ASPECTS OF PROTEIN SYNTHESIS

IN THE

HAIR FOLLICLE

A thesis submitted by

RODNEY MAX CLARKE, A.S.T.C., B.Sc.(Hons.),

to the University of Adelaide, South Australia,

for the degree of Doctor of Philosophy.

Department of Biochemistry,

University of Adelaide, S.A.

June, 1967.
SUMMARY

There have been few investigations on the mechanism of protein synthesis in the hair follicle although such information is fundamental to an understanding of the processes of hair growth. This thesis reports investigations in vivo and in vitro on the synthesis of proteins in the hair follicle of the guinea pig.

Cellular and cell-free systems were prepared from follicle tissue that was harvested by the wax-sheet method. Attempts to separate distinct fractions of subcellular components like nuclei and mitochondria were only partly successful. However, ribosomes were isolated from follicle tissue for the first time. Their physical properties were characteristic of ribosomes from other mammalian tissues. Aggregates of two to fifteen ribosomes (polysomes) were separated from follicle tissue by sucrose gradient centrifugation and observed in the electron microscope. It was assumed that the ribosomes were held together by mRNA because of the disaggregating effect of added ribonuclease. The authenticity and distribution of polysomes in vivo and in vitro and hence the sizes of the templates involved in the synthesis of follicle proteins have been considered.

Proteins were extracted from follicle tissue and fully-developed fibres. They gave similar band-patterns when studied by starch-gel electrophoresis. Although dilute salt solutions extracted smaller amounts of protein from follicle tissue, the starch-gel patterns were similar to those extracted by 8M-urea. These findings encourage future physico-chemical characterization of keratins in the absence of denaturing agents like urea.
A number of biochemical techniques were used to study the incorporation of labelled amino acids into specific cell fractions and the soluble proteins of follicle tissue. The results of these studies indicate that the accepted pathways for protein synthesis in other mammalian systems are also present in the hair follicle. Evidence was obtained which suggests that the mRNA molecules in the follicle are relatively stable \textit{in vivo}. There is no direct evidence from these studies to suggest that this is the only mechanism of protein synthesis in this tissue. Further, it cannot be assumed that the mechanism studied is that involved in the specific synthesis of keratins and other structural proteins.

The synthesis of proteins containing citrulline, an aspect unique to certain cells of the hair follicle, was also investigated \textit{in vivo} and \textit{in vitro}. Although free citrulline could be derived from free arginine via the urea cycle in this tissue, citrulline is not incorporated into protein \textit{de novo}. It is derived from arginine at a stage subsequent to the incorporation of the latter into a polypeptide.

The manifestation of an active ribonuclease in follicle tissue prompted attempts to inhibit its adverse effect on the incorporation capacity of this system and to locate its cellular origin. The activity of the enzyme was slightly reduced with non-specific inhibitors. From histochemical studies it was concluded that the ribonuclease was extracted from epidermis or sebum as a contaminant during the initial harvesting technique.

* * * * * * * *
CHAPTER ONE GENERAL INTRODUCTION

 A. THE BIOSYNTHESIS OF KERATINS .1
 (a) Hair keratin. 1
 (b) Epidermal keratin. 9
 (c) Feather keratin. 12

 B. THE BIOSYNTHESIS OF OTHER FIBROUS PROTEINS 15
 (a) Collagen. 15
 (b) Muscle proteins. 18
 (c) Lens proteins. 19

 C. THE AIM OF THE PROJECT 21

CHAPTER TWO MATERIALS AND GENERAL METHODS

 A. MATERIALS 22
 (a) Enzymes. 22
 (b) Antibiotics. 22
 (c) Ribonuclease inhibitors. 23
 (d) Radioactive compounds and phosphor reagents. 23
 (e) Amino acids. 24
(f) Other chemicals.
(g) Compounds used in vivo.
(h) Miscellaneous materials.
(i) Buffers.

B. GENERAL METHODS

(a) Source of tissue.
(b) Preparation of hair follicle tissue.
(c) Methods used for disrupting hair-roots and follicle tissue.
(d) Media employed for disruption.
(e) Isolation of cell fractions from liver and follicle tissue.
(f) Ribonuclease in the follicle system.
(g) Protein estimation.
(h) Nucleic acid estimation.
(i) Preparation of proteins for incorporation assays.
(j) Preparation of samples for measurement of radioactivity.
(k) Acid hydrolysis of proteins.
(l) High voltage paper electrophoresis.
(m) Paper chromatography.
(n) Citrulline assay.
(o) Arginine assay.
(p) Starch-gel electrophoresis.
(q) Purification of $[^{14}C]$ algal protein hydrolyzate.
(r) Sucrose density gradient centrifugation.
(s) Preparation of samples for electron microscopy.
(t) Dialysis.
CHAPTER THREE THE EXTRACTION OF FOLLICLE PROTEINS

A. INTRODUCTION

B. RESULTS
 (a) The urea-soluble proteins from hair-roots and follicle tissue.
 (b) The extraction of proteins from follicle tissue by different solvents.
 (c) The extraction of proteins from hair and wool.

C. DISCUSSION

CHAPTER FOUR THE SEPARATION AND CHARACTERIZATION OF SUBCELLULAR COMPONENTS FROM HAIR FOLLICLE TISSUE

A. INTRODUCTION

B. RESULTS
 (a) The dispersal of hair-roots and follicle tissue.
 (b) The isolation and characterization of ribosomes.

C. DISCUSSION

CHAPTER FIVE THE INCORPORATION OF LABELLED AMINO ACIDS INTO FOLLICLE PROTEINS BY WHOLE SKINS MAINTAINED IN ORGAN CULTURE

A. INTRODUCTION

B. RESULTS
 (a) The incorporation of labelled leucine into urea-soluble proteins.
 (b) The examination of cell fractions by electron microscopy.
(c) The incorporation of labelled amino acids into the ribosomal fraction.

C. DISCUSSION

CHAPTER SIX THE INCORPORATION OF LABELLED AMINO ACIDS INTO FOLLICLE PROTEINS IN VIVO

A. INTRODUCTION

B. RESULTS

(a) The incorporation in vivo of labelled leucine into cell fractions.

(b) The incorporation in vivo of labelled leucine into the ribosomal fraction.

(c) The effect of actinomycin D on the incorporation of labelled amino acids.

(d) The incorporation in vivo of labelled arginine and the appearance of labelled citrulline in inner root sheath protein.

(e) The effect of puromycin in vivo on the conversion of arginine to citrulline in inner root sheath protein.

C. DISCUSSION

CHAPTER SEVEN INVESTIGATIONS ON THE MECHANISM OF PROTEIN SYNTHESIS IN CELLULAR AND CELL-FREE SYSTEMS OF FOLLICLE TISSUE

A. INTRODUCTION
B. RESULTS
(a) Incorporation of labelled amino acids by hair-roots.
(b) Incorporation of labelled amino acids by follicle cells.
(c) Incorporation of labelled amino acids by follicle tissue.
(d) Incorporation of labelled amino acids by 'reconstituted',
cell-free systems derived from liver and follicle tissue.
(e) Investigations on an active ribonuclease in follicle tissue.

C. DISCUSSION

CONCLUDING REMARKS

REFERENCES