The Quantification of Facial Expression Using a Mathematical Model of the Face: Validation and Extension of a Microcomputer-Based Technique.

Mary Katsikitis

Faculty of Medicine
Department of Psychiatry
University of Adelaide
North Terrace, Adelaide
South Australia

Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy.

Date Submitted: 7th July, 1992.
TABLE OF CONTENTS

Table of Contents ii
List of Tables xi
List of Figures xii
Abstract xiii
Author’s Statement xiv
Acknowledgements xv
Overview xvi

PART I

Chapter 1: Theories of the Facial Expression of Emotion 1

1.1. Introduction 2

1.2. The Early Theories 3

1.2.1. Duchenne and "The Mechanism of Human Facial Expression" 3
1.2.2. Darwin and "The Expression of the Emotions in Man and Animals" 5

1.3. The Structure of Emotion: The Categorical Approach 9

1.3.1. Psychological Theories of Emotion 9

1.3.1.1. The Psychodynamic Theory 9

1.3.1.2. A Behaviouristic Approach to Emotion 11

1.3.2. Neuropsychological Theories and their Contribution to the Discrete Emotions 15

1.3.3. The Facial Feedback (FFH) Hypothesis 22

1.3.3.1. Tomkins’ Theory of Emotion 22

1.3.3.2. Izard’s Theory of Emotion 25

1.3.3.3. The Facial Feedback Hypothesis: The Evidence 27

1.3.4. Ekman’s Neocultural Approach to Emotion 36

1.3.5. The Cognitive Theories of Emotion 42

1.3.5.1. Cognitive-Appraisal Approach to Emotion 42

1.3.5.1.1. Lazarus’s Theory of Emotion 42

1.3.5.1.2. Lazarus’ Cognitive Theory of Emotion 45

1.3.5.2. Perceptual-Motivational Theory of Emotion 50

1.3.5.3. Cognitive-Arousal Theory of Emotion 51

1.3.5.4. Psycho-Evolutionary Theory of Emotion 56

1.3.6. The Categorical Approach in Summary 58

1.4. The Structure of Emotion: The Dimensional Approach 62

1.4.1. Semantic Dimensions in the Judgement of Facial Expression 67

1.5. Conclusion 75
Chapter 2: Biological versus Social Determinants of Facial Expression

2.1. Introduction 77
2.2. The Comparative Approach 78
2.3. The Developmental Approach 79
2.3.1. Innate 88
2.3.2. Maturation 89
2.3.3. The Learning Theory Approach 91
2.4. Universal versus Culture-Specific Facial Expressions of Emotion 92
2.5. Conclusion 94

Chapter 3: Methodology and Measurement Techniques for the Judgement of the Facial Expression of Emotion.

1. The Judgement Approach 103
3.1. Introduction 104
3.2. The Judgement Approach: A Question of Accuracy 105
3.2.1. Artists’ Drawings as Facial Stimuli 106
3.2.2. Photographs as Facial Stimuli 107
3.3. Improving the Accuracy of the Judgement Approach 112
3.3.1. Use of Film or Video 113
3.3.2. Use of “Live” Stimuli 114
3.3.3. The Knowledge of Situational Cues and its Effect on the Judgement of Facial Expression 116
3.3.4. The Effect of Training on the Judgement of Facial Expression 122
3.3.5. The Effect of Suggestion on the Judgement of Facial Expression 125
3.3.6. Artificial Induction of Emotion 126
3.3.6.1. Artificial Induction of Emotion and the Judgement of Facial Expression 128
3.3.6.2. Hemispheric Asymmetry in the Production of Emotion 128
3.3.7. Facial Asymmetry and the Judgement of Facial Expression 130
3.3.8. Upper or Lower Parts of the Face as Cues for the Judgement of Facial Expression 134
3.4. Conclusion 138
Chapter 4: Methodology and Measurement Techniques for the Judgement of the Facial Expression of Emotion.

2. The Component Approach

4.1. Introduction

4.2. The Contribution of Physiognomy

4.3. Demonstrational Models of Facial Expression

4.4. Contemporary Approaches

4.4.1. The Ethological Approach

4.4.2. Anatomical Theories: Facial Coding Systems

4.4.2.1. MAX

4.4.2.2. AFFEX

4.4.2.3. FAST

4.4.2.4. FACS

4.4.2.5. EMFACS

4.4.3. Summary of the Facial Action Coding Systems

4.4.4. Anatomical Approach: Facial Electromyography (EMG)

4.5. Computer-Assisted Approach to the Measurement of Facial Expression

4.6. Some Methodological Problems in Component Research

4.7. Conclusion

4.7.1. How to Decide on a Measurement System?

PART 2

Chapter 5: The Development of a Microcomputer-Based Approach to the Quantification of Facial Expression

5.1. Introduction

5.2. A Mathematical Model of the Face

5.2.1. Selection of a Facial Source

5.2.2. Definition of Point Locations

5.2.3. Definition of the "Muscleoids"

5.2.4. Definition of the Skin Network

5.2.5. Application of Thornton's Model: The Development of an Expression Scale

5.3. The Modification of Thornton's Model: The Introduction of a Microcomputer

5.3.1. Equipment
Chapter 6: The Quantification of Smiling using a Microcomputer-Based Approach

6.1. Introduction
6.2. Ontogenesis and Function of the Smile
6.3. Electors of the Smile
6.4. Measurement of Smiling
6.5. Study 1
6.5.1. Method
6.5.1.1. Subjects
6.5.1.2. Procedure
6.5.2. Results
6.5.2.1. Individual Covariance Analysis
6.5.2.2. Mouth Measures
6.5.2.3. Eye Measures
6.5.2.4. Multiple Covariance Measures
6.6. Discussion
6.7. Summary of Study 1
6.8. Study 2
6.8.1. Method
6.8.1.1. Overview of Study 2
6.8.1.2. Subjects
6.8.1.3. Procedure
6.8.2. Results
6.8.2.1. Expression Development
6.8.2.2. Encoder Differences
6.8.2.3. Encoder By Expression Interaction
6.8.2.4. Decoder Gender Differences
6.8.2.5. Distance Measures
6.8.3. Discussion
6.9. Conclusion
PART 3

Chapter 7: The Classification of Facial Emotion

7.1 Introduction 236
7.2 Overview of Study 1: A Numerical Taxonomy Approach 237
7.2.1 Method 238
7.2.1.1 Subjects 238
7.2.1.2 Procedure 238
7.2.2 Results 240
7.2.3 Discussion 253
7.3 Overview of Study 2: A Multidimensional Scaling Approach 257
7.3.1 Method 257
7.3.1.1 Subjects and Procedure 257
7.3.2 Results 257
7.3.3 Discussion 262
7.4 Overview of Study 3: Replication with Line Drawings 266
7.4.1 Method 266
7.4.1.1 Subjects and Procedure 266
7.4.2 Results 266
7.4.3 Discussion 270
7.5 Conclusion 272

Chapter 8: A Controlled Quantitative Study of Smiling in Parkinson's Disease and Depression Using a Microcomputer-Based Approach

8.1 Introduction 274
8.2 Method 275
8.2.1 Subjects 279
8.2.2 Procedure 280
8.3 Results 281
8.4 Discussion 285
8.5 Conclusion 288

Conclusion 289
Abstract

This thesis describes the use of a new measurement technique for the study of the facial expression of emotion. Based on a mathematical model of the face, a microcomputer-based approach is utilised to quantify facial movement. Sixty-two points are digitised from a still image of a face and twelve facial measures are generated which represent distance scores between facial landmarks. Furthermore, the digitised points can be connected to form a smooth curved line drawing representation of the facial expression.

This thesis has three parts. An extensive literature review focusing on the theories of emotion and the methodological and measurement techniques used to describe and capture facial expressions is presented in Part 1.

Part 2 of this thesis concerns the validation of the computer model as a measurement tool. Two experiments were conducted to examine the relationship between the ratings made by a set of smiling and neutral expressions and the facial features which influence these ratings. In the first study, judges were shown forty real face photographs of smile and neutral expressions and forty line drawings derived from the photographs. In Study Two, subjects were shown eighty line drawing representations only of smile and neutral expressions. They were asked to rate the degree of smiling behaviour of each expression. Significant differences were found between the ratings of smile and neutral expressions. Furthermore, there were several facial measures which were found to discriminate significantly between the ratings made on smile and neutral expressions. The second study was further designed to assess differences in expression development. The findings revealed that there was a greater variation in ratings for the development of the smile than there was for the neutral expression. Encoder differences emerged and gender differences in the decoding abilities of the raters were also found.

In Part 3 of the thesis, the utility of the model is extended to firstly incorporate the quantification of other expressions and secondly to extend its utility into
the clinical arena. To address the first issue, twenty-three actors posed the six fundamental emotions of happiness, surprise, fear, disgust, anger, sadness and a neutral expression. These expressions were digitised and the resulting facial measures were subjected to a numerical taxonomy analysis, which yielded five main classes. The most prominent of these were three classes comprising of a majority of the happiness expressions, surprise expressions and a total absence of happiness expressions respectively. Two further experiments were conducted to assess the ability of human subjects to classify these emotions. A Multidimensional Scaling Procedure was applied to the judgements of two separate groups of volunteers. The results from both experiments revealed a two-dimensional structure consisting of a Pleasant-Unpleasant and Facial Activity dimension.

Secondly, this method was used to measure the smiling behaviour of a group of Parkinson’s disease (PD) sufferers, a group of patients with Major Depression and a Control group, of comparable age. Subjects were asked to view a series of amusing slides and the most animated smile for each subject was chosen for analysis. The Depressed group differed significantly from the other groups on several of the facial measures. Both the Depressed group and the PD group were found to smile significantly less often during the slide session when compared to the Control group.

Conclusions focus on the primacy of happiness and the utility of the model as a measurement tool.