CODING AND PROCESSING
NUMERICAL INFORMATION

Thesis submitted in fulfilment of
the requirements for the
Degree of Doctor of Philosophy

LEONARD JACK WHITE
(B.Sc. (Hons.) Adelaide University, 1978)

Department of Psychology
University of Adelaide
South Australia

Date submitted: JANUARY, 1985.

Awarded 2-4-85
TABLE OF CONTENTS

AUTHOR'S STATEMENT

ACKNOWLEDGEMENTS

SUMMARY

CHAPTER 1. CODING INFORMATION: ITS MEASUREMENT AND ITS EFFECT UPON PERFORMANCE

1.1 Introduction ... 1
1.2 Measures of Mental Imagery 3
1.3 Problems Associated with Imagery Measures 6
1.4 The Effect of Imagery Coding upon Task Performance ... 8
1.5 Rationale for Studying the Coding and Processing of Numerical Information 12
1.6 Research Direction 14

CHAPTER 2. CODING NUMERICAL INFORMATION

2.1 Introduction ... 15
2.2 Experiment 1: Factors Affecting the Mental Coding of Numerical Information 17
2.3 Method .. 24
2.4 Results .. 31
2.5 Discussion ... 48

CHAPTER 3. DEVELOPMENT OF THE 'NUMERICAL CODING MODALITY QUESTIONNAIRE' (NCMQ)

3.1 Introduction ... 53
3.2 Item Sources for Questionnaire 54
3.3 Establishing Reliability and Internal Consistency (Experiments 2.1, 2.2, 2.3) 68
3.4 Validation of the Numerical Coding Modality Questionnaire (Experiments 3.4) 78
3.5 Conclusions .. 93

CHAPTER 4. THE RELATIONSHIP BETWEEN THE NUMERICAL CODING MODALITY QUESTIONNAIRE AND MEASURES OF MENTAL IMAGERY

4.1 Introduction ... 94
4.2 Self Report Measures & the NCMQ (Experiments 5, 6) ... 94
4.3 Visual Spatial Tests & the NCMQ (Experiment 7) ... 101
4.4 Visual Memory and the NCMQ (Experiment 8) ... 106
4.5 The Interaction Between Visual Memory, Visual-spatial Ability and the NCMQ (Experiment 9) ... 114
4.6 A Correlational Profile of Imagery Measures Associated with the NCMQ 121
CHAPTER 10. A STUDY OF NUMERICAL PROCESSING ASSOCIATED WITH CONTEMPORARY ARITHMETIC PRODIGIES (EXPERIMENT 15)

10.1 Introduction 263
10.2 Method 264
10.3 Results 267
10.4 Discussion 270

CHAPTER 11. A SIMULATION MODEL FOR CODING AND PROCESSING NUMERICAL INFORMATION

11.1 Introduction 274
11.2 The Proposed Model: Its General Structure and Components 275
11.3 Description and Computer Simulation of the Model for Complex Mental Multiplication Problems 286
11.4 Results of the Simulation 289
11.5 Modification of the Model 292
11.6 Conclusions from the Simulation Study 299

CHAPTER 12. RESEARCH OVERVIEW

12.1 Different Perspectives of the Research 302
12.2 Problems Encountered Within the Research 312
12.3 Directions for Future Research 315
12.4 A Final Comment 317

REFERENCES 319

APPENDICES INDEX 336
SUMMARY

The broad aim of this research is to examine the effect of mental coding on performance in storage/processing tasks, and to rationalize the function of mental coding within the human memory/information processing system.

Specifically, the research considers tasks involving digit information, and compares individuals whose coding is predominantly 'visual' (i.e. those who code numbers as 'digit-images' (e.g. "87")) with others whose coding is predominantly 'auditory' (i.e. those who code numbers as either 'number-words' (e.g. "eighty-seven") or 'digit-words' (e.g. "eight-seven").

From an experimental perspective the research developed in three stages: first, with the examination of factors that affect a person's perceived mental coding (Experiment 1); second, in the development and evaluation of an individual difference measure that quantitatively assesses mental coding of digit information (Experiments 2, 3, 4, 5, 6, 7, 8 and 9); and third, examining whether differences in mental coding affect performance in a range of storage recall tasks (Experiments 10 and 11) and storage/processing tasks (Experiments 12, 13, 14 and 15).

From a theoretical perspective, the research aims to rationalize the function of mental coding in the context of a general information processing model. Several axioms
about mental coding are proposed on the basis of experimental results. It is proposed that neither coding form offers greater memory storage capacity capabilities, but 'auditory' coded information appears more durable. Relating to memory rehearsal functions, it is suggested that 'visually' coded information decays more rapidly, and therefore requires more frequent rehearsals than 'auditory' coded information. It is further suggested that 'visually' coded information is more speedily rehearsed.

Following on from models proposed by Dansereau (1969), Hitch (1978a) and Hollnagel (1978) a specific information-processing model is developed which describes the general flow of information between components of memory during the solution of complex mental multiplication problems. The model is defined within a computer program to enable simulation testing. After minor modifications the proposed model generates results consistent with those found experimentally, and offers a logical structure for describing the mental stages involved in the solution of complex mental arithmetic problems.