THE FEMALE ANURAN REPRODUCTIVE SYSTEM
IN RELATION TO REPRODUCTIVE MODE

by

PHILIPPA HORTON B.Sc. (Hons)

Department of Zoology
University of Adelaide

A thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy

SEPTEMBER 1984

awarded 6.6.86
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>(a) Background and Aims</td>
<td>1</td>
</tr>
<tr>
<td>(i) Reproductive diversity in the Anura</td>
<td>1</td>
</tr>
<tr>
<td>(ii) Published data on the female anuran reproductive system</td>
<td>2</td>
</tr>
<tr>
<td>(iii) Aims of this study</td>
<td>10</td>
</tr>
<tr>
<td>(b) Anuran Reproductive Modes</td>
<td>12</td>
</tr>
<tr>
<td>II. MATERIALS, METHODS AND TERMINOLOGY</td>
<td></td>
</tr>
<tr>
<td>(a) Specimens</td>
<td>23</td>
</tr>
<tr>
<td>(b) Size of Specimens</td>
<td>23</td>
</tr>
<tr>
<td>(c) Eggs</td>
<td>25</td>
</tr>
<tr>
<td>(d) Size of Eggs</td>
<td>25</td>
</tr>
<tr>
<td>(e) Number of Eggs</td>
<td>26</td>
</tr>
<tr>
<td>(f) Volume of Eggs per Ovary</td>
<td>27</td>
</tr>
<tr>
<td>(g) Oviducts, and Oviduct Length and Convolutions</td>
<td>27</td>
</tr>
<tr>
<td>(h) Oviduct Width</td>
<td>28</td>
</tr>
<tr>
<td>(i) Ovisacs</td>
<td>29</td>
</tr>
<tr>
<td>(j) Disposition of Ovisacs: Histological Procedures</td>
<td>30</td>
</tr>
<tr>
<td>(k) Ontogenetic Material</td>
<td>30</td>
</tr>
<tr>
<td>(l) Processing of Ontogenetic Material</td>
<td>31</td>
</tr>
<tr>
<td>(m) Urinary Ducts</td>
<td>31</td>
</tr>
<tr>
<td>(n) Statistical Analyses</td>
<td>32</td>
</tr>
</tbody>
</table>
III. RESULTS

(a) Reproductive Modes
(b) Snout-vent Length
(c) Eggs
 (i) Egg diameter
 - Comparison of egg diameters between modes
 - Correlation of egg diameter with SVL
 (ii) Ovarian complement
 - Comparison of ovarian complements between modes
 - Correlation of ovarian complement with SVL
 - Correlation of ovarian complement with egg diameter
 (iii) Complement volume
 (iv) Egg pigmentation
 (v) Egg jelly capsules
(d) Ovaries
 (i) The anuran ovary, general description
 (ii) Number of lobes of the ovary
 - Intraspecific variability in lobe number
 - Comparison of lobe numbers between modes
 - Correlation of lobe numbers with SVL
 - Correlation of lobe numbers with egg diameter
 (iii) Differentiation of gonads
 (iv) Ovarian asymmetry
(e) Oviducts
 (i) The anuran oviduct, general description
 (ii) Convolutions of the para convoluta
 - Correlation between number of convolutions and oviduct length
 - Intraspecific variation in numbers of convolutions
 - Comparison of numbers of convolutions between modes
 - Correlation of numbers of convolutions with SVL
 - Correlation of numbers of convolutions with egg diameter
(iii) Ontogeny of the *pars convoluta*

(iv) Diameter of the *pars convoluta* in transverse section
 - Intraspecific variation in oviduct width
 - Comparison of oviduct widths between modes
 - Correlation of oviduct width with SVL
 - Correlation of oviduct width with egg diameter
 - Correlation of oviduct width with numbers of convolutions

(v) The *pars convoluta* in foam-nesting species

(vi) Fusion of the ovisacs
 - Correlation with reproductive mode
 - Ovisac fusion in an ontogenetic series of *Pseudophryne bibroni*

(vii) Occlusion of the ovisacs

(viii) The urinogenital sinus

IV. DISCUSSION

(a) Snout-vent Length

(b) Eggs
 (i) Egg diameter
 (ii) Ovarian complement
 (iii) Egg pigmentation
 (iv) Egg jelly capsules

(c) Ovaries
 (i) Morphological variation in vertebrate ovaries
 (ii) Lobing of anuran ovaries
 (iii) Ovarian asymmetry

(d) Oviducts
 (i) Oviducal modifications
 (ii) Convolutions of the oviduct
 (iii) Oviduct width
 (iv) The oviduct in foam-nesting species
 (v) The ovisac
 (1) Degree of fusion
 (2) Occlusion from the cloaca
(3) Disposition of the ovisacs and urinary ducts 108
(4) The urinogenital sinus 110
(e) Systematic Implications of Reproductive Morphology 112
(f) Predictive and Comparative Value of Reproductive Morphology 114

APPENDICES

Appendix I - Specimens Examined in the Course of This Study 118
Appendix II - Precocious Reproduction in the Australian Frog Limnodynastes tasmaniensis 127
Appendix III - Reproductive System. Ch.7 in "The Gastric Brooding Frog" 128
Appendix IV - The Female Reproductive System of the Australian Gastric Brooding Frog Rheobatrachus silus (Amura: Leptodactylidae) 129

BIBLIOGRAPHY 130
SUMMARY

Amurans display considerable morphological diversity in the female reproductive system, and a great variety of reproductive modes. In this study I defined the relationships between interspecific morphological variation and reproductive modes among 108 species.

Associations between reproductive mode and morphology must be related to the nature of the spawn, therefore I constructed a classification of modes based on egg diameter and the degree of embryonic dependence on stored yolk, to facilitate comparison with morphology:

Mode I - eggs with little yolk, larvae aquatic and feeding

Mode II - eggs containing moderate yolk reserve, only late larval stages feeding

Mode III - eggs containing large yolk reserve which nourishes embryo or larva throughout development

Mode IV - viviparity (not considered here, because the eggs contain little yolk, therefore reproductive morphology is not influenced by the same parameters as in species of Modes I - III).

In defining egg characteristics for each mode, I observed the following features:

1) unpigmented eggs in species which oviposit away from sunlight, and

 a significant trend towards loss of pigmentation from Mode I to III;
2) egg diameter (a) is positively correlated with snout-vent length in species of Modes II and III but not I, and (b) increases significantly from Mode I to III;

3) ovarian complement (a) is positively correlated with snout-vent length within a mode, and (b) decreases significantly from Mode I to III;

4) a negative correlation between egg diameter and ovarian complement;

5) for a given snout-vent length, ovarian complement volume remains similar regardless of mode.

I investigated the nature of morphological variation and the ontogeny of the reproductive system. Those features which exhibited significant interspecific variation, together with correlations with reproductive mode, were as follows:

1) the number of ovarian lobes is positively correlated with snout-vent length and decreases from Mode I to III. These correlations reflect changes in surface area of ovarian epithelium (larger in larger species, smaller for a smaller number of larger eggs), which is achieved by changes in the number of lobes;

2) ovarian asymmetry, which occurs in *Rheobatrachus silus*, was not observed in other species, and therefore appears to be unrelated to reproductive mode as defined here;

3) the number of convolutions of the *pars convoluta* of the oviduct is proportional to the length of that region, and is positively correlated with snout-vent length in Modes I and III but not in Mode II. It is negatively correlated with egg diameter, and significantly smaller in Modes II and III than in Mode I. These correlations probably reflect changes in surface area of secretory oviduct wall, achieved by altering oviduct length, in species with different
egg diameters and/or ovarian complements, which therefore require
different quantities of oviduct secretions;

4) oviduct width (an indicator of lumen diameter) is positively
correlated with egg diameter, and is significantly larger in
Modes II and III than in Mode I, thus enabling the large eggs of
Modes II and III species to traverse the oviduct;

5) in foam-nesting species the posterior-most convolutions are
greatly enlarged and therefore probably secrete mucus for foam
production;

6) the ovisacs remain separate, or unite posteriorly, or are com-
pletely united. Separate ovisacs are present only in species with
small eggs, and there is a significant trend towards fusion from
Mode I to III; fusion may reduce the risk of large eggs impacting
during oviposition.

There is no apparent correlation of any pattern of reproductive
morphology with taxonomic status. Similar morphological modifications
have evolved in unrelated species which share the same reproductive
mode, presumably in response to similar physiological and environmental
pressures.