PHYSICAL AGEING
AND
DIMENSIONAL CHANGES
OF ACRYLATE POLYMERS

A thesis submitted for the Degree of Doctor
of Philosophy in the Departments of Chemical Engineering
and Physical and Inorganic Chemistry.
June 1992

CHEE-HOONG LAI
B.Sc. (Hons.)
TABLE OF CONTENTS

SUMMARY vii
STATEMENT viii
ACKNOWLEDGEMENTS ix

CHAPTER 1

1.1 INTRODUCTION 1

BIBLIOGRAPHY 5

CHAPTER 2

LITERATURE REVIEW

2.1 PHYSICAL AGEING 9

2.2 FREE VOLUME MODELS
 2.2.1 The Williams-Landel-Ferry (WLF) Model 11
 2.2.2 The Simha-Boyer Model 15
 2.2.3 The Struik Model 18

2.3 BASIC ASPECTS OF PHYSICAL AGEING
 2.3.1 Physical Ageing Occurs Generally 21
 2.3.2 The Timescale of Physical Ageing 22
 2.3.3 The Thermoreversibility of Physical Ageing 24
 2.3.4 The Temperature Range of Physical Ageing 24
 2.3.5 The Non-Linearity and Asymmetry of Physical Ageing 27
 2.3.6 The Single-Parameter Model for Volume Recovery 29
 2.3.7 The Two-Parameter Model for Volume Recovery 31
 2.3.8 The Multi-Parameter Model for Volume Recovery 33
 2.3.9 Molecular Motions of Poly(Methyl Methacrylate) and Poly(n-Alkyl Methacrylates) 35
 2.3.10 Mechanical Modelling of Molecular Behaviour 38
 2.3.11 Physical Ageing and Residual Stresses 40
 2.3.12 Physical Ageing and The Glass Transition 47
 2.3.14 Physical Ageing and The Thermal Expansion Coefficient 51
CHAPTER 3
EXPERIMENTAL AND VALIDITY OF MEASURING TECHNIQUE

3.1 MATERIALS: DESCRIPTION 69

3.2 POLYMER CURING AND CASTING 70

3.3 THERMOMECHANICAL ANALYSER (TMA) 71

3.4 VALIDITY OF MEASURING TECHNIQUE
 3.4.1 Dimensional Changes Arising From Residual Stresses and Physical Ageing 73
 3.4.2 Dimensional Changes Arising From the Sorption and Desorption of Diluents 77
 3.4.3 Dimensional Changes Arising From Viscoelastic Deformation 77
 3.4.4 Dimensional Changes Arising From Molecular Deformation 77

SUMMARY 78

BIBLIOGRAPHY 79

CHAPTER 4
PHYSICAL AGEING IN PMMA

4.1 INTRODUCTION 81

4.2 SAMPLE PREPARATION AND EXPERIMENTAL 82

4.3 LENGTH CONTRACTION AS A QUANTITATIVE MEASURE OF FREE VOLUME 83

4.4 RESULTS AND DISCUSSION
 4.4.1 Free Volume Fraction 84
 4.4.2 Temperature Range for Length Contraction 88
 4.4.3 Thermal Expansion Coefficient 91
 4.4.4 Relaxation Times for Length Contraction 96
5.1 INTRODUCTION

5.2 EXPERIMENTAL

5.3 RESULTS AND DISCUSSION
 5.3.1 Isothermal Ageing
 Length Contraction
 Relaxation Rates and Relaxation Times
 Activation Energy for Physical Ageing
 5.3.2 Sequential Ageing
 Length Contraction
 Relaxation Rates

5.4 SUMMARY

5.5 BIBLIOGRAPHY
5.6 GLOSSARY OF SYMBOLS
6.3.2 Slow-Cooled Oriented PMMA
Length Changes Under a Constant Heating Rate 133
Length Changes During Sequential Ageing 134
Relaxation Times and Free Volume Fraction 135
Activation Energy of Randomisation 135

6.4 SUMMARY 137

BIBLIOGRAPHY 138
GLOSSARY OF SYMBOLS 140

CHAPTER 7
PHYSICAL AGEING AND MOLECULAR WEIGHT

7.1 INTRODUCTION 141

7.2 EXPERIMENTAL 143

7.3 RESULTS AND DISCUSSION
7.3.1 Viscosity-Molecular Weight Relationship 144
7.3.2 Free Volume Fraction 146
7.3.3 Length Contraction At a Constant Rate of Heating 149
7.3.4 Dimensional Changes of Low Molecular Weight PMMA 149
 Free Volume Fraction 151
 Relaxation Times and Activation Energy 152

7.4 SUMMARY 153

APPENDIX
 Measurement of Viscosity 154
 Determination of Molecular Weight 154

BIBLIOGRAPHY 156
GLOSSARY OF SYMBOLS 158

CHAPTER 8
PHYSICAL AGEING AND PLASTICISATION

8.1 INTRODUCTION 160
8.2 EXPERIMENTAL

8.3 RESULTS AND DISCUSSION
 8.3.1 Length Contraction At a Constant Heating Rate 163
 8.3.2 Glass Transition Temperature of PMMA Plasticised With DBP 164
 8.3.3 Free Volume Fraction of Plasticised PMMA 167
 8.3.4 Thermal Expansion Coefficient of Plasticised PMMA 170
 8.3.5 Isothermal Ageing of Quenched PMMA Plasticised With DBP 172
 Length Contraction and Free Volume Fraction 172
 Rates of Relaxation and Activation Energies 173

8.4 SUMMARY 176

BIBLIOGRAPHY 177
GLOSSARY OF SYMBOLS 180

CHAPTER 9

PHYSICAL AGEING IN CROSSLINKED POLYMERS

9.1 INTRODUCTION 181

9.2 EXPERIMENTAL 184

9.3 RESULTS AND DISCUSSION
 9.3.1 Length Contraction 186
 9.3.2 Thermal Expansion Coefficient 188

9.4 SUMMARY 192

BIBLIOGRAPHY 193
GLOSSARY OF SYMBOLS 197

CHAPTER 10

PHYSICAL AGEING IN POLY(2-HYDROXYETHYL METHACRYLATE)

10.1 INTRODUCTION 198

10.2 EXPERIMENTAL
 10.2.1 Preparation of PHEMA Specimens 202
10.2.2 Hydration of PHEMA Specimens 202
10.2.3 Preparation of PHEMA-KBr Specimens 203
10.2.4 Preparation of Poly(HEMA-co-EGDMA) Specimens 204

10.3 RESULTS AND DISCUSSION
10.3.1 Physical Ageing of Dry and Partially-Hydrated PHEMA 204
10.3.2 Effect of Crosslinking on Physical Ageing of Dry PHEMA 207
10.3.3 Physical Ageing of Dry PHEMA-KBr Polymers 208

10.4 SUMMARY 210

BIBLIOGRAPHY 210
GLOSSARY OF SYMBOLS 215

CHAPTER 11
EFFECT OF SUBSTITUENTS ON PHYSICAL AGEING OF ACRYLATE POLYMERS

11.1 INTRODUCTION 216

11.2 EXPERIMENTAL 217

11.3 RESULTS AND DISCUSSION
11.3.1 Length Contraction 217
11.3.2 Thermal Expansion Coefficient 220

11.4 SUMMARY 222

BIBLIOGRAPHY 223

CONCLUSION 225
SUMMARY OF THESIS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Chee-Hoong Lai
Department of Physical and Inorganic Chemistry
University of Adelaide
South Australia

PHYSICAL AGEING AND DIMENSIONAL CHANGES OF
ACRYLATE POLYMERS

A novel technique for investigating the nature and structure of glassy acrylic polymers, in particular poly(methyl methacrylate) (PMMA), has been developed by studying the dimensional changes of these polymers using a thermomechanical analyser (TMA).

Physical ageing describes a complex process in which an amorphous material in a non-equilibrium state undergoes spontaneous and gradual changes in properties (e.g. decrease in specific volume, increase in creep retardation times, reduction in internal energy, etc.) towards attaining an equilibrium structure. In this work, physical ageing is characterised by length contraction in the glass transition region. The contraction is associated with the collapse of free volume, which is a hypothetical concept used to explain the observed changes during physical ageing. These contractions deviate from the idealised volume-temperature curves which portray T_g as the intersection of the extrapolated liquid and glass lines. The magnitude of length contraction provided a quantitative measure of free volume fraction (f), in which values of f for quenched polymers were found to range from 0.08 to 0.26, but decreased to 0.05-0.06 for slow-cooled PMMA. In addition, free volume fraction was also found to be affected by changes in molecular weight, plasticisation, side-group and main-chain substituents and crosslinking. These variations in free volume fraction leads to the conclusion that a single, "universal" value, as proposed by the Simha-Boyer and Williams-Landel-Ferry theories, is unlikely.

This thesis also investigates of the effects of molecular orientation and residual stresses on the dimensional changes of PMMA. A preliminary study on the dimensional instability of hydrated poly(2-hydroxyethyl methacrylate) (PHEMA) is also presented, in which length measurements may represent a potentially useful tool in elucidating the distribution of water in PHEMA.