SOME PROPERTIES OF CRYSTALLINE ALUMINIUM;
ITS DEBYE TEMPERATURE AND THE PROBABILITY
DENSITY DISTRIBUTION OF THE VALENCE
ELECTRONS, AS DETERMINED BY
X-RAY DIFFRACTION

by

A thesis submitted for the degree of
Doctor of Philosophy in the University of Adelaide

The work described in this thesis was carried out in the Department of Physics between January 1964 and December 1968; except where stated otherwise it is the personal work of the author.

No material contained in this thesis has been submitted for the award of another degree or diploma in this or any other university.

P. E. Dingle
CONTENTS

Summary

Acknowledgements

CHAPTER 1. INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Aims</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Properties of Aluminium</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>X-Rays and Wave Functions</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Wave Function and Scattering Factor Calculations for Aluminium</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Scattering Factor Measurements</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>The Debye Temperature and X-Ray Scattering</td>
<td>29</td>
</tr>
<tr>
<td>1.7</td>
<td>Determination of the Debye-Waller Factor for Aluminium</td>
<td>32</td>
</tr>
<tr>
<td>1.8</td>
<td>Summary of the Present Work</td>
<td>42</td>
</tr>
</tbody>
</table>

CHAPTER 2. THE MEASUREMENT OF SCATTERED X-RAY INTENSITIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Crystal Growth</td>
<td>44</td>
</tr>
<tr>
<td>2.2</td>
<td>Alignment of the Crystals</td>
<td>50</td>
</tr>
<tr>
<td>2.3</td>
<td>Sets of Weissenberg Exposures</td>
<td>53</td>
</tr>
<tr>
<td>2.4</td>
<td>Methods of Measuring Scattered X-ray Intensities</td>
<td>56</td>
</tr>
<tr>
<td>2.5</td>
<td>The Averaging of Intensities from Different Films</td>
<td>61</td>
</tr>
</tbody>
</table>
2.6 Measurement of the Debye-Waller Factor at Elevated Temperatures 64
 2.6.1 Introduction 64
 2.6.2 Apparatus 66
 2.6.3 Measurements 69

CHAPTER 3. INTENSITY CORRECTION AND DEBYE-WALLER FACTORS

3.1 Introduction 72
3.2 Absorption, Lorentz-Polarization and Anomalous Dispersion Corrections 74
3.3 The Wilson Method 76
3.4 Thermal Diffuse Scattering 80
3.5 The Debye Parameter and Thermal Diffuse Scattering 82
3.6 Extinction Effects in Aluminium 85
3.7 The Determination of Structure Factors from Intensity measurements
 3.7.1 Corrections Arising from the Recording Technique and Crystal Imperfections 88
 3.7.2 Methods for the Determination of Extinction Parameters 89
3.8 The Minimum Residue Method 92
 3.8.1 A First Approximation for the Extinction Parameters 92
 3.8.2 Refinement Using the Experimental Structure Factors 94
3.9 The Use of Independently Measured Structure Factors in Extinction Correction 96
3.10 The Determination of the Room Temperature Debye-Waller Factor

3.11 The Debye-Waller Factor for a Range of Temperatures

CHAPTER 4 SCATTERING FACTORS, WAVE FUNCTIONS AND ELECTRON DISTRIBUTION FOR SOLID ALUMINIUM

4.1 Scattering Factor Results

4.2 The Electron Density and Anisotropy in Aluminium
 4.2.1 The Room Temperature electron Density
 4.2.2 The Causes of Anisotropy of Aluminium

4.3 Wave Function Calculations for Aluminium

4.4 The Valence Electron Distribution in solid Aluminium
 4.4.1 The Total Radial Probability Density Distribution
 4.4.2 The Radial Probability Density for the Valence Electrons
 4.4.3 The Electron Density for the Valence Electrons
 4.4.4 The Radial Wave Functions for the Valence Electrons

APPENDIX 1 An Efficient Fourier Synthesis Programme for a Simple Unit Cell

APPENDIX 2 The Experimental Radial Probability Density

BIBLIOGRAPHY
SUMMARY

This thesis describes an accurate X-ray study of crystalline aluminium, and the results obtained from this. A detailed review of the results and the limitations of previous work on aluminium is given.

Single crystals of 4N purity aluminium were grown and several sets of Weissenberg photographic intensities for different crystals were obtained. It was most important for this project that the greatest possible accuracy of measurement was obtained. Accordingly, the intensities were carefully collected and corrected, and similar sets of structure factors are given for the two different crystals. An overall error of 2° is obtained for each set of structure factors.

The effects of extinction in aluminium single crystals are investigated and evaluated. A very accurate value of the Debye temperature for aluminium is obtained from the results, and this is used to find the variation of the Debye temperature with temperature to a precisely known accuracy.
Fourier synthesis for the best experimental structure factors show the ten core electrons to be within the Hartree-Fock L-shell. The small amount of core electron anisotropy which is also shown is claimed to be due to the slight homopolar character of the bonding in solid aluminium.

The valence electron distribution around an atom in the solid is accurately determined for the first time, using the measured structure factors in combination with the Hartree-Fock values in the Fourier integral for an atom. The valence electron density distribution shows that the valence electrons are not free, either in the classical or wave mechanical sense. Although the valence electrons are distributed throughout the volume of the solid, the bulk of the valence electron distribution is confined to a narrower "shell" than in the free atom case.

The valence electron distribution, by its departure from that postulated by the Hartree-Fock free atom model, shows experimentally that Harrison's pseudopotential model has some merit for solid aluminium. A radial wave function which corresponds to the measurements for the valence electron distribution is given.
ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. F. H. Medlin for much helpful guidance, discussion and insight throughout the work. I would also like to thank my joint supervisor in the early stages of the work, Dr. S. G. Tomlin, for initially suggesting the project and for helpful discussions.

The facilities of the Department of Physics were generously provided by Professor J. B. Carver. I would like to thank Dr. S. W. Kennedy and Dr. M. Snow for helpful discussions, and for the use of X-ray equipment in their laboratory. I would also like to thank Dr. A. McI. Mathieson for helpful advice. Messrs. P. Colman, D. Field and M. Schubert contributed much stimulating discussion, for which I am thankful.

I am grateful to Miss H. Barrow who provided invaluable help with the numerical computations, intensity reading and preparation of diagrams.

This work was made possible by the tenure of a Commonwealth Postgraduate Award (1964-67), and a University Research Grant (1968).