Error Amplifier and Triac Trigger
Triac Switch

Pulse Counting Electronics
Preamplifier and Discriminator
Ratemeter

Photomultiplier Shutter Control Electronics

BIBLIOGRAPHY
A 15cm scanning Fabry-Perot Interferometer was used to measure the
doppler width and shift of the atomic oxygen [OI] λ630nm line in the
night airglow. From these measurements over a 12 month period at Mt.
Torrens (near Adelaide) kinetic temperatures and neutral wind veloci-
ties have been determined.

The theory of the Fabry-Perot Interferometer (FPI) is presented
with emphasis on the criteria involved in the selection of operating
parameters. The development of the FPI constructed in the Mawson
Institute for Antarctic Research is outlined and a detailed description
of the instrument is then given. Full particulars are given of the
servo-systems which were developed to control parallelism and separa-
tion of the FPI plates and to maintain high thermal stability within
the instrument.

The detection of very low light levels such as are encountered in
the night airglow, was the subject of considerable investigation. Work
carried out in this area led to refinements in the detection system
which increased the signal-to-noise ratio by almost two orders of
magnitude.

Observations during periods of low magnetic activity revealed
diurnal patterns in temperature and wind velocity broadly in agreement
with previous observations. The zonal component of the neutral wind is
observed to have a pronounced seasonal variation.

Enhancements of the temperature and the meridional component of
the wind were found always to accompany magnetic disturbances. Equator-
ward winds with velocity greater than 200m/sec were found to be
present even during fairly minor magnetic disturbances.