THE DETERMINATION OF THE CRYSTAL STRUCTURES

OF

POTASSIUM GLUCURONATE

AND

UREA OXALATE

BY

X-RAY AND OPTICAL DIFFRACTION

by

Graham E. Gurr B.Sc. Hons.

A thesis

presented for the degree of

Doctor of Philosophy

in the

University of Adelaide.

April 1961.
General Introduction

At the outset of this work the aim was to design and construct an optical diffractometer, and to use it in the determination of one or more suitable crystal structures. However after the diffractometer was built, no compound likely to be amenable to use of the optical method was at hand, and since the glucuronates were of particular interest an investigation of their structure was undertaken. The subsequent analysis and refinement of the structure of K-glucuronate forms the greatest part of the work described herein. When the refinement of the K-glucuronate structure was almost complete, Dr. E.H. Medlin suggested that urea oxalate would prove a suitable problem for use of the optical method, and so work was commenced on that compound. It will be seen that the arrangement of material in this thesis follows this chronological sequence, even though it might seem more logical to follow the section
on optical methods with the section on their application to determination of the urea oxalate structure.
List of Plates

Chapter I

<table>
<thead>
<tr>
<th>fig.</th>
<th>Description</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Formation of an image</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Optical diffractometer</td>
<td>12</td>
</tr>
<tr>
<td>2a.</td>
<td>Optical arrangement of diffractometer</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>Optical diffractometer</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>Light source for diffractometer</td>
<td>17</td>
</tr>
<tr>
<td>5.</td>
<td>Transmission of interference filter</td>
<td>18</td>
</tr>
<tr>
<td>6.</td>
<td>Formation of Boys' images</td>
<td>20</td>
</tr>
<tr>
<td>7.</td>
<td>Intensity distribution near focus</td>
<td>24</td>
</tr>
<tr>
<td>8.</td>
<td>Diagram for coherence discussion</td>
<td>28</td>
</tr>
<tr>
<td>9.</td>
<td>Fly's eye arrangement</td>
<td>34</td>
</tr>
<tr>
<td>9a.</td>
<td>Fly's eye</td>
<td>34</td>
</tr>
<tr>
<td>10.</td>
<td>Fly's eye photograph and diffraction pattern</td>
<td>38</td>
</tr>
</tbody>
</table>

Chapter II

<table>
<thead>
<tr>
<th>fig.</th>
<th>Description</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>x-ray generator</td>
<td>53</td>
</tr>
<tr>
<td>2.</td>
<td>Integrating Weissenberg camera</td>
<td>53</td>
</tr>
<tr>
<td>3.</td>
<td>Microphotometer</td>
<td>53</td>
</tr>
<tr>
<td>4.</td>
<td>Density measurements for known exposures</td>
<td>57</td>
</tr>
<tr>
<td>5.</td>
<td>Characteristic film curve</td>
<td>57</td>
</tr>
<tr>
<td>6.</td>
<td>Cross-section of crystal</td>
<td>58</td>
</tr>
<tr>
<td>7.</td>
<td>Film absorption factor</td>
<td>59</td>
</tr>
<tr>
<td>8.</td>
<td>Measurement of background fog level</td>
<td>61</td>
</tr>
<tr>
<td>9.</td>
<td>Reciprocal space mapped in θ_1, θ_2</td>
<td>66</td>
</tr>
<tr>
<td>10.</td>
<td>Absorption effect in reciprocal space</td>
<td>66</td>
</tr>
<tr>
<td>11.</td>
<td>Observed difference in intensity of okl,okl</td>
<td>67</td>
</tr>
<tr>
<td>12.</td>
<td>Calculated difference due to absorption</td>
<td>67</td>
</tr>
<tr>
<td>13.</td>
<td>Absolute scaling of K-glucuronate data</td>
<td>69</td>
</tr>
<tr>
<td>14.</td>
<td>Absolute scaling of Rb-glucuronate data</td>
<td>69</td>
</tr>
<tr>
<td>15.</td>
<td>okl projection of $P2_1\bar{2}1\bar{2}1$</td>
<td>72</td>
</tr>
<tr>
<td>16.</td>
<td>Patterson representation</td>
<td>75</td>
</tr>
<tr>
<td>17.</td>
<td>okl weighted reciprocal lattice</td>
<td>76</td>
</tr>
<tr>
<td>18.</td>
<td>okl Patterson for K-glucuronate</td>
<td>78</td>
</tr>
<tr>
<td>19.</td>
<td>okl Patterson for Rb-glucuronate</td>
<td>78</td>
</tr>
</tbody>
</table>
List of Plates (continued)

Fig. following page
20. Final okl difference synthesis 90
21. okl F₀ synthesis 90
22. hko projection from image seeking 91
23. hko heavy atom synthesis 91
24. Final hko difference synthesis 94
25. hko F₀ synthesis 94
26. Dimensions of molecule 101
27. Idealized molecular dimensions 108
28. External bonding of molecule 115
29. Diagrammatic representation of bonding 115
30. Formation of hydrogen bonds 116
31. Environment of K⁺ ion 116

Chapter III
1. b-axis projection of unit cell 134
2. Fourier transform of oxalic acid 135
3. Fourier transform of urea 135
4. 102 weighted reciprocal lattice 135
5. Crude derivation of oxalic acid transform 137
6. Derivation of urea transform 137
7. Fourier synthesis from inequalities 140
8. Fourier projection of urea oxalate 140

Appendix I
Fanned diffraction patterns 148

Appendix II
Absorption by a crystal 149

Appendix III
Anisotropic temperature factor error 155
Table of contents

Chapter I: Optical methods in crystal structure analysis

Introduction

Theory of image formation
Reciprocal space
Relation between object and diffraction pattern
Phase problem
Uses for optical diffraction
Historical survey of usage
Summary of uses

Design and Constr. of Diffractometer

Physical arrangement of parts
Viewing eye-piece
Camera
Illuminating arc
Condensing lens arrangement
Illuminating aperture
Wavelength used

Alignment and Operation

Alignment
Focusing of collimator
Focusing of camera and eye-piece
Coherence
Photography
Photographically produced diffractors

Fly's Eye

Introduction
Construction
Focusing

Bibliography for Chapter I
Table of Contents (cont'd.)

Chapter II: The crystal and molecular structure of the isomorphous potassium and rubidium dihydrated salts of glucuronic acid

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>49-51</td>
</tr>
<tr>
<td>Glucuronic acid</td>
<td></td>
</tr>
<tr>
<td>Salts</td>
<td>51-53</td>
</tr>
<tr>
<td>X-ray equipment and procedures</td>
<td>54</td>
</tr>
<tr>
<td>Space group, unit cell dimensions</td>
<td>55,56</td>
</tr>
<tr>
<td>THE OKL PROJECTION OF THE STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>Intensity Measurements</td>
<td>57,58</td>
</tr>
<tr>
<td>Shape of crystal</td>
<td>59</td>
</tr>
<tr>
<td>Absorption by crystal</td>
<td>59</td>
</tr>
<tr>
<td>Absorption by film</td>
<td>59,60</td>
</tr>
<tr>
<td>Integrated intensity</td>
<td>60,61</td>
</tr>
<tr>
<td>Background measurement</td>
<td>61-63</td>
</tr>
<tr>
<td>Accuracy</td>
<td>63,64</td>
</tr>
<tr>
<td>Extinction</td>
<td>64,65</td>
</tr>
<tr>
<td>Absorption Correction</td>
<td>66-68</td>
</tr>
<tr>
<td>Observed Structure Factors</td>
<td></td>
</tr>
<tr>
<td>l_p^{-1} correction</td>
<td>69</td>
</tr>
<tr>
<td>Scale and temperature factors</td>
<td>69,70</td>
</tr>
<tr>
<td>Computations</td>
<td>71-76</td>
</tr>
<tr>
<td>Determination of the Structure</td>
<td></td>
</tr>
<tr>
<td>Packing of molecules</td>
<td>77</td>
</tr>
<tr>
<td>Weighted reciprocal lattice</td>
<td>77-79</td>
</tr>
<tr>
<td>Patterson function</td>
<td>79,80</td>
</tr>
<tr>
<td>Heavy atom synthesis</td>
<td>80</td>
</tr>
<tr>
<td>Isomorphous replacement</td>
<td>80</td>
</tr>
<tr>
<td>Identification of peaks</td>
<td>80,81</td>
</tr>
<tr>
<td>Refinement of the Structure</td>
<td></td>
</tr>
<tr>
<td>Use of difference syntheses</td>
<td>82-85</td>
</tr>
</tbody>
</table>
Table of Contents (contd.)

Anisotropic vibration
Scattering factors
Hydrogen atoms

THE HKO PROJECTION OF THE STRUCTURE

Determination
Refinement

The final difference syntheses
The final atomic coordinates

Accuracy of the final coordinates
Bond lengths and angles

Significance tests
Discussion of the molecular structure
Discussion of the molecular packing

Close approach of the atoms of one molecule

Concluding remarks

Bibliography for Chapter II

Page
86,87
87,88
88-90
92,93
93-95
96
97
98-101
102-104
105-107
108-114
115-117
118
119-120
121-126
Table of Contents (contd.)

Chapter III: The crystal structure of urea oxalate

Introduction

Physical Properties
Unit cell dimensions, space group

Planarity

Determination of the Structure
Number of structural parameters
Weighted reciprocal lattice
Fourier transforms
Harker-Kasper inequalities
Thermal vibration
Another determination of the structure

Bibliography for Chapter III

Summary

Appendix I
Fanning of the diffraction pattern of collagen fibres

Appendix II
Absorption

Appendix III
Anisotropic thermal vibration

Appendix IV
Final F_o and F_r for K-gluconate, also progress of parameters

Page
127-145
127-129
130
131,132
133
134
135-138
138-140
140
141,142
144,145
146,147
148
149-151
152-155
156-166