OPTICAL PROPERTIES OF THIN FILMS
AND OPAQUE SOLIDS.

By

Ancara Islam
B.Sc. (Calcutta), M.Sc. (Dacca).

A Thesis submitted for the Degree of
Doctor of Philosophy
in the Department of Physics
University of Adelaide.
CONTENTS

SUMMARY

DECLARATION

ACKNOWLEDGEMENTS

CHAPTER 1: Introduction

1.1 Aim of the Project

1.2 Optical Absorption

1.3 Band Structure of Solids

1.3.1 Optical interband transitions in Semiconductors

(a) Direct Transitions

(b) Indirect Transitions

1.3.2 Amorphous Semiconductors

1.3.3 Optical intraband and interband transitions in Free Electron Metals

1.4 Advantages of the optical methods for the study of band structure

1.5 Thin films and bulk specimens

1.6 Various methods of determining the optical constants of thin films

(a) Transparent films

1.6.1 Abbe's Method

(b) Absorbing films

1.5.2 Polarimetric method (Ellipsometer)
<table>
<thead>
<tr>
<th>CONTENTS Continued.....</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6.3 Schopper's method (combined method)</td>
<td>17</td>
</tr>
<tr>
<td>1.6.4 Spectrophotometry at oblique incidence</td>
<td>18</td>
</tr>
<tr>
<td>1.6.5 Spectrophotometry at normal incidence</td>
<td>18</td>
</tr>
<tr>
<td>1.7 Principal methods of determining the optical constants of bulk materials</td>
<td>20</td>
</tr>
<tr>
<td>1.7.1 Reflectivity measurements at normal or oblique incidence</td>
<td>21</td>
</tr>
<tr>
<td>1.7.2 The Kramers-Kronig Relation</td>
<td>21</td>
</tr>
<tr>
<td>1.7.3 The Vincent-Geiss method</td>
<td>23</td>
</tr>
<tr>
<td>1.7.4 Tomlin's method</td>
<td>24</td>
</tr>
</tbody>
</table>

CHAPTER 2 : Experimental Methods

2.1 The Spectrophotometer	25
2.2 Light source and Monochromator	25
2.3 Detectors	26
2.4 Amplifier	26
2.5 Substrate Materials and preparations	27
2.6 Film Deposition technology	28
2.7 Substrate Heating System	29
2.8 Electron-Microscopy and X-ray Diffraction Techniques	29
CHAPTER 3: Optical Properties of Amorphous and Crystalline Germanium

3.1 Introduction 31
3.2 Experimental 32
3.3 Mathematical formulas used in determining the optical constants of Ge films 35
3.4 Density and thickness of Ge films 35
3.5 Surface micro-structure of Ge films 36
3.6 Optical constants of Ge films in the region 0.62 to 2.2 eV 42
3.7 Amorphous Ge films 44
 3.7.1 Absorption processes in amorphous Ge films 44
 3.7.2 Determination of band gaps and discussion 45
3.8 Polycrystalline Ge films 49
 3.8.1 Absorption processes in polycrystalline Ge films 49
 3.8.2 Determination of band gaps and discussion 49
3.9 Dependence of energy gaps on deposition and annealing temperatures 55
3.10 Conclusions 56

CHAPTER 4: Determination of the Optical Constants of Ge in the region 1.5 to 15 eV using the Kramers-Kronig dispersion relations

4.1 Introduction 59
4.2 Kramers-Kronig dispersion relations 60
CONTENTS

4.3 Extrapolation formulae with additional parameters

4.4 Discussion of the extrapolation formulae

4.5 Results and Conclusions

CHAPTER 5: Determination of the Optical Constants of Opaque Solids (or Films) or Absorbing Materials

5.1 Introduction

5.2 Equations for single layer absorbing films

5.3 Equations for a double layer on an opaque specimen

5.4 Solutions for hypothetical opaque specimens

5.4.2 Molybdenum

5.4.2 Nickel

5.5 Effects of errors in the thickness of the semi-transparent overlying layer

5.6 Effects of errors in R and R_1 on optical constants

CHAPTER 6: Determination of Optical Constants of Au

6.1 Introduction

6.2 Sample preparation and structure of the films

6.3 Determination of the optical constants of Au

6.4 Results and Discussion
CHAPTER 7: Determination of Optical Constants of Transition Metals Ni, Co and Mo

7.1 Nickel

7.1.1 Introduction 96

7.1.2 Sample preparation and structure of the films 97

7.1.3 Determination of the optical constants of Ni 98

(a) Ni film prepared by sputtering 98

(b) Polished specimen of Ni 101

(c) Opaque Ni film with light incident through the quartz substrate 101

7.1.4 Results and Discussion 102

7.2 Cobalt 104

7.2.1 Introduction 106

7.2.2 Sample preparation and structure of the films 107

7.2.3 Determination of the optical constants of Co 107

7.2.4 Results and Discussion 107

7.3 Molybdenum 109

7.3.1 Introduction 109

7.3.2 Sample preparation and structure of the films 110
CONTENTS

7.3.3 Determination of the Optical Constants of Mo

7.3.4 Results and Discussion

7.4 Conclusions

APPENDIX A Optical Properties of stearic acid (CH₃(CH₂)₁₇COOH)

APPENDIX B Some details of Kramers-Kronig calculations

APPENDIX C Conversion of double layer equations to single layer equations when \(d_{2} = 0 \)

BIBLIOGRAPHY

ADDENDUM Comments on errors of measurement

PAGE

111

112

117

114

118

125

113 A
The work involved in this thesis is an account of the manner in which the optical reflectance and transmittance of thin films of Ge, and the reflectance of opaque films and polished specimens of metals such as Au, Ni, Co and Mo relate to their optical constants and hence their band structures.

Chapter 1 presents introductory theory on band gaps and electronic transitions in metals and semiconductors and a short review of various methods of determining their optical constants.

Chapter 2 gives a brief description of the experimental methods used.

The changes in the optical constants \(n \) and \(k \) of thin films of Ge as they are converted from the amorphous to the crystalline state have been determined for the spectral region between 0.62 to 1.2 eV by the normal incidence reflectance and transmittance method and are discussed in Chapter 3. For the amorphous state of Ge an interpretation is made according to the Mott and Davis (1977) model of energy bands. A detailed study has been made of the effects on the optical constants of annealing amorphous films from 290 to 760°C and of preparing films at higher substrate temperatures (300 to 600°C). The energy gaps of both amorphous and polycrystalline films of Ge, and of amorphous films converted to the polycrystalline state by annealing, have been calculated from the relation \((E_n)^{1/2} = c(E - E_g) \).

In Chapter 4 a method is given for evaluating the optical constants of Ge within the region 1.8 to 15 eV by using Kramers-Kronig dispersion relations. For reflectances at high energies above
three similar extrapolation formulae have been investigated in attempts to improve extrapolation procedures by using additional parameters which are determined from the directly measured values of the optical constants within the region 1.8 to 4.0 eV.

Chapter 5 gives an introduction to the single and double layer formulae derived by Tomlin (1972, 1978) for determining the optical constants of metals. The effects of errors in the measurement of reflectances are considered.

Measurements of the optical constants of opaque Au films in the region 1.7 to 4.2 eV are presented in Chapter 6. The results are discussed and the features of the spectra due to interband transitions are identified.

The optical properties and interband transitions in the region 0.62 to 4.0 eV of the transition metals Ni, Co, and Mo are discussed in Chapter 7 and some tentative identifications of optical features are made. Polished specimens of Co and Ni have almost identical band structures and polished specimens of Mo and opaque Mo films have some similarities with Ni and Co.

Appendices contain a brief account of some preliminary observations of the optical properties of steric acid films, and contain details of Kramers-Kronig calculations.