STUDIES OF THE CONTROL OF THYROID FUNCTION
AS DISCLOSED BY THE EFFECT OF SALICYLATE

by

Brian F. Godd, B.Sc.

Department of Medicine, University of Adelaide

Submitted for the degree of Doctor of Philosophy
November, 1964
CHAPTER I

THE CONTROL OF THE THYROID SECRETION

PART I The Thyroid-Pituitary Interrelationship.

1. The concept of the feedback mechanism. 2
2. The relation of the thyroid and pituitary to the central nervous system. 12
3. The integration of feedback control and hypothalamic control of the thyroid-pituitary axis. 20

PART II Pharmacological Studies of the Control of Thyroid Function.

1. The effect of 2,4-dinitrophenol on thyroid function. 23
2. The effect of salicylate on thyroid function. 30

CHAPTER II

THE EFFECT OF SALICYLATE AND CHEMICALLY RELATED DRUGS ON THE PLASMA PROTEIN-BOUND IODINE LEVEL

PART I The Effect of Salicylate and Related Drugs on the Plasma PSI in Rats.

1. Studies in normal rats. 40
2. Studies in thyroidectomized rats maintained on thyroxine. 49

PART II Conclusions. 52
CHAPTER III

THE EFFECT OF SALICYLATE AND RELATED DRUGS ON THE CIRCULATING LEVEL OF THYROID STIMULATING HORMONE

PART I The Bio assay of TSH.
1. The action of TSH on the thyroid.
2. Standardization of the unit of TSH.
3. Definition of criteria used to assess the reliability of bioassays.
4. The design of bioassays.
5. Methods of bioassay of TSH.
7. Estimates of the level of TSH in the serum of rats.
 Conclusions.

PART II The Bioassay of TSH by a Modification of the Method of McKenziel.

PART III Studies of the Effect of Salicylates and Related Drugs on Circulating TSH in Rats.
1. The effect of salicylate on circulating TSH in thyroidectomized rats.
2. The effect of sodium-l-thyroxine on circulating TSH in normal rats.
3. The effect of salicylate and related drugs on circulating TSH in normal rats.
4. The effect of administration of salicylate and related drugs to the assay mice during bioassay of standard TSH.

Page

55
56
56
57
57
59
60
66
67
64
70
83
83
87
88
93
CHAPTER III (Cont'd.)

PART IV The Estimation of TSH in Normal Human Serum.

PART V Conclusions.

CHAPTER IV

THE EFFECT OF SALICYLATE AND RELATED DRUGS ON CIRCULATING FREE THYROXINE

PART I The Theoretical Basis of the concept and Determination of Circulating Free Thyroxine.

2. The theoretical basis for the estimation of free thyroxine.

3. Factors affecting the interaction between thyroxine and the serum proteins.

PART II The Estimation of Free Thyroxine by the Christensen Dialysis Procedure.

PART III The Effect of Salicylate and Related Drugs on Free Thyroxine in Man.

PART IV The Effect of Salicylate and Related Drugs on Free Thyroxine in Rats.

PART V Conclusions.
CHAPTER V
THE EFFECT OF SALICYLATE AND RELATED DRUGS ON THE BINDING OF THYROXINE TO THE SERUM PROTEINS

PART I The Method of Determination of Thyroxine Binding by Paper Electrophoresis. 147

PART II The Effect of Salicylate and Related Drugs on Thyroxine Binding in Man. 152

PART III The Effect of Salicylate and Related Drugs on Thyroxine Binding in Rats.

1. The method of determining thyroxine binding in serum using starch gel electrophoresis. 160

2. The effect of salicylate and related drugs on thyroxine binding in rats. 164

3. The effect of γ-resorcylate on thyroxine binding in human serum determined by starch gel electrophoresis. 168

PART IV Conclusion. 170

CHAPTER VI
DISCUSSION 173

BIBLIOGRAPHY.
An examination has been made of the mechanism by which salicylate and related drugs depress thyroid function. Salicylate and 2,4-dinitrophenol produced a depression in plasma PBI in normal rats, confirming previous reports. Sodium γ-resorcylicte in sufficient dosage also significantly depressed the plasma PBI of normal rats. Sodium p-hydroxybenzoate was without effect. Similar findings were obtained in thyroidectomized rats maintained on thyroxine, indicating a peripheral action of the drugs in depressing plasma PBI.

Bioassay of TSH in the plasmas of normal rats revealed that salicylate, 2,4-dinitrophenol and also γ-resorcylicte significantly depressed circulating TSH; p-hydroxybenzoate was without effect. Previous indirect evidence of a depression in TSH release produced by salicylate, 2,4-dinitrophenol and γ-resorcylicte was therefore confirmed.

This finding of simultaneous depression in circulating thyroid hormone and TSH is contrary to the concept of the negative feedback regulation of the thyroid-pituitary axis. A depression in circulating thyroid hormone would be expected to stimulate pituitary TSH release. It had been postulated previously that the depression in TSH induced by salicylate and 2,4-dinitrophenol was related to their metabolic
stimulating properties, by an action at the hypothalamic sites controlling pituitary TSH release. However, since γ-resorcylicote does not increase metabolic rate, this proposed mechanism for the depression of TSH is excluded.

Using a dialysis procedure, it was shown that the in vitro addition of salicylate and γ-resorcylicote to human or rat serum increased the rate of dialysis of radiothyroxine with which the serum was equilibrated; p-hydroxybenzoate produced a smaller effect. An increased rate of dialysis of radiothyroxine is consistent with an increase in free thyroxine. Circulating free thyroxine was elevated two hours after the administration of salicylate and γ-resorcylicote to man, whereas p-hydroxybenzoate was ineffective. These in vivo findings were confirmed following more prolonged administration of the drugs to rats; 2,4-dinitrophenol also increased circulating free thyroxine in rats.

Using paper electrophoretic separation of human serum proteins, it was demonstrated in vitro and in vivo that salicylate and γ-resorcylicote displaced thyroxine from thyroxine binding prealbumin (TBPA). Although a displacement of thyroxine from TBPA was induced by p-hydroxybenzoate in vitro, this drug was ineffective in vivo. The separation of rat serum proteins was carried out by starch gel electrophoresis. The addition, in vitro, of salicylate and γ-resorcylicote to the electrophoretic buffer produced a
large displacement of thyroxine principally from a fast-moving albumin binding site. There was a small displacement of thyroxine by p-hydroxybenzoate in vitro. In vivo, salicylate and 2,4-dinitrophenol produced a displacement of thyroxine whereas p-hydroxybenzoate and \(\beta \)-resorcylic were ineffective. The increase in free thyroxine produced by salicylate and related drugs therefore resulted from the displacement of thyroxine from specific binding sites in the serum.

The peripheral action of salicylate and related drugs in depressing plasma PBI is compatible with the displacement of thyroxine into the free state, followed by its disappearance from the circulation.

The depression in TSH release induced by these drugs is also correlated with the increase in circulating free thyroxine. It is concluded that the level of circulating free thyroxine serves as the regulator of the negative feedback system controlling thyroid-pituitary interrelations.