THE INTESTINAL ABSORPTION OF MACROMOLECULES IN ADULT MICE

Pak Leong Lim, B.Sc.Hons. (Adelaide)
Department of Microbiology & Immunology,
The University of Adelaide,
Adelaide, SOUTH AUSTRALIA.

A thesis submitted for the degree of Doctor of Philosophy.

awarded Nov., 1980
ABSTRACT

The intestinal absorption of 2 bacterial antigens was studied in adult mice. These were flagellin (FLA), purified from *Salmonella adelaide*, and Boivin Antigen (BA), extracted from *Vibrio cholerae*. With the latter, 4 techniques were used, which demonstrated that small amounts of macromolecular BA were absorbed. These include the use of (1) 125-labelled antigen in *vivo*; (2) 3H-DNP-labelled antigen in *vivo*; (3) 125 specific antibody injected i.v. to detect cold, absorbed antigen in *vivo*; and (4) everted gut sacs. The use of 125 antigens in the intact mouse and rat (but not in everted sacs) was discredited by our studies. On the other hand, 3DNP was a stable and suitable tag. Using this system, we observed a marked difference between the absorption of BA and FLA, which was consistent with the observed fate of these antigens following their i.v. administration, and their relative degradabilities in intestinal juice.

Oral immunization inhibited the intestinal absorption of the specific antigen in the above models. The efficiency of this was generally low, but significant. This function may be a prerogative of IgA antibodies, since serum antibodies were found to induce intestinal anaphylaxis, as manifested by death or increased gut permeability.

The absorption of immunogenic BA was also demonstrated in mice. This was shown indirectly by the ability of oral doses of the antigen to prime an animal for an anamnestic, systemic response (on i.v. boosting), and directly by the ability of absorbed material recovered from the plasma *in vivo* or everted gut sacs to
prime normal mice when injected i.v.. In all cases, the resultant, humoral response in the recipient animals was qualitatively different (presumably due to IgA production) from that obtained in mice primed i.v. with the native antigen, and the significance of this is discussed.
CONTENTS

TITLE ... i
ABSTRACT .. ii
STATEMENT ... iv
ACKNOWLEDGMENTS .. v

1. CHAPTER 1. INTRODUCTION .. 1
1.1 Historical Perspectives on Protein Absorption 1
1.2 Macromolecular Absorption in the Neonate 7
1.3 Evidence of Macromolecular Absorption from the Adult Gut ... 10
1.4 The Gut and its Structure .. 13
1.5 The Gut as a Digestive and Absorptive Organ 16
1.6 The Gut as a Lymphoid Organ 17
1.7 Characteristics of Macromolecular Absorption in the Adult ... 23
1.7.1 The site and route of absorption 23
1.7.2 The kinetics and mechanism of absorption 25
1.8 Factors Affecting Macromolecular Absorption 26
1.8.1 Immunological ... 26
1.8.2 Others .. 30
1.9 The Liver as a Further Barrier to Absorbed Macromolecules ... 32
1.10 Diseases Related to Macromolecular Absorption 34
1.10.1 Extra-intestinal .. 36
1.10.2 Intestinal ... 37
1.10.2.1 Coeliac disease .. 38
1.10.2.2 Gastrointestinal allergy 38
1.10.2.3 Inflammatory bowel disease 39
1.10.2.4 Toxigenic diarrhoea ... 40
1.11 The Importance of Studying Macromolecular Absorption 41

2. CHAPTER 2. THE PROBLEMS IN ORAL ABSORPTION STUDIES 45
2.1 What is an Absorbed Antigen: How and Where do We Look for It? ... 45
2.2 The Choice of Antigen .. 49
2.3 The Use of Cold Antigens .. 50
2.4 The Use of Radiolabelled Antigens 51
2.5 The Choice of in vivo Models 56
2.6 In vivo Models ... 57
2.7 Summary ... 58
3. CHAPTER 3. PERSONAL APPROACHES TO THE PROBLEMS IN ORAL ABSORPTION STUDIES

3.1 Attempts at Developing Sensitive Immunoassays for Detecting Antigen

3.1.1 Inhibition of passive haemagglutination

3.1.2 Inhibition of the Farr assay

3.1.3 Inhibition of binding of labelled antigen to specific antibody: separation on paper

3.1.4 Inhibition of the binding of ¹²⁵I-specific antibody to antigen-sensitized RBC

3.1.5 Inhibition of binding of primary (mouse) antibody to antigen-sensitized cells or specific bacteria, and developed with a secondary labelled-antibody (¹²⁵I-goat anti-mouse IgLC)

3.1.6 Discussion on the choice of immunoassay to detect cold antigen

3.2 The Use of Radiolabelled Antigens

3.2.1 The use of ¹²⁵I-labelled antigens

3.2.2 The use of ⁵¹Cr-labelled antigens

3.2.3 The use of ³H-DNP-labelled antigens

3.3 The Use of ¹²⁵I-labelled Proteins Administered i.v.

3.3.1 The use of ¹²⁵I-anti-BA antibody given intravenously to detect the oral absorption of BA in vivo

3.3.2 The use of ¹²⁵I-BSA given intravenously to monitor gut permeability

3.4 The Immunogenic Detection of Absorbed BA

3.5 Summary
4. Chapter 4. Materials and Methods

4.1 Animals ... 72
4.1.1 Mice ... 72
4.1.2 Rats ... 72
4.2 Bacteria ... 72
4.3 Antigens ... 73
4.3.1 Boivin Antigen (DA) from *V. cholerae* 569B 73
4.3.2 Flagellin (FLA) from *S. adelaidae* 73
4.3.3 Bovine Serum Albumin (BSA) 73
4.3.4 Mouse IgG1 (MOPC 21) 73
4.3.5 Lipopolysaccharide (LPS) from *S. adelaidae* 73
4.4 Labelling Antigens 74
4.4.1 Iodination .. 74
4.4.2 Tracing iodinated antigens 74
4.4.3 Dinitrophenylation 75
4.4.4 Tracing H2-dinitrophenylated antigens 76
4.5 Preparation of Antibodies 76
4.5.1 Mouse anti-*V. cholerae* serum (MAB#DIGM, #1276, #LB) 76
4.5.2 Mouse anti-FLA serum (MAF) 77
4.5.3 Mouse IgA anti-DNP (MOPC 315) 77
4.5.4 Purified goat anti-mouse IgLC (light chain) and anti-IgA 77
4.5.5 Rabbit anti-*V. cholerae* serum (RAB) 79
4.5.6 Rabbit anti-BSA serum 79
4.5.7 Mouse anti-*V. cholerae* intestinal juice (MAB#IIJ) 79
4.6 Detection of Antibodies 80
4.6.1 Bacterial agglutination 80
4.6.2 Passive haemagglutination (for protein antigens) 81
4.6.3 Passive haemagglutination (for LPS) 83
4.6.4 Farr assay .. 83
4.6.5 Double antibody radioimmunoassay (RIA) 84
4.6.6 Opsonic assay 86
4.7 Techniques in Animal Experimentation 86
4.7.1 Oral administration in the mouse 86
4.7.2 Oral administration in the rat 86
4.7.3 Obtaining serum/plasma from the mouse 86
4.7.4 Obtaining serum from the rat 87
4.7.5 Thoracic cannulation in the mouse 87
4.7.6 Liver perfusion in the mouse and rat 87
4.7.7 Studies with the mouse small intestine 88
4.7.8 The everted gut sac model 88
4.7.9 Tissue processing 89
4.8 Miscellaneous ImmunochromicTechniques 90
4.8.1 Immunodiffusion in gel 90
4.8.2 Protein estimation 90
4.8.3 Carbohydrate estimation 90
4.8.4 Antigenicity test of radiolabelled antigens 91
4.8.5 Antigenicity test of I125-labelled mouse IgG 91
4.9 Others ... 91
4.10 Statistics .. 91
CHAPTER 5. THE PREPARATION AND CHARACTERIZATION OF THE ANTIGENS ... 92
5.1 Preparation of BA ... 92
5.2 Preparation of FLA ... 94
5.3 The Behaviour of the Antigens in vivo 97
5.4 The Stability of the Antigens in Mouse Intestinal Juice .. 98
5.5 Discussion .. 98
5.6 Conclusions ... 100

CHAPTER 6. THE ORAL ABSORPTION OF MACROMOLECULES FROM THE ADULT INTESTINE: A COMPARATIVE STUDY OF TECHNIQUES 101
6.1 The Absorption of I^{25}-labelled Antigens in vivo 102
6.1.1 The absorption of I^{25}-labelled antigens in mice 102
6.1.1.1 The absorption of I^{25}-BA in mice 102
6.1.1.2 Comparative studies on the absorption of I^{25}-antigens in mice ... 103
6.1.2 The absorption of I^{25}-antigens in rats 104
6.2 The Absorption of H^{3}-DNP-antigens in the Intact Mouse ... 106
6.3 The Absorption of Unlabelled Antigens in the Intact Mouse 108
6.3.1 Of BA using I^{25}-specific antibody injected i.v. 108
6.3.2 Absorption studies using unlabelled antigen and the inhibition of haemagglutination 109
6.4 The Absorption of Antigens in Everted Gut Sacs 110
6.5 The Functional Demonstration of the Oral Absorption of Antigens 111
6.6 Discussion ... 112
6.7 Conclusions ... 117

CHAPTER 7. THE EFFECT OF SPECIFIC ORAL IMMUNIZATION ON THE ABSORPTION OF MACROMOLECULES ... 118
7.1 Specific Oral Immunization Inhibits Macromolecular Uptake 119
7.1.1 Using the I^{25}-specific antibody model with immune intestinal juice passively given to normal germ-free mice 119
7.1.2 Using everted gut sacs from actively immunized mice 120
7.1.3 Using I^{25}-antigens in vivo 121
7.1.4 Using H^{3}-DNP-antigens in vivo 122
7.2 The Site of Coproantibody Action 122
7.3 The Induction of Intestinal Anaphylaxis 123
7.3.1 In germ-free mice in vivo 124
7.3.2 In SPF mice in vivo 125
7.3.3 In everted gut sacs 127
7.4 Discussion ... 127
7.5 Conclusions ... 131
7.6 Addendum: on the Mechanisms of Immune Exclusion and Intestinal Anaphylaxis 131b
CHAPTER 8. THE INTESTINAL ABSORPTION OF IMMUNOGEN IN ADULT MICE

8.1 Establishing a Sensitive Immunogenic Assay for BA .. 133
8.2 Preliminary Immunogenic Studies with FLA .. 135
8.3 Further Immunogenic Studies with BA ... 135
8.3.1 Immunogenic studies with BA#DBA ... 137
8.3.2 Immunogenic studies with BA#878 ... 137
8.3.3 Immunogenic studies with BA#179 ... 138
8.4 Discussion .. 140
8.5 Conclusions .. 142

CHAPTER 9. GENERAL DISCUSSION

9.1 Are Macromolecules Absorbed from the Adult Intestine? 143
9.2 Where are Macromolecules Absorbed? ... 146
9.3 What is the Significance of Macromolecular Absorption? 147
9.4 Natural Barriers to Macromolecular Absorption ... 148
9.5 Immunological Barriers to Macromolecular Absorption 149
9.5.1 The efficiency of immunological barriers .. 150
9.5.2 The biological significance of sigA ... 150
9.6 The Systemic Response to Ingested Antigens .. 157
9.6.1 Systemic tolerance to ingested antigens ... 158
9.6.2 Systemic humoral response to ingested antigens .. 158

BIBLIOGRAPHY ... I-XXVII