STUDIES IN GAS PHASE KINETICS

JOY WEST HEDGER, B.Sc. (Adelaide)

Thesis presented for the degree of
Doctor of Philosophy

Department of Physical and Inorganic Chemistry,
University of Adelaide

1964
CONTENTS

Summary 1
Acknowledgements v

SECTION I. The Homogeneous Gas Phase Oxidation of Ammonia by Nitrous Oxide. 1

Chapter 1. Introduction. 2
1. The Thermal Decomposition of Nitrous Oxide. 2
2. Oxidations Involving Nitrous Oxide. 18

Chapter 2. Experimental. 27
1. Apparatus. 27
2. Procedures Used. 30
3. Materials. 34
 (i) Nitrous Oxide 34
 (ii) Ammonia 34
 (iii) Isotopic Ammonia, $^{15}\text{NH}_3$ 34
4. Analysis of Reaction Mixtures. 35
 (i) Gas Analysis 35
 (ii) Use of Nitrogen 15 37
 (iii) Analysis of the Products of the Flow Experiments 38

Chapter 3. Experimental Results for the Oxidation of Ammonia by Nitrous Oxide. 40
1. Products of Reaction. 40
2. Stoichiometry 42
 (i) Determination of
 Ammonia, Nitrous Oxide
 and Total Nitrogen 42
 (ii) Use of 15NH$_3$ in the
 Analysis of Total
 Nitrogen 44
3. Rate of Reaction. 50
4. Orders of Reaction. 55
5. Energies of Activation. 58
6. The Effect of Surface. 59

Chapter 4. Discussion of the Experimental
Results. 61

Chapter 5. The Activation of Nitrous Oxide
by Ammonia Molecules. 69

SECTION II. A Preliminary Investigation of the
Eevolysis of 1,1 Difluorocethylene. 80

Chapter 6. Introduction. 81
Chapter 7. Experimental. 89
 1. Apparatus. 89
 2. Procedures Used. 90
 (i) Sampling Products of
 Reaction 90
(ii) Use of Gas Phase Chromatography 91
(iii) Collection of Samples of Products 93
(iv) Molecular Weight Measurements 94
(v) Infra-red Measurements 94
(vi) The Nuclear Magnetic Resonance Determinations 94

(i) 1,1 difluoroethylene 95
(ii) Silicon Tetrafluoride 96
(iii) Carbon Monoxide 96

Chapter 8. Experimental Results for the Pyrolysis of 1,1 Difluoroethylene. 97
1. Temperature Range in which Reaction Occurred. 97
2. Products of Reaction. 98
3. Pressure Changes Accompanying the Reaction. 101

Chapter 9. Discussion of the Results for the Pyrolysis of 1,1 Difluoroethylene. 107

BIBLIOGRAPHY 114
APPENDIX Papers Published 117
Summary

Studies in Gas Phase Kinetics

The first and major part of this thesis contains an account of the work done on the oxidation of ammonia by nitrous oxide. The second section is concerned with a description of a preliminary examination of the pyrolysis of 1,1 difluoroethylene.

The oxidation of ammonia has been examined between 650⁰ and 730⁰ C and at total pressures of up to 510 mm, using both static and flow techniques. The products of reaction were established to be nitrogen, water and hydrazine. Ammonia labelled with ¹⁵N was used to determine the source of the nitrogen formed and it was shown that no exchange of nitrogen between nitrous oxide and ammonia took place. The stoichiometry of the reaction followed the approximate equation,

\[7\text{N}_2\text{O} + 6\text{NH}_3 \rightarrow 9\text{N}_2 + 7\text{H}_2\text{O} + 1\text{N}_2\text{H}_4 \]

The initial rates of reaction were determined at several temperatures. Measurements were made with a constant pressure of nitrous oxide and varying
pressures of ammonia, and vice versa. From the plots of initial rate against pressure, the following empirical rate expression was formulated,

\[\text{Rate} = k' [N_2O]^{1.56} + k'' [N_2O]^{0.61} [\text{NH}_3] \]

A free radical reaction mechanism has been suggested to account for the products and the kinetics of the reaction and involves initiation by oxygen atoms which result from the thermal decomposition of nitrous oxide. The empirical rate expression was of the same form as the theoretical expression derived from the postulated mechanism.

The results have shown that ammonia molecules were participating in the activation of nitrous oxide, a fact which was indicated by the form of the empirical rate expression. The efficiency of ammonia molecules in this activating process,

\[N_2O + \text{NH}_3 \rightarrow N_2O^* + \text{NH}_3 \]

was calculated, assuming the efficiency of nitrous oxide to be unity.

The results of the investigations of the pyrolysis of 1,1 difluoroethylene have shown the reaction
to be complex. The pyrolyses were carried out in silica reaction vessels at temperatures between 423° and 515° C. Under these temperature conditions attack on the reaction vessel occurred with the formation of silicon tetrafluoride and carbon monoxide. Pressures of up to 450 mm of 1,1 difluoroethylene were used and the reaction products were separated by means of gas phase chromatography.

The main product of reaction was examined by molecular weight determinations, infra-red and N.M.R. spectroscopy and was identified as the dimer CF₂ = CH - CF = CH₂. A second product has been tentatively assigned the structure CH₂ = CF - CF = CH₂.