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SUMMARY

The thesis consists of two parts. Part 1 examines the distribution of
alcohol consumption (that is, the distribution of individual consumers of
alcohol according to their consumption averaged over a suitable time period),
in relation to Australian data, while Part II considers some more general

inferential problems raised in Part 1.

After a review of the literature concerning the distribution of alcohol
consumption, Part I presents a detailed review of the controversial Ledermann
model, providing a new interpretation of some of Ledermann’s work. A sub-
stantial body of quantitative Australian data is collected together, and then
other models, notably various lognormal distributions, are examined in the
light of this data. It is found that the most commonly used model of the
distribution of alcohol consumption, the two parameter lognormal, spuriously
uses information about the light drinkers to make inferences about the heavy
drinkers, because of the symmetry of the distribution on the logarithmic

scale.

Part II examines this apparent paradox, and suggests some possible
solutions. This is done using linear functionals of the class probabilities
("contrasts”). These linear functionals have considerable utility in precisely
quantifying important inferential questions, and the mathematics necessary to
use them is established. The approach is then to decompose a linear func-
tional to show that a nonparametric estimator of a contrast is partitioned into
the parametric estimator plus a second component whose expected value is

zero if we can assume the validity of the specification. If we have some

Vi



doubt as to the validity of a particular aspect of the parametric specification,
we may modify it and so transfer a further component to the parametric esti-
mator, and be confident that the new reduced second component has zero

expectation.

We show that, in the case of inferences concerned with the upper tail
of the distribution of alcohol consumption, modifying the two parameter log-

normal by the addition of a third parameter, or altering the fitting procedure

by censoring the lower class frequencies, may ensure valid inferences.

Finally we present a method for fitting a probability distribution subject

to a constraint on a linear function of the fitted class probabilities.

Vil
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Chapter 1

Introduction.

"As a nation Australians drink too much alcohol. The death, sick—
ness, social disruption and economic loss which results has become
an unacceptable burden and urgent methods are needed to reduce
consumption.”
This is the opening paragraph of a Statement on alcohol consumption and
abuse published by the Australian Medical Association in 1980 (AMA, 1980).
The statement, and the policies proposed to reduce consumption, are predi-
cated on the AMA’s claim that
"In any alcohol consuming population, the proportion that are drink—
ing hazardously varies directly with changes in per capita consump-—
tion.”
In such claims lay the genesis of this thesis. The initial brief was to
investigate the background to similar claims, largely based on European and

North American data, and see if they were supported by available Australian

data.

In the process of this investigation, it became apparent that there were
problems of statistical inference underlying some of the basic assumptions.
These problems extended beyond the alcohol consumption framework in which

they were posed.

The thesis has therefore been divided into two parts. The first part
considers the original question of the distribution of alcohol consumption,
while the second part raises more general inferential problems and offers

some solutions. We give here a brief summary of the two parts.

Part 1 surveys the literature about the distribution of alcoho! consump-



tion, considers various appropriate models and examines them in the light of
Australian data. By the distribution of alcohol consumption is meant the dis-
tribution of individual consumers of alcohol according to their consumption

averaged over a suitable time period. Part I consists of five chapters:

® Chapter 2 surveys the origins of the distribution of consumption in the
early 1950s, and traces the changing attitudes to it through the follow-

ing thirty years.

® Chapter 3 examines the model proposed by Sully Ledermann in 1956,
which has been the controversial basis of most subsequent work. A

new interpretation of parts of Ledermann’s work is given.

® Chapter 4 looks at other models which have been used for the distribu-
tion of consumption, notably various lognormal distributions, and the

gamma distribution.

® Chapter 5 brings together a large majority of the existing quantitative
Australian data on the distribution of alcohol consumption. It is neces-
sary first to consider methods of measuring individual alcohol consump-

tion, and their validity.

® Chapter 6 examines this data, in particular for evidence of the relation-
ship between the "proportion that are drinking hazardously” and "per
capita consumption”. It is found that the most often used model of
alcohol consumption, the two parameter lognormal distribution, spuri-
ously uses information about light drinkers to estimate the number of
heavy drinkers. It is shown empirically that by censoring the lower tail

of the lognormal distribution, or by adding a third parameter to the dis-



tribution, the effects of the lower tail on the estimation of the upper

tail can be reduced.

It is this paradox of the light drinkers affecting the estimation of the number
of heavy drinkers that is the raison d’etre for Part II, which considers
mathematically the empirical solutions adopted in Part I. Part II consists of

one chapter.

® Chapter 7 is concerned with various inferences arising from the fitting of
a statistical distribution to grouped data. Initially, the necessary linear
algebra is given to enable the later precise formulation of answers to
important inferential questions. It is shown that if a distribution is fit—-
ted to an observed relative frequency vector, functionals of the fitted
probability vector express aspects of the inference assuming the chosen
parametric specification. Functionals of the deviations of the fitted pro-
bability vector from the observed relative frequencies will express
aspects of the goodness-of-fit. By consideration of partitions of these
functionals, it is shown that by introducing a third parameter into the
two parameter lognormal distribution, or, almost equivalently, by cen-
soring the lower tail of the distribution, the dependence of the upper

tail of the distribution on the lower tail can be reduced.






Chapter 2

The distribution of alcohol consumption - an historical overview.

2.1 Ledermann’s original proposals, 1956

The idea of a distribution of alcohol consumption was first put forward by
the French demographer Sully Ledermann. He produced a large, two volume
report, covering many aspects of alcohol and alcoholism in France (Leder-
mann, 1956, 1964a). In one of the twenty—-three chapters, he dealt with
measures of the degree of alcoholic intoxication of a population, considering
two such groups:. those measures derived from consumption data, and those
derived from various alcohol-related diseases. The former group included the
number of excessive drinkers in a population,

d’oU le probldme préalable de la répartition des individus selon
leur consommation.”

Ledermann proposed that the logarithm of the alcohol consumption was nor-
mally distributed, asserting that this was frequently the case for phenomena
which develop according to a mechanism of the ‘contagion’ or ’‘snowball’

type. He quoted several data sets to support his hypothesis.

The basic assumptions of Ledermann’s model are

i. alcohol consumption is distributed according to a two parameter lognor-—

mal distribution, and

ii. there is a small but constant proportion of drinkers whose daily con-
sumption exceeds one litre (789 g) of absolute alcohol.
Ledermann determined this proportion empirically by pooling estimates from

his several data sets.



The assumption of lognormality is unexceptional. However the second
assumption generates a relationship between the two parameters of the log-
normal distribution, and means that the distribution can be determined by one
of them. In particular, there is a relationship between the mean consumption
and the prevalence of excessive users. This relationship has considerable
imptications for alcohol control policies: if the model always holds, an
increase in mean consumption will be accompanied by an increase in the
number of heavy consumers, and, vice versa, it would be possible to reduce

the number of heavy consumers by reducing the mean consumption.

Because of the historical importance of Ledermann’s contribution to the
subject area, the "Ledermann model"” is considered in some detail in the next -
chapter of this thesis. It is shown there that the model is a reparameterisa—-
tion of a two parameter lognormal distribution. However, in the literature,
there has been considerable misinterpretation of Ledermann’s work, most of
which stems from the failure to distinguish clearly between the model itself,
the procedure which Ledermann used to fit the model, and the data which he

used to estimate the parameters of the model.

Suppose the usual location and scale parameters of the lognormal dis-
tribution, on the logarithmic scale, are u and ¢. Ledermann’s reparameterisa-
tion of the distribution was in terms of &, the reciprocal of o, and 6, the
standard normal deviate corresponding to a value D on the original scale.
Ledermann preset D to a value of 788 g (one litre) of absolute alcohol per
day, although he recognised that it was really an extra parameter of the
model. It is shown in the next chapter that the choice of a value of D is
not critical to the prediction of heavy consumption from the Ledermann

model, provided it is large compared with the mean.



The procedure which Ledermann used to fit his model had two stages:
taking several data sets he used a graphical technique to estimate a value of
0 for each one. He took a weighted mean of these @ values as his estimate
of €. In doing this, he effectively fitted a lognormal distribution to each data
set and estimated the proportion greater than D. The standard normal devi-
ate corresponding to the proportion greater than D in the final model is then
equal to the weighted mean of the standard normal deviates of the propor-
tions greater than D in the several data sets. The second stage of the pro-
cedure required knowledge of the mean (or median) of the population about
which predictions were to be made, and it was used to derive a value of the
second parameter, a&. It is to be noted that if there is only one data set,
this procedure imptlies that the Ledermann model is identically the lognormal
distribution of best fit to the data. This has not been recognised in the

literature.

Skog (1977a) has summarised the background to Ledermann’s assump-

tions, and is worth quoting in some length:

"Ledermann’s hypothesis of lognormality was in part inspired
by the work of the French economist Gibrat (c.f. Ledermann, 1953),
who was able to show that a number of economic and social
phenomena could be described by the lognormal model. Gibrat
(1931) explained this fact through a mechanism which is called the
law of proportional effects, later referred to as the snowball effect
by Ledermann.

A second source of inspiration was Ledermann’s own studies of
differences between the French departments with respect to death
rates (Ledermann, 1952a). For some diseases, such as cancer, the
distribution of the 90 departments with respect to death rates was
bell-shaped and in accordance with the Gaussian normal distribution.
For contagious diseases, such as T.B., the distributions were highly
skewed and approximately tognormal. Arguing that alcohol con-
sumption is a contagion-like phenomenon, Ledermann (1956) conse-
quently concluded that the distribution of consumption should be
close to lognormal.



The second basic assumption in Ledermann’s theory is, how-
ever, more speculative. It is unclear what made Ledermann believe
that the distribution was of such a nature that it left the theoretical
percentage with a consumption above 365 litres of pure alcohol per
year constant. Ledermann does not substantiate this hypothesis,
and there is considerable doubt as to whether it can be given any
rational substantiation whatsoever (Skog, 1971).

It seems likely that Ledermann’s second assumption is just a
way of imposing restrictions on the dispersion parameter, and
thereby to generate a relationship between the mean consumption of
a population and its prevalence of heavy consumers. That such a
relationship should actually exist was not blind guesswork, however.

Through his work prior to 1956, Ledermann had come to recognise a
close relationship between mean consumption and several indices of
harmful effects (Ledermann 1946, 1948, 1952a, 1952b, 1952¢, 1953;
Ledermann and Tabah, 1951), and this was taken to indicate a rela-
tionship between mean consumption and prevalence of heavy users."

The second assumption has not only been criticised, but has been con-
stantly misinterpreted in the literature. It finds expression in various forms,;

of those listed below, only the first is correct.

"the theoretical proportion above 365 litres annually ... can be con-
sidered constant and identical in all populations.” (Skog, 1882)

a lognormal distribution with a fixed limit" (Cartwright, Shaw and
Sprattey, 1978b)

"one percent of the population consume in excess of one litre of
absolute alcohol per day” (Duffy, 1977b)

But this is not the only source of confusion. It has been widely
assumed in the literature (Skog 1971, 1973, 1977a, 1980a, 1982, 1983; Smith
1976a, 1976b; Duffy 1977a, 1977b, 1980, Duffy and Cohen 1978, de Lint
1974; Cartwright, Shaw and Spratley, 1977, 1978b;, Miller and Agnew 1974,
Singh 1979; Tuck 1980; Furst 1983) that Ledermann intended the value of @
which he had determined should be kept constant and used in all future
applications. However a careful reading of Ledermann (1958) shows that this
was not the case. Ledermann regarded @ as a parameter of his model, and

the value he determined for 6 (= 3.43) as an estimate of the true value "if it



exists"”. This view will be amplified in the next chapter. Thus in any appli-
cation of the model, the estimate of 6 (and of a) should be determined from

the available data.

Certainly the data Ledermann used to estimate the parameters of his
model was inadequate in several respects, and it has given rise to many
objections (Skog, 1971, 1982, Miller and Agnew, 1874; Smith, 1976a; Parker
and Harman, 1978, Tuck, 1980). Some of his samples were small and
unrepresentative, and some were clinical, the details of data collection pro-
cedures were sketchy, the samples contained both consumption and blood
alcohol concentration (BAC) figures. (Ledermann also showed that two sets
of alcohol sales data could be fitted by a three parameter distribution, but
he did not use them in his determination of 6.) Undoubtedly at that time it

was a matter of using what data he could find.

In 1964 Ledermann published a second volume which continued his ear-
lier work, and in particular, lent support to his hypothesis of a relationship
between the mean and heavy consumption. (Ledermann, 1984a). Using data
from additional sources (Brezard 1958, 1959, 1960) he plotted the proportion
of consumers of 10 cl or more per day against the average consumption,
repeating the plot for consumers of 20 cl or more per day. On these graphs
he also plotted the theoretical curves generated by his model. Although Skog
(1973) has pointed out that for populations with small differences in mean
consumption there are some anomalies in the sample points, over a wide
range of mean consumptions there was close agreement between the empirical
points and the theoretical curve. However Ledermann did not use the Brezard
data to test his lognormal hypothesis; Skog (1980b) has demonstrated that

four of the seven data sets show significant deviation from lognormality.



It is interesting that Ledermann’s original volume (1958) was ignored in
the literature for some twelve years. Schmidt and Popham (1978) have sug-
gested that this neglect was because alcohol researchers in the late 1960s
denied any role to the overall level of consumption in a population as a
determinant of the prevalence of heavy use. They distinguish two schools of
thought at that time retevant to alcoholism prevention, the first deriving from
the classical disease concept of alcoholism, where an alcoholic was believed
to differ fundamentally from social drinkers. In this "bimodal model” (Pop-
ham, Schmidt and de Lint, 1976) the distribution of consumption would be
bimodal, and factors influencing the consumption of normal drinkers will have
little or no effect on the consumption of problem drinkers., This lead to
treatment of alcoholics as the main remedial measure. The second school
noted that in some European countries where alcohol is used regularly with
meals and is an integral part of everyday activities, gross drunkenness and
other types of dangerous drinking appeared to be uncommon. They advo-
cated that alcohol be 'demystified” and made more generally available, with
prevention being achieved by encouraging drinking as an incidental part of
routine activities. Popham, Schmidt and de Lint (19768) have called this model
the "integration model”. Neither school could see any use for a distribution
of overall consumption. Ledermann’s work, and that of others to be dis-
cussed below, provided a third model of prevention, the so-called "single

distribution” or "unimodal” model.



10

2.2 The period 1968 — 1975

In 1968 then, Jan de Lint and Wolfgang Schmidt of the Addiction Research
Foundation (ARF), Toronto, Canada, showed that alcohol consumption in
Ontario, as measured from retail sales of wine and spirits, closely followed
the Ledermann model. Despite criticisms of the work, it was largely this
paper which brought Ledermann’s work to the attention of alcohol research
workers outside France (Edwards, 1973). The criticism has concerned the
distribution of purchases not necessarily being the same as the distribution of
consumption (Skog, 1971, 1973), and the absence of any statistical testing of
goodness-of—fit (Miller and Agnew, 1974). More recently, Duffy (1977a,
1977b) thought that the Ledermann distribution had been incorrectly fitted,

this was refuted by Skog (1980a).

Between 1968 and 1975 the main thrust of research into the Ledermann
model was concentrated in Toronto and in Scandinavia; this latter work was
principally in Osio, at the National Institute for Alcohol Research, but also at
several institutions in Helsinki. This period culminated in the publication of a
report (Bruun et al, 1975) as the result of a collaborative project of the Fin-
nish Foundation for Alcohol Studies, the WHO, and the ARF in Toronto. The
report purported to be a "state of the art"” paper, and presented, inter alia,
a concensus view on the distribution of alcohol consumption. We now consider

the research which led up to this report.

The Toronto group were enthusiastic about the Ledermann model. They
produced tables to facilitate calculations (Hyland and Scott, 1969; de Lint,
1974). Smart and Schmidt (1970) fitted (ognormal distributions to BACs

obtained in several earlier studies (Holcomb, 1938; Lucas et al, 1953;
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Vamosi, 1960, McCarroll and Haddon, 1962, Borkenstein et al, 1964) of vehi-
cle drivers not involved in accidents, claiming that the distribution fitted the
data well. This was not surprising, since three of the five data sets con-
tained only three class intervals. O’Neill and Wells (1971) subsequently
showed that the only data set with a reasonable number of class intervals
(Borkenstein et al, 1964) showed significant deviation from the lognormal dis—
tribution. More importantly they pointed out that reducing the mean BAC
would not necessarily reduce the proportion of impaired drivers, as had been
stated by Smart and Schmidt, since changes in the dispersion parameter had
been ignored. Ekholm (1972) gave approximate formulae for evaluating the
change in the proportion with changes in the mean and standard deviation of

the population.

Schmidt and de Lint (1970) compared four methods of measuring the
prevalence of alcoholism in Ontario: consumption data using the Ledermann
model, deaths from alcoholism, from liver cirrhosis and from suicide, finding
reasonable agreement in all cases. They concluded that estimation of alcohol-
ism prevalence from consumption data was the most practical, since all the

necessary data was relatively easy to obtain.

At a Symposium on Law and Drinking Behaviour in 1970, Schmidt stated
that Ledermann’s distribution had been shown to apply to data in various
countries, with differing attitudes to drinking, beverage preferences, drinking
habits, legislative controls and educational efforts.

"Our conclusion is that, for all practical purposes, the form of the
distribution is unalterable and of such a character that excessive
consumption is inextricably linked to general consumption” (Popham,

Schmidt and de Lint, 1971; emphasis in original).

At the same Symposium, Room criticised the Ledermann model, mainly on the
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grounds of using cross-sectional data to establish "the manner in which

changes must inevitably occur.” (Room, 1971).

De Lint and Schmidt (1971b) encapsulated the philosophy of the single
distribution model at that time:
"Since rates of alcoholism rise and fall with the overall level of
alcohol use in a population, a reduction in per capita alcohol con-
sumption must lead to lower rates of alcoholism.”
They used the Ledermann model to calculate estimated rates of those drink-
ing in excess of a daily average of 15 cl of absolute alcohol for 21 coun-

tries. Similar figures, taken from de Lint (1974) were used by the WHO

Expert Committee on Drug Dependence (WHO, 1974).

In another series of publications, Smart and co-workers demonstrated
that a lognormal distribution was, in most cases, an adequate description of
summary scores for frequency of use of a wide range of drugs. (Smart,
Whitehead and Laforest, 1971, Smart and Whitehead, 1972, 1973, Smart,
1978; Castro, Chao and Smart, 1978). These studies were largely on stu-
dents; McDermott and Scheurich (1977) found similar results in a telephone
survey of residents of Kansas. In contrast to most alcohol consumption
data, the drug use scores are based on frequency of use, and little attention
appears to have been given to the effect that the construction of the score
may have on the distribution. The 19873 paper of Smart and Whitehead is
notable in that it marks a moving-away from the strict assumption of a log-
normal distribution:

"It may well be that that the unimodal, continuous character of the

distribution is more important for prevention than the presence or
absence of lognormality."”

Schmidt (1973) outlined some of the difficulties encountered in using
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sales and consumption data to estimate the magnitude of alcoholism, including
illicit production, tourism and changes in stocks. Problems in international
comparisons of alcoholism included the variation in coverage reported by
governments, and differing per capita consumption by alcoholics in different
countries. He also presented evidence that under-reporting of consumption in
surveys was not equal at all levels of consumption, being much greater at
high levels. Schmidt also noted that use of per capita consumption as an
index of rate of excessive use of alcohol depended on the assumption that
alcoholism could be defined as the consumption of a fixed quantity of

alcohol, and gave evidence to support this.

At this time too one of the earliest applications of the Ledermann
model to Australian data was made (Rankin, 1971). James Rankin of the
ARF used the model to present trends in the number of heavy drinkers,
assessing that their incidence had increased by 56 percent between 1948 and
1968. He gave a greater exposition of the implications of Ledermann’s work

while delivering the Seventh Leonard Ball Oration in January 1974.

One of the first of the Scandinavian workers in the field was Klaus
Makela, of the Social Research Institute of Alcohol Studies, Helsinki. He
reported that annual alcohol consumption in interview surveys of a represen-
tative sample of the adult Finnish population in 1968 and 1969 approximated

a lognormal distribution in both years, although he found small deviations in

the upper tail (Md3keld, 1869, 1971a, 1971b, 1971c). He also noted that
because the lognormal distribution is continuous and unimodal, there is no

objective way to define a population of alcoholics in terms of consumption

(Mdkela, 1971a).
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Ole-Jdrgen Skog in Oslo was among the first to critically examine the
Ledermann model (Skog, 1971). He pointed out that Ledermann’s own data
did not support his hypothesis that the proportion of the population consum-
ing in excess of 365 litres per year was constant and independent of the
mean consumption. Skog also recognised that the Ledermann model would
overestimate the number of heavy consumers, particularly in countries of low
mean consumption. In a subsequent paper (Skog, 1973b) he concluded
"I would ... like to emphasise that I do not insist that his
[Ledermann’s] conclusion is faulty. My point is, rather, that there is
no foundation in the available material for a conclusion that categori-
cal. This is why 1 feel Ledermann’s assertion to be more of a
hypothesis with some foundation, rather than a well-documented
conclusion.”

Skog’s approach was rather to fit two parameter lognormal distributions to

consumption data, and then look for a relationship between the two parame-

ters to effectively eliminate one parameter, as he perceived Ledermann’s aim

(Skog, 1971, 1974). This approach was subsequently taken up by Bruun et

al (1975).

Skog fitted two parameter lognormal distributions to eight data sets
(seven reported alcohol consumption and one for BACs) and found significant
deviations from lognormality in four of them. He noted that these devia-
tions, and those reported by Makela (19638, 1971a) indicated that a less
skewed distribution than the lognormal might give a better fit; he fitted the
gamma distribution to his data, concluding that it fitted all except one of the

data sets (Skog, 1974).

Skog also tried using a three parameter lognormal distribution, as
Ledermann had suggested for heterogeneous data, but with little success -

he achieved an acceptable fit in only one out of five data sets. But his
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later conclusions (Skog, 1977a) do not wholly reflect this: he says the three
parameter lognormal distribution, as an answer to the heterogeneity problem

. is a very unfortunate solution however. Firstly the third parame-
ter has no significant theoretical interpretation. Secondly a three-
parametric distribution is so flexible that it can be fitted to almost
all empirical data. Thirdly the relation between mean consumption and
prevalence of heavy consumers is destroyed (within the theory, that
is)."

Another critical assessment of the Ledermann model was made by Miller
and Agnew (1974). They considered the usefulness of the model from the
points of view of description and prediction, and had severe reservations in
both instances. Their objections included the problems of determining the
mean consumption; verification that a population was homogeneous; the
equivocal nature of empirical validation; the lack of verification on longitudinal
data; the tacit assumption that all alcoholic beverages were equally implicated
in alcoholism. They concluded

"The evidence suggests that the distribution of consumption is prob-
ably distributed according to a positively skewed distribution such as
the lognormal distribution. It is not likely, however, that consump-
tion is distributed exactly as hypothesized by Ledermann. ... At the
predictive level the usefulness of the model is even more in doubt.”

Several later critiques of Ledermann’s original proposals can be men-
tioned. Smith (1976a, 1976b) examined the model from the point of view of
prediction of heavy consumers, and was highly critical, describing the pro-

cedure as "an example of bad statistical methodotogy.”"” Parker and Harman’s
(1978) consideration of Ledermann’s work is unique in that they state that
Ledermann’s parameter 0 is probably a variable rather than a fixed quantity.
Only in the special case of a population known to be homogeneous in drink—-

ing practices and cutture will the lognormal model be dependent on only one

parameter. In reply to Parker and Harman's paper, Schmidt and Popham
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(1978) show the extent to which the ARF group had moved away from their
earlier position espoused in such papers as de Lint and Schmidt (1971a,
1971b) and de Lint (1974). They (Schmidt and Popham, 1978) state

. constancy ... in the relationship between mean and dispersion is
not a prerequisite. ... it is not essential whether the distribution
belongs to the lognormal family, the gamma family, or some other
class of distribution.”

This reflects the thinking contained in the monograph of Bruun et al (1975),

which we will now consider.
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2.3 The report of Bruun et al, 1975

This report, entitled Alcohol Control Policies in Public Health Perspective,
was prepared by a working group from Finland, Norway, UK, USA and
Canada. It describes alcohol-related health damage, trends in alcohol con-
sumption and production, and the need for policies which place high priorities

on alcohol availability.

As a "state of the art" paper it is notable for the cautious stand it
takes in comparison with the papers before it. Smith (1976b) has suggested
that this may be a consequence of the co-operative nature of the report, but
given the evidence of papers such as Smart and Whitehead (1973), this seems
unlikely. The authors propose a considerable dilution of the Ledermann
model. The basic approach owed much to Skog (who was a co-author),
largely following from his 1971 and 1974 papers. The distribution of con-
sumption is said to be a highly skewed distribution, described by "two main

parameters, the mean and a measure of dispersion.” The lognormal distribu-

tion is mentioned only in two examples.

Prompted by criticism of the work, Skog (1880a) has summarised the
approach of Bruun et al:
"What Bruun et al tries to demonstrate, is the existence of a rela-
tionship between mean consumption and prevalence of heavy use -
not in the strong sense, but in the weak sense.”
Skog’s use of atrong and weak sense relationships refers to differing
interpretation of the hypothesis of covariation between per capita consumption

and prevalence of heavy use. The first interpretation ("strong™) is that

"populations with identical mean consumption levels have close-to-
identical prevalence rates, too"

and the second interpretation ("weak™)



18
"populations with highly different mean consumption levels are likely
to have different prevalence rates, too"
The effect of these differing interpretations is that the weak relationship

. would enable us to offer statistical predictions of the effect of
large changes in mean consumption levels with respect to prevalence
rates, but it does not imply the possibility of obtaining an estimate
for the prevalence rate in a given population on the basis of per
capita consumption alone.”

The latter possibility is seen as a consequence of a strong relationship.

In support of their weak sense relationship, Bruun et al use two empiri-
cal justifications. By plotting the standard deviation of the logarithm of con-
sumption against the mean consumption for data from six adult and eight
youth samples, they show that "differences as to dispersion between popula-
tions with similar levels of consumption are quite small.” They conclude that
the "apparent stability in dispersion seems to indicate a certain invariance in
the distributional pattern.” "Invariance” is left undefined, but it appears to be
used in a non-statistical sense. The rationale behind the figure is that if a
substantial increase in total consumption should fail to lead to an increase in
the prevalence of heavy consumers, then we would observe a considerable
decrease in the dispersion parameter. Thus a change in the mean consumption
will generally be an expression of a collective movement of the entire popu-

lation upwards or downwards along the consumption scale (Skog, 1983).

This justification has been criticised by Smith (1976a, 1976b), de Lint
(1978), Duffy (1977a, 1977b, 1980) and Duffy and Cohen (1978). Skog
(1983) has agreed with much of this criticism, particularly the limited data
base on which the diagram is based, the fact that the plotted points
represent highly significant differences in dispersion, and the implausibility of

precisely representing a distribution by its first two moments. Despite these
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objections, Skog (1983) maintains that difference in total consumption actually
is an expression of difference along the entire consumption scale. Using data
from twenty-four samples he regresses several percentiles of consumption
against average consumption, both on a logarithmic scale. The regression line
for each percentile (25th, 50th, 75th, 90th and 95th) shows a positive slope,
on which fact he bases his conclusions. In another objection, Duffy and
Cohen calculated the dispersion and per capita consumption from a survey of
Scottish drinking habits (Dight, 1976) and found that the values for female
drinkers did not follow the pattern suggested by Bruun et al. Skog (1980a)
has suggested that this is the result of a methodological artifact, but does

not present a convincing argument.

The second empirical justification of Bruun et al is a diagram reproduced
from Skog (1971), relating proportion of heavy consumers (more than 10
cl/day) to per capita consumption. The data used in this diagram includes
that used by Ledermann (1956, 1964a, 1964b). The plotted points are
derived directly from data without recourse to fitted distributions, and show
an approximately quadratic relationship. The authors conclude that over the
range of mean consumption which is of practical importance, substantial
differences in heavy consumption are evident, and that substantial changes in
mean consumption are likely to be accompanied by substantial changes in the

number of heavy consumers.

Having established this relationship, the authors defend it against the

charge that most of the data are cross-—sectional rather than longitudinal:
in this instance it is hard to see why a longitudinal study should produce
results significantly different from those found by cross-cultural comparis—

ons.” They point out that residual variation in the fitted regression line is
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small in spite of the wide divergences among the populations under review as
to drinking pattern and sociocultural characteristics, so that these factors
must have little effect on the proportion of heavy consumers. They also

quote two longitudinal studies to support their stand (Eckholm, 1872, who

uses data from Mdkeld, 1871b; Brun-Gulbrandsen, 1976). In both these stu-
dies, the mean consumption increases with time.

Their final conclusions are as follows:

"1. A substantial increase in mean consumption is very likely to be
accompanied by an increased prevalence of heavy users.

2. If a government aims at reducing the number of heavy consu-
mers this goal is likely to be attained if the government
succeeds in lowering the total consumption of alcohol.”

Most of the literature before the publication of this monograph was
concerned with using the fitted distributions, be they catled Ledermann or
lognormal, for prediction of the numbers of heavy drinkers. As has been
stated, this was Ledermann’s original aim. But in deserting the "strong”
sense relationship between mean consumption and heavy use for a "weak"
one, Bruun et al have in fact altered the purpose of their inference: they are
now more concerned with the "possibility of making statistical predictions as
to the effect of large changes in per capita consumption” (Skog, 1980a;
emphasis in original). Much of the current literature has still not caught up

with this change of purpose.



21

2.4 The period since 1975

Changes to the single distribution theory since 1975 have been lesser in
extent and degree than changes in the previous decade. In contrast to the
shift of emphasis which was the most notable modification of that period,

there has been

® a gradual acceptance of the position of the "weak" relationship between
mean consumption and heavy use, although this acceptance has been

marked by polemic discussion in the literature;

® an attempt at an explanation of the weak relationship in terms of social
interactions, in contrast to the previous reliance on empirical justifica—

tion;

® discussion of control policies based on the single distribution theory,

and finally

® a continuing stream of papers reporting surveys of consumption, exa-

mining survey methodology issues and so on.

While all four of these items are inextricably linked, it is the first one which

is our principal present concern.

In January 1977, a symposium on "The Ledermann Curve” was held in
London at the invitation of the Alcohol Education Centre. Six papers were
presented giving current thoughts from members of the Canadian, Scandina-
vian and British groups. This symposium makes a convenient organising point
for this section of the review, and we shall trace various paths leading from

it.
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In an initial overview paper, de Lint (1977) described the consumption
curve as continuous, unimodal, positively skewed and probably lognormal,
but was hesitant about using it to estimate the prevalence of excessive use.

"And, in any event, it would seem more useful to investigate the

current increases in consumption, their effects on public health and

how these trends can be stabilised than to produce estimates of
| excessive use."

In his paper, Skog (1977a) not surprisingly takes the line of Bruun et al
(1975) as far as the distribution of consumption is concerned. That is, the
distribution is "approximately lognormal” with an apparent "invariance” in the
distributional pattern. He suggests tackling the problem of aggregation of
subpopulations by replacing the one general distribution with a system of
distributions, one for each level of aggregation of the population. This sys-

tem, he suggests, could be based on the gamma distribution, with parameters

related by empirically determined constants.

As has been mentioned earlier, in his 1974 paper Skog had shown that
the gamma distribution often gave a better fit to consumption data than did
the lognormal distribution. At the London symposium, he hypothesised that
the lognormal distribution could be a correct choice of model if consumption
was determined by a large number of multiplicative factors all contributing a
small, equal amount to the total variance. Aitchison and Brown (1954, 1957)
have shown that the aggregation of several lognormal subpopulations will be
lognormal if the wvariance of each subpopulation is constant, and if the
number of subpoputations is large enough for the distribution of mean con-
sumptions of each subpopulation to be both continuous and lognormal. How-
ever, Skog considered that some factors contributed a large amount to the

variance tending to make the distribution less skewed than lognormal. He
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therefore proposed the gamma distribution, which was in accord with studies

showing empirical distributions to be somewhat less skewed than lognormal

(Makeld, 1969, Skog, 1971, 1974).

Guttorp and Song (1977) reanalysed data from Skog (1971) showing that
the gamma distribution gave a reasonable fit in only one out of six cases,
whereas the lognormal distribution fitted the data well in five cases. This

has been disputed by Skog in an exchange of views (Skog, 1979a; Guttorp

and Song, 1979, Skog, 1979b) concerning methods of fitting distributions and
testing goodness-of-fit, culminating in a claim by Skog that the test of
geparate families of hypotheses for discrimination between lognormal and
gamma distributions (Cox, 1961, 1962; Jackson, 1968, 1969) gives biased
results with grouped data. It is notable that the dispute concerned the
goodness—of-fit of distributions to the whole of each data set, not to the

fits in the tails.

Skog (1880b) fitted both lognormal and gamma distributions to data
from Brezard (1958, 1959, 1960). This was the "confirmatory” data used by
Ledermann (1964a). The data, a random sample of the general population
from seven districts in France, are exceptional in that under-reporting of con-
sumption appears to be very small (Skog, 1980b; Brezard, 1958). Skog’s
results were inconclusive. He has suggested that this may be largely caused
by the aggregation of data from both sexes in Brezard’s data. He showed
(1977b), by comparison of a number of male and female populations having
similar consumption levels, that systematic differences appeared to exist
between the distributional pattern of the sexes. Admitting his conclusions to
be highly tentative because of a modest data base, he found a "somewhat

smatler" prevalence of heavy use among females than among males.
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In his London symposium paper, Skog also outlines a theory of social
interaction between persons to try to explain some of the empirically esta-
blished facts of the distribution. He later expanded this theory (Skog,
1979¢, 1980c). Another model to explain increasing consumption patterns was
set out at the same symposium by Sulkunen (1977). This model was based

on aspects of the drinking practices of the population.

A notable paper at the "Ledermann Curve” symposium was given by
John Duffy, a statistician with the M.R.C. Unit for Epidemiological Studies in
Psychiatry, Edinburgh. Duffy (1977a) was highly critical of the single distri—
bution approach, and it is a pity that the impact of some of his criticisms
have been lessened by other criticisms based on a series of misunderstand-
ings and misinterpretations. The paper firstly misinterprets the prevailing
thinking about the Ledermann model, stating that the model assumed "one
percent of the populaton consume in excess of one litre per day". The misin-
terpretation persists in Duffy (1977b) and Duffy and Cohen (1978). Duffy’s
symposium paper also misinterprets the work of Bruun et al (1975). All this
led to a series of papers (de Lint, 1978; Skog, 1980a; Duffy, 1980) which at
times descended to petty point scoring, but which have had positive aspects
as well. considerable clarification of the approach of Bruun et al (1975) came
from Skog’s (1980a) paper (by way of the explicit distinction between the

strong and weak hypotheses), and there have emerged some genuine criti—-

cisms of research in the distribution of atcohol consumption.

Duffy’s main sustainable criticisms have been

i. that distribution theorists have been using the one fitted distribution for

several purposes. description, estimation, and testing of empirical
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theory.

ii. that when goodness-of-fit testing has been attempted, no account has
been paid to the fact that the degree of fit in the centre of the distri-

bution may have little bearing on the degree of fit in the tails.

iii. comparisons between populations are of little value in considering the

effect of changes within populations.

But other of Duffy’s criticisms amount to statistical hair—-splitting. To main—

tain that "the distribution cannot be continuous, because the populations are
not infinite”, as he does in his 1978 paper, is to ignore the fact that it is
real data with which we are dealing, not some theoretical example. In the
light of a lack of evidence as to any discontinuities in the distribution, con-
tinuity is a reasonable assumption to make for mathematical and conceptual
convenience, and one which, it need hardly be said, is often assumed in

sociological and biological situations.

In a recent paper, Duffy (1982) maintains that there is

"no such thing as the distribution of alcohol consumption: there are
as many distributions of alcohol consumption as there are popula-
tions of consumers.”

He does, however, concede that for some purposes (estimation of means and
variances, and hypothesis testing) the logarithm of alcohol consumption may
be assumed to be normally distributed. His position seems well summarised
by the following quotation.

"The empirical distribution of alcohol consumption between respon-
dents in a survey is an essential part of modelling and estimating
relationships involving alcohol consumption. However, the investiga-
tion of goodness—-of-fit of a particular mathematical form for the
empirical distribution should proceed from consideration of its effect
on the conclusions of the analysis. Studies which consider fitting
mathematical distributions in vacuo are of tittle vatue, and this is
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especially true when it is the tails of the distribution which are of
particular interest.”

An interesting and somewhat different approach to the whole problem of
alcohol consumption levels has been taken by Taylor (1979). he has sug-
gested recasting the distribution curve of consumption as a table of rates,
akin to the use of mortality rates. This rate he terms a "consumption con-
tainment rate” (CCR), as it measures, at any level of alcohol consumption,
the number of drinkers (per thousand, say) not consuming a further unit of
alcohol. Taylor points out that the CCR at any level of consumption is
independent of the CCR at low and medium levels, although the sampling
variance will be considerable in the tail end of the distribution. The CCR
facilitates easy comparisons between different studies. Taylor demonstrates
that the lognormal distribution is characterised by a decreasing CCR at high
levels of consumption, implying that the tendency to refrain from having
another drink falls as consumption increases. He suggests that the property
of a relatively steady or declining CCR as consumption increases may be a
better characteristic of alcohol consumption data than a lognormal distribution.
Additionally it may be possible to calculate CCRs for individuals and relate

them to CCRs derived from population data.
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2.5 Discussion

Ledermann originally proposed that the distribution of alcohol consumption
was lognormal, with a relationship between the two parameters of the distri-
bution implying a relationship between mean consumption and prevalence of
excessive users. Ledermann’s work will be considered in more detail in the
next chapter, and so we defer detailed discussion of it until then. But
despite widespread criticism of his work, and misinterpretation of the details
of it, there is still a strong body of support for his final conclusion: \t?
achieve a reduction in alcoholism and alcohol-related problems, it would

appear necessary to substantially reduce the mean per capita consumption

(Ledermann, 1956, p 159; 1964a, p 430).

Ledermann’s model postulated a near—quadratic relationship between the
mean consumption and the proportion of excessive consumers. When new
data confirmed this relationship, he considered it "un fait de la plus grand
importance” (Ledermann, 1964a, p 443). This empirical relationship is the
common ground between Ledermann’s original model and the more recent
point of view, such as has been espoused by Bruun et al (1975), de Lint
(1977), Smart (1977), Schmidt and Popham (1978), Cartwright, Shaw and
Spratley (1978b), and Skog (1980a). This concensus has alcohol consumption
distributed in a continuous, unimodal, positively skewed manner, "similar to" a

lognormal distribution.

We can note in passing that this means there are no clear distinctions
between categories of drinkers - light drinkers merge into moderate drinkers,
and that class in turn merges into heavy drinkers. Any boundaries between

classes are artificial, and are there only to categorise a continuous situation.
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It is hard to disagree with the concensus view of the distribution, or to
find contradictory evidence. Recent reports of populations as diverse as rural
Punjab males (Mohan et al{, 1980), residents of Vancouver (Storm and Cutler,
1981), New Zeatand adolescents (Stacey and Elvy, 1981) and North Sea oil

rig workers (Aiken and McCance, 1982) all support the view.

However it is the implications of the distribution for alcohol control pol-
icies that are more controversial. To put the present discussion into perspec-
tive, we list some of the available control policy models. A convenient
typology is provided by Robinson (1982), who distinguishes preventative
strategies on the basis of what is perceived as the central focus of "the

alcohol problem"”: alcoholics, society, or alcohol itself.

1. ' Focus on alcoholics.) based on the bimodal model of consumption, the
major effort is put into treatment and support of those individuals iden—

tified as incurring social costs - the "alcoholics".

2. Focus on society\f based on the integration model, the mass media and
education systems are used to disseminate information giving guidelines

for healthy drinking, and encouraging responsible use of alcohol.

\\
3. Focus on alcohol:' based on the single distribution model of consump-

tion, the aim is to reduce per capita consumption through regulating

price and availability of alcohol.

All policy models have factors which operate against them (Mandell, 1982).

In terms of the classification above, these include

1. cultural resistance to labelling individuals as alcoholics; legal difficulties

in applying sanctions;, cost of operating treatment centres.
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2. the cost; competing values in society, competing information in the

media and education system.

3. economic benefits of increased consumption to farmers, producers, dis-
tributors and governments. Bruun et al (1975) recognised that the
reduction of such benefits may be perceived as outweighing any benefits

to be gained from the application of the control policies.

Among those who advocate control measures based on the single distribution
theory, there are differences of opinion about the effect of the policies,
which are related to whether the distribution model is interpreted in the
"strong"” or "weak" sense of Skog (1980a). For instance, the (British)
Advisory Committee on Alcoholism (1977, gquoted by Tuck, 1980) states that
"measures which raise or reduce the overall level of drinking result in a
corresponding increase or decrease in the number of harmed individuals".
And in Australia, the AMA (1980) stated

~"In any alcohol consuming population the proportion that are drinking
\hazardously varies directly with changes in per capita consumption.”

These are similar to Ledermann’s conclusion of twenty years earlier, men-

tioned above. Skog (1981) takes a more conservative line:
"large changes in per capita consumption are likely to result from
similar changes in consumption among drinkers at all levels, and the
prevalence of heavy use is therefore likely to go up."”

And the single distribution view is certainly not without critics. For example,

Tuck, in a controversial paper (1980), considers it

"neither necessarily correct nor helpful, indeed it may stand in the
way of more promising and flexible policies.”

It is not within the scope of the present study to advocate any particu-

lar policy. However, the propriety of using the empirical relationship between
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mean consumption and excessive use as a basis of such policies can at best
be regarded as gquestionable. The relationship, such as is given in Leder-
mann (1964a, 1984b) and Bruun et al (1975) is derived from cross—sectional
studies, rather than longitudinal ones, and is not directly applicable to the
prediction of change within the one population. It is reasonable however to
hypothesise on the basis of the relationship that a reduction in average con-
sumption will lead to a reduction in excessive use, but experimental evidence
of such a reduction is needed before control policies could be soundly advo-

cated.

Makela (1978) points out that it is not easy to find recent examples of
a decreasing level of alcohol consumption. He resorts to the indirect indica-
tors of health and criminal statistics to show that in several situations early
this century, where it is known that per capita consumption declined, there
was a corresponding decline in the indicator statistics. He points out that
other concurrent factors, such as war or popular mass sentiments favouring
temperance, make it problematic to generalise from such historical experi-
ences. He also considers evidence from various liquor strikes, where reduced
availability of liquor is the only influence on consumption. In a conclusion
qualified because the database is from countries where drinking has not been
integrated with everyday social life, he says
"The evidence ... seems to indicate that the decrease has been
accompanied by diminished intake among heavy drinkers and by a
reduced frequency of obnoxious drinking occasions.”
And even in a climate of increasing consumption, there appear to be
few recorded longitudinal studies measuring the effects of increased con-
sumption on the one population. Bruun et al (1975), as was mentioned ear-

lier, quoted two Scandinavian studies in support of their argument. More
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recently Cartwright (1977) and Cartwright, Shaw and Spratley (1977, 1978a,
1978b) examined data from two surveys in 1965 and 1974 of a South London
suburb, and concluded that a change in the total consumption of the popula-
tion was associated with a change in the prevalence of alcohol-retated prob-

lems.

Implicit in policies dependent on the single distribution theory is the
belief that the prevalence of heavy users is closely corretated with various
public health problems. There is a considerable literature on the subject which
we have not attempted to review here. However in a review publication,
Moser (1980) agrees that the conclusions of Bruun et al (1875) on this sub-
ject, namely

"heavy users of alcohol have a substantially elevated risk of
premature death”

and that

"the aetiological importance of alcohol is clear with respect to
deaths from cirrhosis of the liver”,

are widely accepted as being based on a fairly reliable mass of data. The

possibility exists however that some alcohol-related problems are related to

a particular drinking pattern rather than to heavy use per se.

Finally we may ask, given the concensus view on the distribution of
consumption, what is the relevance to control policies of fitting mathematical
distributions to consumption, sales or BAC data? We have already stated
the need for studies in situations of decreasing alcohol consumption. Such
studies need to involve careful analysis of relative frequencies in the extreme
upper tail, and for this purpose a parametric fit based primarily on relative
frequencies in the middle and low upper tail has advantages over the use of

raw data involving small numbers of observations. However the choice of a
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parametric specification needs careful consideration, and should depend on
what aspects of inference are involved. A specification which is satisfactory

for one purpose may be quite unsuited for another. We will return to this

problem later of this thesis.



Chapter 3

The Ledermann model of alcohol consumption.

3.1 Introduction

The French demographer Sully Ledermann (28 Oct. 1915 - 1 Mar. 1967)
appears to have been the first to have put forward the idea of a distribution
of alcohol consumption, in 1956. He was concerned, inter alia, with estimat-
ing the number of excessive drinkers in the French population,

d’ol le problime préalable de la répartition des individus selon
leur consommation.”

Ledermann’s basic proposition was that the logarithm of the alcohol con-
sumption was normally distributed. While this assumption has been acceptable,
Ledermann’s method of fitting his model has been the subject of much dis-

cussion.

Because there has been so much discussion and, we believe, misin—-
terpretation of Ledermann’s work, the model is considered here in some

detail. This does not imply, however, that we advocate its use.
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3.2 The Ledermann procedure and the Ledermann model

3.2.1 Overview To aid the understanding of Ledermann’s work, it is helpful
to distinguish between the "model” which Ledermann used, and the "pro-

cedure" or process by which the model is constructed.

The Ledermann procedure is a method for combining several samples, or
"subpopulations”, each assumed to be distributed according to a two parame-
ter lognormal distribution, to obtain a "pooled” lognormal distribution for the
entire population. The subpoputations are combined in such a manner that
the standard normal deviate corresponding to the proportion of the pooled
population greater than some preset consumption level, D, where D is large
compared with the mean consumption, is equal to the weighted mean of the
standard normal deviates corresponding to the subpopulation proportions
greater than D. This pooled distribution, the Ledermann model, is a
reparameterisation of a two parameter lognormal distribution. If we have only
one subpopulation then the Ledermann model is identically the lognhormal dis-

tribution of best fit.

3.2.2 Description Suppose we have some "target” population for which we
wish to estimate a distribution of individual alcohol consumption. We assume
we have some estimate of the mean* of this population. We suppose that
we have available to us several samples of alcohol consumption data, each
sample coming from some subpopulation of the target population. The
Ledermann procedure enables the combination of information in the subpopu-

lations to give the Ledermann model for the target population.

* Ledermann also gave an equivalent method for deriving the model from
the median, rather than the mean, of the target population.
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We assume we have k samples, and let Xi be the variable representing
the consumption of the ith subpopulation. We suppose that a two parameter

tognormal distribution with parameters ”i and oL. can be fitted to each sample:

Xi ~ LN(pi,oi) i=1, ..., k.
Choose a value of D, large relative to the mean. Ledermann called D the
"maximal consumption”, and defined it as "la consommation approximative trés
rapidement mortelle”. D is really a parameter of the model, but Ledermann
took it to be preset at a fixed value. For each sample we calcutate the
standard normal deviate 9L.

log D - M;

9{. = T— E= 15 wa 7 k (3.01)

Thus if U is a standard normal variate,

Pr (Xi > D) =Pr (U> 9L.)
is the predicted proportion of consumers in the ith subpopulation with con-
sumption greater than D, and 9[ is the standard normal deviate corresponding

to this proportion.

We then calculate a weighted mean of the Gi values to give the first

parameter, 8, of the Ledermann model

k
L
_ =1
6 = ; (3.02)
L

where nL_ is the sample size for the ith subpopulation. This step is the basis
of the combination of the subpopulations, and with the assumption that the
target population is also distributed as a two parameter lognormal, deter-
mines a family of lognormal distributions whose parameters u and o are

related by
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o = ‘—°9—£;—"4 (3:03)

All members of this family have the property that the standard normal devi-
ate corresponding to the proportion greater than D is egual to the weighted
mean of the standard normal deviates of the proportions greater than D in

the subpopulations.

To choose one of this family as the Ledermann model, we use our
knowledge of the mean consumption, m, of the target population. Since m is

an estimate of &, the mean of the lognormal population, we can write

2
logm = u + Yo (3.04)
We can solve (3.03) and (3.04) for o. Eliminating u from the two equations

leads to a quadratic equation for o, which will have real roots if

6% 3 -2 log (lD‘) (3.05)

Ledermann defined his second parameter to be¥*

e = (3.08)

Q=

and expressed the quadratic equation in terms of a rather than o. He took

the larger root, giving

e + \]92+Zlog(‘g)
a = (3.07)

-2 log (%)

In the event that real roots did not exist, Ledermann took

a Bt (3.08)

I
J -2 log(’g)
(An explanation of the second root, and the situation of complex roots, will

be given in Section 3.4).

¥ Ledermann (1956) gives his derivation using logarithms to both base 10
and base e, using the lower case a and the upper case A respectively
for the same parameter. - We use the lower case a in line with the usual
statistical notation. Strictly, it corresponds to Ledermann’s A.
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The Ledermann model is then specified by the two parameters 6 and a,

and we may write

3.2.3

X ~ LED (8, a| D)

Summary To fit the Ledermann model, the steps in the Ledermann

procedure are

iv.

choose a value of D.

fit a two parameter lognormal distribution to each sample, and calculate

the Oi values using (3.01)
calculate 6 using (3.02)

calculate a using (3.07) or (3.08) as appropriate

and the Ledermann model is

LED(O6 , a| D)
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3.3 The Ledermann model as a reparameterisation of the two parameter log-

normal distribution

From the above description, it is easily seen that the Ledermann model
is just a reparameterisation of a two parameter lognormal distribution. For,

by (3.08),

g =2 (3.09)
a
and then by (3.03)

g = log D - % (3.10)

and we have the equivalence

Q j=

2]
LED(®,a|D) = LN(logD —;. ) (3.11)
That is, the Ledermann model with parameters & and a is a two parameter

& 1
lognormal mode! with parameters (log D - ;) and e

The main misconception in the literature about the Ledermann model is
that the value of &, once determined by Ledermann, was to be taken as a
fixed constant for all times. From the formulation above (equation 3.11), it
is obvious that if 9 is regarded as fixed, the distribution depends only on

the one parameter, a. We will return to this point later.

If we have a sample from only one subpopulation (i.e. ¥ = 1), and this

sample is fitted by a two parameter lognormal distribution, that is

X1 ~ LN(p1, 01)

then by equation (3.02) we have @ = 91. Substituting this value in eqguation
(3.07) and wusing m = exp(u1 + %of) we find, after a little algebra, that

a8 = i.e. the

1'

Q|_.;

Substituting for 91 from (3.01) in (3.10) produces u = u
1

Ledermann model is LN (u1, 01) and is identically the lognormal distribution of



best fit to the original sample.
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3.4 Characterisation

In any given application of the Ledermann procedure, once 6 has been
determined from the 9‘. values, a family of lognormal distributions is deter—

mined. The parameters are retated by equation (3.03), which we can write as

4 =log D - 06 .
This family can be represented by a line on a graph of o against either u or
E, the mean consumption. Figure 3.1 shows, as a function of ¢ and §, the
line generated by D = 789 g/day and 6 = 3.43, i.e. the values used by

Ledermann. The points M and F represent the particular distributions he
chose for his predictions for male and female heavy consumers in France. In
terms of Figure 3.1, these distributions were selected by reading off from
the graph values of o corresponding to & and then calculating g from the

retation £ = exp(u + Mo2).

Smith (1976a) has represented the family of lognormal distributions by a
pencil of straight lines through the point (6 , D) on logarithmic probability
paper. This is equally valid, but we prefer the conciseness of the present

representation and the ease of presenting comparisons of different families.

Figure 3.2 shows the different families of distributions produced by
varying the vatue of D, taking 6 to have the value 3.5. Figure 3.3 shows
the different families produced by various values of 8, for a fixed value of
D = 700 g alcohol/day. Figures 3.4 and 3.5 reproduce the same information,
but in terms of u and o rather than & and o¢. From Figure 3.2 it might
appear that the value chosen for D will have a large effect on the final
Ledermann model. However it should be remembered that if the value of D

is altered, then by eguation (3.01) so will the subpoputation values of GL.,
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Figure 3.1 The family of lognormal distributions used by Leder-
mann (D = 789 g/day, 6 = 3.43), and his models
for males (M) and females (F).
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which will in turn change the value of 8. Hence when it comes to choosing a
particutar lognormal distribution as the Ledermann model, the family with

which we are dealing will have altered in a manner indicated by Figure 3.3.

We will examine the effect of the choice of D further in Section 3.7.

Figures 3.2 and 3.3 show the family of distributions over the wusual
ranges of the mean consumption and ¢. If we consider the shape of one of
the curves as o increases beyond this range, we find that rather than
asymptoting to the y axis, the curve is "U" shaped, the tangent to the base
of the "U" being parallel to the y axis. Thus corresponding to any mean
consumption, there are two values of o as solutions. The second value, on
the upper arm of the "U", is the smaller root of the quadratic equation
corresponding to equation (3.07). The case of comptex roots occurs when the
mean of the target population lies to the left of the vertical tangent to the
base of the "U". Ledermann’s solution to this case (equation 3.08) is to
take o equal to the value at which the tangent touches the base of the

curve.
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3.5 Ledermann’s data

Ledermann’s reason for considering the distribution of consumption was
to enable prediction of the numbers of heavy drinkers in France. Therefore
it would seem appropriate that he take as his subpopulations for determining
his pooled value of 8, a reasonably balanced cross—section of the total
French population. This was not the case however. Undoubtedly his choice
was dictated by what was available but it has been widely criticised (for

example Miller and Agnew, 1974; Smith, 1876a, 1976b; Parker and Harman,

1978; Skog, 1982).

It is instructive to superimpose on Figure 3.1 the points representing the
subpopulations which Ledermann used.* This is done in Figure 3.6, where cir—
cles represent alcohol consumption data, squares represent blood alcohol
content (BAC) data, and the figures by each point are the weights ( = sam-
ple size) expressed as percentages, used to combine the values of Ol.. The

equivalence between the consumption and the BAC scales is given by

consumption _ _BAC

consumption DBAC

that is, in this case

consumption _ BAC
789 T 0.4

The weights indicate the extent to which BAC data dominates the fit, supply-
ing 83% of the information for the determination of 6. In particular the sam-
ple from the Chicago car drivers (Holcomb, 1938) has a weight of 63%. Thus
the distribution Ledermann derives could more appropriately be called a dis-
_*T—he__p_oints plotted on Figure 3.6 are from lognormal distributions fitted to

each of Ledermann’s data sets. Ledermann did not estimate the parame-

ters of each subpopulation, but used a graphical technique to estimate

the 9[ values directly. Using fitted distributions to calculate the 9[ gives
a value of 8 = 3.31 instead of the 3.43 found by Ledermann.
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Figure 3.8 The data Ledermann used in his calcutations. The

percentages are the weights given to each sample
in determining the weighted estimate of 6.
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tribution of BAC levels than a distribution of alcohol consumption. The wide

scatter of points indicates the diversity of the populations he used.

The quality of Ledermann’s data should, however, be seen to reflect

only on the reliability of his estimates of the number of heavy drinkers in

France in 1954, not on the methodology used to obtain the estimates.
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3.6 The value of 0

In introducing D into his argument, Ledermann assumed (p 262)%

que l’intervalle de consommation allant de 0 A& D contienne une
proportion F_ des consummateurs, cette proportion étant supérieure 2
99% par exeRple."

In a footnote, he explains that this is a common statistical convention when

fitting a distribution of infinite range to data of finite range. This statement

has been misunderstood by several researchers. For example, Duffy (1977a,

1977b) and Duffy and Cohen (1978) interpreted it to mean "one percent of

the population consume in excess of one litre per day"” until corrected by

Skog (1980a), while Cartwright, Shaw and Spratley (1977, 1978b) thought it

meant that the endpoints of the distribution were fixed.

But the more general misinterpretation of the method concerns the
status of Ledermann’s value of 6. He determines the individual 9L. values for
each of his data sets and uses their weighted mean as his "provisional” esti-
mate of 6 for "general” calculations (p 275):

"Nous adopterons provisoirement, pour les calculs généraux, la
valeur 6 = 3.43, c’est-a-dire FD = 99.97%".

This statement has been misinterpreted to mean that the proportion FD =
99.97% (and hence 1—FD = 0.03%) and the value 8 = 3.43 should be taken as
fixed for all applications. For example, see de Lint and Schmidt (1968); Skog

(1971, 1980a, 1982); de Lint (1974); Smith (1976b); Singh (1979).

But Ledermann did not intend @ to be fixed at this value. In fact he
regards 6 as one would regard any parameter in a model. it has a "true”
value, and in fitting the model to a particular data set, one determines an
estimate of this true value from the data. He even admits the possibility

¥ In this chapter, page references are references to Ledermann (1956).
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that a true value might not exist. Having assembled the various estimates of
© from his data sets into Table 5.1.8, he says (p 275)

"Ce sont 13 des estimations, dont |'é&cart par rapport & la valeur

"vrai" - si elle existe - dépend de plusiers facteurs: nombre
d’observations disponibles, conditions de formulation des réponses,
etc.”

Ledermann then calculates the weighted mean of the 6 values, and takes that

as his "provisional” estimate of the true value of 6.

A little further on, he is quite explicit about this. Referring to his
Table 5.1.7 which gives predictions for proportions of heavy consumers in
populations with various mean consumptions, he says (p 275)

"Soulignons que les indications données par cette table sont
théoriques, relatives & une population homogéne, et découlent des
valeurs D = 365 litres d’alcool pur par an et 8 = 3.43 adoptées.

Pour une distribution concréte, il faudra ajuster la répartition
normale—logarithmique correspondante, selon la méthode classique: D
peut rester le meme, mais 6 peut alors varier, comme {'ont montré
les exemples dont nous avons déduit une estimation moyenne 6 =
3.43."

which my translation gives as

We emphasise that the information given by this table is theoretical,
relating to a homogeneous population, and follows from adopting the
values D = 365 litres of absolute alcohol per year and 6 = 3.43.

For a particular distribution, it will be necessary to fit the
corresponding lognormal distribution by the standard method: D will
remain the same, but 6 will vary, as has been shown in the exam-
ples from which we have deduced an estimated mean value of 6 =
3.43.

As further evidence, consider the predicted standard normal deviate

corresponding to a consumption level, X. In our notation

log ¥ - u
o

U =

Substituting for y and ¢ from (3.09) and (3.10) gives

U = alog(g) + 8 (3.12)
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Ledermann gives this equation (equation (42), p 275) and remarks
"Pour une distribution concréte, 8 et 6 sont déterminés directement.”

In contrast, de Lint (1974, Appendix II) calls equation (3.12) the "Ledermann
equation”, "in which & = 3.43". To add further confusion to the subject,
Parker and Harman (1978) quoted de Lint’s formulation of this equation, but
wrongly labelled U as "Student’s t distribution”, and alog(g‘) as "the log
transformation of consumption for the distribution™, both meaningless terms in
this context. However they are at least correct in their assessment of 0. they
say

"For Ledermann 6 is not a given but a variable whose value, at
best, is approximated through the use of weighted means”.

However the mainstream of the literature has continued to regard & as fixed

at the value of Ledermann’s estimate.



A8
3.7 The value of the maximal consumption
Ledermann based his procedure on three "known" data points
i. the zero consumption, 0
ii. the mean consumption, m

iii. the "maximal consumption”, D.
In introducing D into his argument he says (p 262)
"NMous la prendrons égale & 100 cl. d’alcool pur par jour, soit 365
litres d’alcool pur par an. Un quatridme paramétre conventionnel,Aqui
enleve son importance physique au chiffre retenu de 100 cl doit etre
associé A cette limite."
(Ledermann initially began with a three parameter lognormal distribution with
parameters u, s and w, where w is the usual threshold parameter. He
disposed of w by setting it equal to zero.) However he did not use D as a
parameter to be obtained from the data, but rather fixed it in advance of his
calcutations. For consumption data, Ledermann took D equal to 100 cl/day
(789 g/day), and for BAC data he took D equal to 0.4% (4 g */oo), although

for one data set (p 273) he gave values of 6 calculated using D = 0.5% as

well.

Ledermann gives no justification for his choice of levels of D other
than, for consumption (p 262),
"D ... est la consommation approximative trés rapidement mortetle.”
and for BACs (p 271)

"Nous prendrons pour limite D, une alcoolémie de 4 g */oo,
alcoolémie A partir de laguelle commence les accidents mortels.”

and (p 103)
"Les accidents mortels commencent & une alcoolémie de 4 g. p.
1000 environ..."”
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In the literature there has been little discussion of Ledermann’s choice
of D for BAC data, although the choice of D for consumption data has

aroused much discussion.

Ledermann’s reason for fitting distributions was to enable prediction of
the number of heavy consumers in France. To judge the effect that choice
of the value of D has on this prediction, the data which Ledermann used to
determine his value of & has been used to fit Ledermann models with varying
values of D. The predicted proportions of consumers drinking more than 80
g alcohol per day are shown in Figure 3.7, for varying values of D and &,

the mean consumption. Clearly the proportions are very insensitive to D.
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Figure 3.7 Predicted proportions of consumers drinking more than
80 g alcohol/day, for varying values of D and E,

the mean consumption.
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3.8 An example

To illustrate the Ledermann procedure, we use data from the 1978
Busselton, W.A. survey (Cullen et al, 1980). The data is given in Table 5.24,
and includes a breakdown by age and sex. We use the data for males only,

with the six age groups forming our subpopulations.

The first step is to fit two parameter lognormal distributions to each of

the age groups. Table 3.1 gives details of the fits.

Table 3.1

Two parameter lognormal distributions fitted to the
1978 Busselton male data, and calculations of 9

estimated

. 2 .
i age n, M, 9, Xy proportion 9‘,

group > 80 g/day
1 < 30 2489 3.0715 .7T942 3.04 .0485 4.549
2 30-39 237 2.9315 L7971 2.25 .0344 4,709
3 40-49 205 2.8964 .9437 8.35% 0577 4,014
4 50-59 209 3.1179 .8837 14.59%% .0763 4.036
5 60-69 202 2.9152 .9822 8.36% L0877 3.838
6 70+ 158 2.7897 .8353 0.48 .0283 4.663

Zni=1260 * = P < 0.05 ¥* = P < 0.01

We take a value of D = 800 g/day, although we shall see later that this
choice is not critical. For each age group we calculate

log 800 - M,

6. =
i o,
i

Values of 9L. are shown in Table 3.1. We can then calculate a pooled esti-

mate of 6,
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which gives

6 = 4.307
The sample mean for the overall population is m = 27.476. Using this, we

calcutate a from equation (3.07)

9+\]92+2logc%5

-2 log (%')

1.1485

from whence we have

® |-

o = = 0.8707

We then calculate u:

log D - 60

=
1}

2.9342

Thus the Ledermann model is the two parameter lognormal distribution

LN( 2.934, 0.871).

The value of 6 determines the family of lognormal distributions
represented by the line in Figure 3.8, on which are also plotted the points
representing the six age groups, and the final model. By comparison of Fig-
ures 3.8 and 3.8, it is obvious that the agegroups used in this example form
a much more homogeneous group of "subpopulations” than did Ledermann’s
data, even though three of the agegroups show significant discrepancy from

lognormal distributions.

Since Ledermann’s purpose was to estimate the number of heavy drink-

ers, we can examine various estimates of the proportion of drinkers consum-—
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Figure 3.8 Age groups (1 - 6), the Ledermann family of lognor-
mal distributions, and the Ledermann model (+) for
the 1978 Busaselton males.
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ing in excess of 80 g/day. The weighted average of the individual class
proportions, given in Table 3.1, is 0.0433, while the Ledermann model gives

0.0482. A two parameter lognormal distribution fitted to the data summed

over age groups (LN(2.1649, 0.8759); xg = 8.56, P < 0.05) gives 0.0057,
while a three parameter fit (LN(3.4862, 0.6353, -13.6224); xg = 2.78, NS)

gives 0.0487. A two parameter fit censored below 40 g/day (that is, the

class intervals below 40 g/day amalgamated intoc one class) gives 0.0482

2
2
(LN(3.0830, 0.7814), x = 2.54, NS). These results are summarised in Table

3.2.

Table 3.2

Estimated percentage of male heavy drinkers, Bussetton, 1978

weighted average of age groups 4.33%
Ledermann model 4.82%
two parameter tognormal 0.57%
three parameter lognormal 4.87%
censored two parameter lognormal 4.82%

We shall see in Part II of this thesis that we might expect the "best"
estimate to be that given by either the three parameter, or the censored two
parameter lognormal fits; indeed these gave non-significant fits to the data.
The Ledermann model is in good agreement with these, despite the fact that
only half of the subpopulations had nonsignificant lognormal fits. The two
parameter distribution gives a gross underestimate, but this is not surprising

since the distribution does not fit the data well.

We can examine the effect that our choice of D = 800 g/day has had
on our estimates. Table 3.3 gives details of the Ledermann models fitted

with varying values of D. We see that the model is very insensitive to the
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Table 3.3

The effect of D on estimates of the proportion of heavy drinkers

D e o u proportion
(g/day) > 80 g/day
200 2.702 2.930 0.877 0.0488
400 3.171 2.931 0.874 0.0485
600 3.974 2.934 0.872 0.0483
800 4.307 2.934 0.871 0.0482
1000 4.566 2.935 0.870 0.0481

choice of D, which confirms the earlier evidence of Figure 3.7.

However the model is much more sensitive to the value of the mean, m.
Table 3.4 shows the Ledermann models and predicted changes in the
estimated percentage of heavy consumers with changes in the mean, m, rang-

ing from 15% below to 15% above its calculated value 27.476.

Table 3.4

The effect of the mean on estimates of the proportion of heavy drinkers

mean 7 o proportion > 80 g/day

value % change value % change
23.355 -15 2.729 0.818 0.0359 -25.5
24.728 -10 2.802 0.902 0.0398 -17.4
26.102 -5 2.870 0.886 0.0439 -8.9
27.478 0 2.934 0.871 0.0482 0
28.850 +5 2.995 0.857 0.0527 +9.3
30.224 +10 3.053 0.843 0.0575 +19.3
31.597 +15 3.108 0.830 0.0625 +29.7

Quite small changes of 5% of the mean alter the estimated proportion of the
population drinking more than 80 g/day by almost twice this percentage.
Over the range of change considered here, the ratio remains roughly con-

stant, particularly for positive changes.
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3.9 Discussion

It is not difficult to understand why there has been so much misin-
terpretation of Ledermann’s work. It was written in French, and was pub-
lished by the National Institute of Demographic Studies in France, as a
volume of a monograph series which, ten to fifteen years after its publication
when researchers outside France became interested in the work, was unlikely
to be readily available. Therefore some of the early interpretations of the
work were reused by other workers. For example, Singh (1879) guotes de
Lint’s (1974) description of the "Ledermann equation”. Additionally,
Ledermann’s description is not easy to follow. It extends over fifteen pages,
and does not clearly distinguish between the subpopulations and the target
population; he started his description with the target population, and then
later, when he needed to estimate 6, introduced the subpopulations. Having
dealt with this aspect, he then returns to the target population. We betieve
that drawing a clear distinction between the subpopulations and the target
population, as has been done in this chapter, leads to a clearer understand-

ing of the model.

The main misunderstanding has been that the value of 6 determined by
Ledermann should be taken as a fixed value. We have shown that Leder-
mann intended his estimate of 6 to be just that: an estimate of some "true"
value 6. Seen in this light, Ledermann’s data loses much of its controversial
nature, as it reflects only on the quality of his estimates, not on the pro-

cedure itself.

The literature contains much discussion of Ledermann’s choice of a

value of D. His aim in fitting the model was to estimate the number of heavy
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consumers in France in 1954. Used for this purpose we have seen that' the

choice of D, provided it is much larger than the mean, is almost irrelevant.

What then can be said about the validity of the model? In using the
Ledermann procedure with more than one subpopulation we must make the

following assumptions.

a. The distribution of consumption in each of the subpopulations is lognor-

mal

b. The distribution of consumption in the target subpopulation is also log-

normal

¢. That the proportion greater than D is constant for all populations. In
other words, there does exist a true value of 6.

1f there is only one subpopulation, then, as has been shown, the Ledermann

model is the best fitting lognormal distribution, and we need only assume

that the underlying distribution is lognormal.

In his original monograph, Ledermann (1956) made no tests of signifi—
cance of the fits of his subpopulation lognormal distributions. In fact, as we
have already mentioned, he did not explicitly fit distributions to his data, but
for each subpopulation, plotted the data on log—-probability paper and drew
in a line of best fit, probably by visual inspection (Skog, 1982). He then

read off the value of 6 for the subpopulation directly.

In the example above we have also ignored the fact that for three of
the age subpopulations, a lognormal distribution does not give a non-
significant fit to the data, and have proceeded to use all the data to fit the

Ledermann model. Under these circumstances it is surprising that the
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predictions based on the Ledermann model and those based on the censored
two parameter and three parameter lognormal distributions fitted to the con-
sumption data for all agegroups combined, agree so closely. It would be
unreasonable to expect such agreement in all cases where subpopulations
showed marked deviations from lognormality. In general, an experimenter fit—
ting the Ledermann model would have to decide if any differences from log-
normal distributions among the subpopulations were due to chance fluctuations

or to model misspecification, before proceeding to fit the final model.

The most unusual aspect of the Ledermann model is the method of
combining subpopulations, via the weighted estimate of 6. As we have
shown, this step determines a family of lognormal distributions whose
members all have the property that the standard normal deviate correspond-
ing to the proportion greater than D is equal to the weighted mean of the
standard normal deviates corresponding to the proportions greater than D in
the subpopulations. By itself, the step is not sufficient to determine the
Ledermann model uniquely, the exira information needed to do this being

supplied by way of the mean (or median) of the target population.

The user of the procedure is required to accept that there exists a
"true proportion greater than D", or equivalently, a "true value of 6". For
instance, Ledermann’s estimate of this true proportion was 0.03%, using D =
789 g/day. By way of comparison, recalculation of 8 from the example in
Section 3.8 using the same value of D gives the estimate of the true propor-
tion as 0.00089%. Can we accept that these two are the estimates of the
same "true"” quantity? If we were to increase D towards its limit, the propor-

tions will both approach zero, but from a practical point of view it seems

unreasonable to accept that there does exist such a "true” value.
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Apart from this concern with the theory behind the model, a practical
guestion to be addressed is whether the Ledermann procedure gives a good
method of estimating a distribution of alcohol consumption to be used for
prediction of heavy consumption. As to this qualification about use of the
model, we maintain that any model should be judged in relation to the use to
which it will be put, and that different models may be required to estimate
different features from the one data set. Since the estimation of heavy con-
sumption was Ledermann’s main use for his model, we feel justified in using
this criterion in this case. In this we disagree with Schmidt and Popham
(1978) who state

"It is regrettable that Parker and Harman - and others before them
-~ have been preoccupied with the shortcomings of the Ledermann
equation as a device to obtain specific estimates of prevalence.”

We have seen in the example that the proportion of heavy consumers
derived from the model is very sensitive to changes in the estimated mean of
the target population. Since this estimated mean will usually not be known
with any great certainty, any estimates of heavy consumption derived from
the mode! will necessarily be suspect. The Ledermann model, with its heavy

reliance on this mean, may therefore not be a good model to use for this

purpose.

In summary, the model cannot be recommended as a means of estima-

tion of the excessive use of alcohol. However this does not preclude the
existence of an empirical relationship between mean consumption and pre-
vatence of heavy use. It is difficult not to agree with Smith (1976a), who in
giving evidence to the (Australian) Senate Standing Committee on Social Wel-
fare, says

"The extraordinary thing is 1 have a good deal of sneaking regard
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for Ledermann’s ingenuity and I suspect that he has done us a ser-
vice in bringing out one or two partial truths.”

It is indeed a pity that Ledermann died in 1967 before his work in this area
became so widely known. Had he lived, he may have been able to prevent

much of the confusion surrounding his work.



Chapter 4

Other models of alcohol consumption.

4.1 The two parameter lognormal distribution

4.1.1 Definition Let X = mean individual alcohol consumption, 0 < X { oo,
The range of X excludes zero, i.e. we consider only consumers of alcohol,
and ignore abstainers.

Let

Y = log X
be the logarithm to the base e of X. (We use natural logarithms throughout.)
Then if Y is normally distributed with mean u and standard deviation o, we
say that X is lognormally distributed with mean u and standard deviation o,

and write

Y ~ N(u, o)

and

X ~ LN, o).

The probability density function for Y is then

- 1 2 2
fly) = (210 exp [ = 2(y—;u) ] dy -0y oo
20
and for X:
f(x) = —— - - w2l d 0< x<so
x0 = axy2m %P 202 °g x ~ H X X

4.1.2 Characteristics The rth moment about the origin is given by

o r
! 1 X { 1 2

o= J T exp - —2(log x - W dx
r oJ(2n) 0 * 1 202
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1 it 1 2
= oqzm J explry) exp [ - T ly-m ] dy
—o0 20
1 * 2

- [ 1,2 2 )
= o9 J exp l - 202()' =2(u+ro dy+u ) J dy

—00

Completing the square in the exponent, and putting t = y - r02 gives

-4

exp (ru + %rzaz) i 1 J exp { - -1—2(t - ;1)2 } dat
20

LS
fl

r oJ(2m)"

- -3

exp (ru + %rzoz)

Thus we have the mean, §

Mean (X) = ECN) = p, = exp (u + 4502)
and the variance

’ r 2

Var (X)

exp (2u + 02) (exp(oz) - 1)

§2 (exp(oz) - 1)

Since u is the median of Y, the median of X is

Median (X) = exp(u).

The distribution is unimodal, with mode

Mode (X) = exp(u - 02)

Thus mean(X) > median(X) > mode(X).

To show how density curves change with changing values of u and o,
Figure 4.1 shows three density curves for lognormal distributions with ¢ = 1
and g4 = 1, 2, 3. Figure 4.2 shows three density curves for u = 2 and ¢ =

0.5, 1.0 and 1.5.

4.1.3 The proportion of heavy consumers Let p(#) = proportion of consu-

mers above some limit, ¢. Then
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Figure 4.1 Frequency curves of the two parameter lognormatl
distribution with ¢ = 1 and three vatues of u.

30 40

Figure 4.2 Frequency curves of the two parameter lognormal
distribution with u = 2 and three values of o.
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1 Y ( 1 2
p(&) = S exp ) - (y — w dy
oN2m | o i 0o j

1-® (‘—°9%‘——1'-‘) (4.01)

Z 2
J exp (-4t7) dt

where O(z) = 4(12n
The values of ¢ which are of interest in the present context are those in the
upper tail of the distribution. While there have been various suggestions as to
an appropriate value of ¢ to take as a lower limit of "heavy consumption”,
there is still no universally agreed value. Such a value undoubtedly depends

on sex, and possibly on age and various other factors. As representative

values we shall take £ = 60, 80 and 100 g/day.

We are interested in how p(#) varies with changing values of u and o.
Figure 4.3 shows p(#) plotted as a function of u for constant ¢ = 1.5, for ¢
= 60, 80 and 100. For each value of ¢, p(#) is approximately quadratic in u.
Figure 4.4 shows that this relationship holds approximately true for changing
values of o. The figure plots p(80) as a function of u for values of o =

0.5, 1.0, 1.5 and 2.0. Thus the lines marked ¢ = 80 in Figure 4.3, and o

1.5 on Figure 4.4 are the same. This range of values for o covers the

values commonly found in Australian data (see Chapter 6).

In the present study it is often more relevant to consider changes
related to the mean consumption, E, and so we recast these two figures in
terms of E rather than u. These are presented as Figures 4.5 and 4.86. Figure
4.5 shows p(#), ¢ = 60, 80, 100, plotted as a function of the mean con-
sumption, &, for constant ¢ = 1.5. Comparison with Figure 4.3 shows that,
for mean consumption greater than about 10 g/day, the rate of increase of

p(#) is approximately linear. To illustrate how the relationship changes with
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Figure 4.3 The proportion of drinkers consuming in
excess of 60, 80 and 100 g alcohol/day,
as a function of u.
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Figure 4.5 The proportion of drinkers consuming In
excess of 60, 80 and 100 g alcohol/day,
aa a funclion of the mean consumption.
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Figure 4.4 The proportion of drinkers consuming in
excess of 80 g alcohol/day, as a func-

tlon of u and o.
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Figure 4.8 The proportion of drinkers consuming in
excess of 80 g alcohol/day, as s func-
tion of the mean consumption and a.
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varying values of o, Figure 4.6 shows p(80) plotted as a function of the
mean consumption for ¢ = 0.5, 1.0, 1.5 and 2.0. As before, the lines marked
¢ = 80 on Figure 4.6, and o = 1.5 on Figure 4.6, are the same. In this
instance however, we see that a change in the value of o can have a con-
siderable effect on the proportion of consumers drinking more than 80 g/day.

This is because £ is a function of both u and o.

Consider now a population with a mean consumption of 30 g/day. Fig-
ure 4.7 shows how p(80) changes as the mean consumption changes, giving
percentage changes in both ordinate and abscissa for the usual range of
values of o. We note that the change in p(80) is sensitive to the value of
0. For instance, a 10% decrease in mean consumption will be accompanied by
only a 10% decrease in the number of heavy consumers if 0 = 2, but if o =
1, the decrease will be about 18%. For o = 0.5, the decrease in p(80) is

even more dramatic, and is of the order of 35%.

An alternative way of studying these interdependencies is through a

contour map of p(#) as a function of either u or §, and o. For a contour

p(H) = Por We have
L & -
p(l)=p0=1—®(ﬁo—"")
Therefore

¢—1 A - po) - l_og_?l,_—_u

where ®_1 can be read from tables of the cumulative normal distribution.

Thus to draw contours as functions of u and o, we can select a range of

values for u, and calculate o as

__log & - u
= .
® (1 - Py’

Figure 4.8 shows such contours for p(80) = 0.01, 0.05, 0.1, 0.2. The
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Figure 4.7 Change in percentage of drinkers consuming in excess
of 80 g/day as a function of the change in mean
consumption from 30 g/day.



Figure 4.8 Contours of p(80) as a function of u
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contours form a fan of lines radiating from the point (u = log 80, ¢ = 0).
For other values of ¢, a similar fan will obtain, but will radiate from a dif-

ferent point on the u axis.

We can express the contours in terms of the mean consumption, E,
rather than u, by calculating & = exp(u + !402): Figure 4.9 shows the con-
tours plotted as a function of £ and 0. The contours now assume a curvi-

linear form.
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4.2 The three parameter lognormal distribution

We introduce a third parameter into the two parameter lognormal distribution
considered in section 3.1, such that a simple displacement of X, and not X

itself, has a two parameter lognormal distribution. Thus

’

X =X -1~LN W, o
or X ~ LN (u, o, T T{x<e0
The range of X is now from t to infinity, with T being a "threshold" parame-

ter.
The density function is

f(x) = - —1‘2‘(log(x—r) - y)2 }dx T < x o

1
—————" pxp
o(x-1)J(2r) [ 20

Since the 3 parameter distribution is a simple displacement of the two param-

eter distribution, the tocation characteristics are each increased by 1. Thus

mean(X) = t + exp(u + %oz)
median(X) = t + exp(u)
mode(X) = t + exp(u - 02).

The variance of X remains unchanged.

Figure 4.10 shows the frequency curves of two three parameter lognor-
mal distributions with g4 = 2, o = 1. This illustrates the displacement of the

two parameter curve.

Equation (4.01) for the proportion of consumers above ¢ becomes

s
p(h) = 1 - pleali-—D-u '0‘ ) 1>t
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Figure 4.10 Frequency curves for the three parameter lognormal
distribution with two values of t (for u=2, o0=1).



65

4.3 Truncated and censored lognormal distributions

We consider below the three parameter lognormal distribution. The results

for the two parameter case follow by taking tv = 0.

Suppose we have a variate X ~ LN(g, o, 1) with that part of the distri-
bution for which X € £ removed. Then the distribution is said to be trun-—

cated, and [ is termed the point of truncation.

The distribution function of a truncated distribution can be specified as
0 0<x ¢

Pr(t < X & x)

Pr(X € x) =

The mean of the truncated distribution is given by

PriXx > L | X ~ LN(u + 02,0,1'2}

_ 2
EU) =t + exp (u+ M0 Tpry ST T X ~ LN(g,0,0))

which was shown by Quensel (1945) for the two parameter case.

In some cases, however, we may have limited knowledge about X in the
range (0,f), i.e. we may know the proportion of the distribution lying below
L., but not the exact values of the variate in this range. The distribution is
then said to be censored, and [ is the point of censorship. The specification
of the censored distribution is

Pr(x ¢ L) 0 < x¢¢

Pr(x‘)()z[Pr(Xﬂx) £<x< o
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A.4 Estimation of lognormal distributions from grouped data

4.4.1 Introduction Throughout this thesis we shall use the method of max-
imum likelihood for estimation of the parameters of distributions. We are con-
cerned with estimating from grouped data, since it is in that form that data
from alcohol consumption studies are usually presented. In Chapter 7 we
will formulate maximum liketihood estimation from grouped data as iterated
weighted regression; the present section sets up the necessary details to use

that method for the estimation of lognormal distributions.

4.4.2 Maximum likelihood estimation of lognormat distributions from grouped

data - a brief review In fitting lognormal distributions to grouped data, we

firstly note that such a set of grouped data is equivalent to a sample from
a multinomial distribution, with class probabilities determined by the underlying
lognormal distribution. For the multinomial distribution, Rao (1957) and
Kulldorff (1961) have established sufficient conditions under which the max-
imum likelihood estimates of the parameters are consistent and asymptotically

efficient.

Fisher (1931) and Stevens (in Bliss, 1937) made early contributions to
the maximum likelihood solution for censored and truncated normal distribu—
tions for continuous data. Since then, several authors have examined max-
imum likelihood estimation of the normal and lognormal distributions from
grouped data, and also at the special problems of truncation and censoring.
Most of the literature has been concerned with methods which were tractable
for hand calculation: e.g. Gjeddebaek (1949) solved the likelihood equations

for the case of the normal distribution with the aid of tables of

_ P(x+y) — ¢(x)
Z300¥) = = Blxry) - 00O
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and

2D = P (x+y) - (x)
2 XY Olx+y) - B(x)

Swamy (1960) extended this method to the case of truncated and censored

observations.

Grundy (1852) used adjusted moments to find the maximum likelihood
estimates. This approach used tables of truncated and censored normal dis—

tributions given by Hald (1949).

An alternative method to either of these is the method of scoring for
parameters (Fisher, 1935, 1954; see e.g. Bailey, 1961) giving an iterative set
of equations. This procedure is a modified Newton-Raphson method of solv-
ing equations. The method is advocated by Kulldorff (1961) and by Tallis
and Young (1862), and mentioned in Aitchison and Brown (1957) in the con-

text of probit analysis.

Cohen (1951) used an iterative technique to fit the three parameter log-
normal, based on the direct solution of the likelihood equations, but advo-
cated an alternative approach based on the least observed value, on the
grounds that it was more easily computed. Hill (1863) showed that there
exist paths along which the likelihood function for the three parameter log-
normal can tend to infinity. However solution of the likelihood equations

leads, in most cases, to local maximum likelihood estimates.

Other aspects of the problem have been studied. Gjeddebaek (1968)
and Swamy (1962, 1963) have considered the loss of information due to
grouping in, respectively, the normal, censored normal, and truncated normal

cases. Kale (1964, 1966) has considered this information loss in a more gen-
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eral situation.

The problem of initial parameter estimates for fitting the 3 parameter

tlognormal by scoring for parameters was considered by Michelini (1972).

4.4.3 Details necessary for maximum likelihood fitting of lognormal distribu-

tions using iterated weighted regression

4.4.3.1 Introduction In Chapter 7 we shall formulate maximum likelihood
estimation from grouped data as iterated weighted regression. In using the
method to fit a lognormal distribution, we will need the first derivatives of
the class probabilities with respect to the parameters. We consider both the
untruncated and the truncated three parameter lognormal distributions. The
results for the two parameter cases are immediately given by ignoring deriva-
tives with respect to T, and taking T =0 in equation (4.02) below. Estimation
of the censored distributions presents no new problems since the censored
part of the distribution is regarded as forming the first class of the grouped

distribution.

4.4.3.2 The untruncated case Let ¥ ~ LN(u, o, 1) and suppose the data to

be grouped with lower class boundaries

X ¢ X X, =T

g0 Xp 0 e m 1

and the frequencies in the ctass intervals being

m
a , a8 ):ai=n

y 8n s oees
1 2 i=1

and relative frequencies

Let



yi = log(xi - T) i=1,
Then
Vi“ H
zi e ~ N(0,1)
Let
p; = E[fp.
Then

P, = ¢(zl.+1) - ®(th
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., m (4.02)

where ® represents the cumulative standard normal distribution function, and

¢(21) = 0, Q(zm = 1.

+1)

For notational simplicity we write ® = §(z) for the cumulative normal

distribution function, ¢ = ¢(z) for the normal freguency function, and define

an operator 4 such that

Aa) = 8,1~ 8§
ACab) = ai+1bi+1 - a‘.b‘. etc.
Thus for example
P, = ad)
and
A(¢22e—y) = ¢(z )22 e—y':+1
#1771
We have
oy _ __-vy ¢ _
ar - "¢ - dz ~ ¢,
and
[ 0z/du 1
1
I dz/00 = = ; z

l azsat | L e_y i
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[ od/ou 1
ad/ oo = - ‘g z
ad/ort e_y
r O¢/ou 1
op/00 } = %Z { z }
| ag/ot e’
Then
_9 _ 2 __ 1
pt.# = 5 Pi = au ald) = - . ¢
_9 __ 2 - _1
pio = pl_ = aMd) = 0 A(pz)
-9 -9 _ _ -y
Pi = ot PiT o 8P = - 5 Bge )

We also record the second derivatives:

_ 2 1 _
P; —OM(—OA(sb))—— 2A(¢z)
o o
- 9 1 = _ L 2y _
P; —Oo(—ob(db))- 2{A(¢z) A(p) )
ua o
o) 1 1 3
P =$(—;A(¢z))=—'—2{A(¢z)—2A(¢z))
oo o
-9, _1 . -y
P, = OT( 5 M) ) = 2 Agze )
ut o
-9 0 _ A 2 -y -y
P; —or(—ab(¢z))——2{ﬁ(¢ze)-A(¢e)}
ot c
-2, _1 “¥Yyy = _ L+ -2y -2y
pirr P ( o A{ge 7)) 02 { b(pze ) + oA(ge )}

To obtain the relevant expressions for the two parameter distribution, we set

T = 0 and ignore derivatives with respect to t.

4.4.3.3 The truncated case Suppose now the lower t-1 classes of the

grouped distribution are truncated, i.e. the point of truncation is £ = Xy

Then we have lower class boundaries

with frequencies
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80 8yiqr
and relative frequencies

m
f, . f P f. = a/n L f. =1

i i ) i

i=t

As before we consider the three parameter case and the two parameter case

then follows by ignoring derivatives with respect to v and setting =0 in

equation (4.03) below. We have

y, = log (xl. - i=t, ..., m (4.03)
and
Yl- - M
z = ~  N(0,1).
i o
We write
E[f‘J = q;

for distinction between the truncated and untruncated cases,;

0z, - 0
9= 1 - W)

and the loglikelihood function is

m
log £ = constant + n L f“. log q;
=t
Then we have
f.
o log &£ _ _
20. Tk g 9%
J i=t i e,

To calculate the derivatives with respect to the parameters we use the same

notation as for the untruncated case, with the addition of

CDt = (D(zt) and ¢t = ¢(Zt)

We have

-1
- (1 - q)t) {a(p) + 9,9
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0, 1
% T (1.0, o0 - oy MWD 926}
fo4 t t
- X( ) N B -y i
qzr’m(1—<[>t)' o1 - @) (bge ©) + g g}
1
9 =~ {a(pz) + $,2,9; + 2°¢tqi }
u o(1-®t) [T
1 2 2
g. = - —F5—— {8(gz") + ¢,2,q. + op,q. + o1 - O, + 0,z)q; }
i 2 tTt i ti t tot i
o o(1—®t) o u
1 3 2
g. = - —7T——{8(¢z") - M¢z) - (D,z, + ¢.2,)q. +
i 2 tt tt i
oo o(1—®t)

o1 - tbt + ¢tzt + ¢tzt)ql.o}

1 -y Re Yy
g. =-—"—""{b¢ze ') + ¢,z e q. + 0p,q. + ope q.)}
i 2 tt i t7i t i
ut o (1 - <I>t) T u
g = - —— a2y - bige V) - e Y - 9,22 Vdg, +
i 2 t tt i
ot o (1 - <Dt)
U¢tthi - o¢tzte 9, }
T c
g. = - —_— {oA(¢e_2y) + A(¢ze—2y) +
i 2
TT o (1 - <Dt)
~2y, -2y, ~Yy
(o¢te + ¢tzte )ql, + 20¢te qir}

We note that the above expressions can be written in terms of the probabili-

ties of the untruncated case, e.qg.

1 9
== (p, - —@q)
q; {1—@)'01. o9
K ' u

but the expressions given above are more convenient for computation since

they do not require the prior fitting of the untruncated distribution.
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4.5 The gamma distribution

4.5.1 Definition Let X = mean individual alcohol consumption, 0 < X < oo,
Then X is said to follow a (two parameter) gamma distribution if
a-1 -x/B

fx) = 2—5— dx a>0;, >0
p“r(a)

a is a shape parameter, and B is a scale parameter.

We note that if @ = 1 the distribution reduces to an exponential distri—-

bution with parameter 1/8.

4.5.2 Characteristics The rth moment about the origin is given by

era—1e—x/ﬁ
— o P ¢

=
i
o< §

8%

g = Xa+r+ 1 e~x/8

J
r(a) o ﬁa

‘3 atr+1 —x/B dx

. X
) { g 8

dx

_ erga+r)
T T

Hence

Mean (X) = E[X] = py = B ﬂr%)

ap

since

r(a+1) = al(a).

Var (X) = My = (,u1)2

_ B2 r(a+2) 2.2
- ra) ak

2

ala+1 )ﬂz - apf

=a52.
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The gamma distribution has a single mode at B(a-1), provided a 3 1. If a <

1, the distribution is asymptotic to the y axis.

In the present study, values of a commonly lie in the range 0.2 to 2.0,
while 8 values up to 50 are common, although some are much larger. Figure
4.11 gives frequency curves for a = 1 and g = 10, 20, 30. Figure 4.12

gives frequency curves for 8 = 20 and a = 0.5, 1, 2.

4.5.3 The proportion of heavy drinkers Suppose X has a gamma distribu-

tion with parameters a and 8.

xa—1e—x/ﬁ

i.e. f(x) = dx

p“r(a)
Putting a = v/2, x = xzﬁ/2 gives

2
2 By-1 My
f.(XZ) - ) e ax

2%\’1'(%\»)

2

which is the frequency function for a chisquare variable with v degrees of

freedom.

We can use this fact and tables of the chisquare distribution function to
investigate the behaviour of the upper tail of the gamma distribution with

changes in a and B.

Thus

p) = Pr(X > 0
= Pri > 20/p).
2a
Figure 4.13 shows p(#) plotted as a function of a for constant g = 20, and ¢
= 60, 80, 100. The mean consumption (= aB) is also shown on the figure.
The curves have the same general shape as the equivalent ones for the log-

normal distribution, shown in Figure 4.3.



Figure 4.11 Frequency curves of the gamma distri-
bution with a=1 and three values of 8.

A5 ~
a~.5
ol
p=20
ol
—
.0S
a~1
a=2
0 L 1 " T
0 20 40 60
x

Figure 4.12 Frequency curves of the gamma distri-
bution with =20 and three values of a.
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Figure 4.14 shows contours of p(80) as a function of a and B while
Figure 4.15 shows the contours as functions of the mean consumption and 8.
The similarity of Figures 4.8 and 4.9 respectively from the lognormal distribu-

tion is apparent.
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4.6 A model relating age subpopulations

The models in this chapter have assumed that we are dealing with one homo-
geneous population, and can fit a single distribution to the consumption data
from a sample of that poputation. In practice, the consumption of an entire
population, such as the residents of Australia, or even of one city, will not
be homogeneous, but there may be differences in consumption patterns with
differences in sex, age groups, ethnic background, climate, beverage type,

and so on.

In published consumption data, the most common variables which are
used to stratify the data are sex and age. While there are physiological and
social reasons why we may wish to consider a separate model for each sex,
it is useful to consider a model which will, for a given sex, describe the
consumption pattern over all age groups. Empirical evidence (see Chapter 6)
suggests that in many cases, the same form of model may be appropriate
for all ages, but with changing parameters. For notational simplicity, we
consider a two parameter modet, but the generalisation beyond two parame-

ters is obvious.

Suppose we have r ages or age groups, which we represent as
ti’ i=1,...,r. At age tt’ we have X(tl) = mean individual alcohol consump-
tion. We assume that the one functional form of model, depending on
parameters 01 and 92, provides a satisfactory description of the consumption

data at each age group, and then we assume further that the parameters 91

and 92 are functions of age. That is

X(ti) = f[91(ti)' 92(t£)3' i=1,...,r

In the context of this study, the most common form of f{] will be a lognor-
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mal or gamma distribution.

The form of the functions 91 and 92 is in practice limited by the number

of consumption groups available from the data. If we assume a guadratic

relation with age, we have

2
91(ti) = ao+a1t£+62ti
and

e.(t) =b +bt+bt2

20 0 174 274
In fitting the model, we estimate the Six parameters
80’ 31, 32, bo, b1, b2, and can then calculate the two parameters 91 and
92 for any given age ti' In practice, as with any regression procedure,

great care should be taken if extrapolating outside the range of the ages ti’

but the procedure provides a useful means of interpolating within that range.



Chapter 5

Australian data on the distribution of alcohol consumption.

5.1 Methods of measuring individual alcohol consumption

5.1.1 Introduction The reasons for measuring alcohol consumption are varied

and include

a. the estimation in a population of overall consumption, its distribution

and trend with time,

b. characterization of the drinking population, or groups within it who are

consuming at a high risk level,

c. the evaluation of intervention programmes aimed at changing alcohol

consumption patterns, and

d. the linking of alcohol consumption with other characteristics of a popu-

lation.

The variables of interest will vary with the reason for study. Variables
which have commonly been studied are the type of beverage, quantity and
frequency of intake, the social circumstances, past history and short and
long term patterns of consumption. In estimating the distribution of alcohol
consumption we are mainly interested in the amount of absolute alcohol con-

sumed by an individual in a specified time period.

Various methods have been used to measure such consumption and
there is no universally agreed "best” method. A convenient classification of

methods is provided by considering methods of elucidating present or past
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consumption.

5.1.2 Present consumption Present consumption can be measured by either
self recording or direct observation. The methods have been little used in
alcohol studies; self recording can suffer from the disadvantage of tending
to modify the usual intake (Baghurst, 1978), although Sudman (1980) sug-
gests that this is not a probtem if several items are reported simultaneously.
Plant et al (1977) described a reliable method for assessing alcohol con-
sumption in public bars by direct observation, and suggested that it might be
a useful way of investigating the distribution of alcohol consumption in a
community where it is believed that most of the drinking is done in public.
But this is a doubtful assumption in Australia. The Australian Associated
Brewers (AAB) (1978) have noted that in Australia, between 1967-68 and
1976-77 there was a trend towards off-licence consumption with sales of
packaged beer increasing from 43% to 57% of total beer production over the
period. In 1977 alcohol consumed as beer accounted for 68% of the apparent

alcohot consumption (AAB, 1978).

Kamien (1975a, 1975b) however has used participant observation as a
method of observing drinking in a population of aborigines living in Bourke,
N.S.W. A comparison with estimated weekly expenditure on alcohol showed
his consumption figures to underestimate consumption by 33% (Kamien, 1978)
but there is no way of knowing which figure (consumption or expenditure) is

more in error.

A different approach to the measurement of present consumption is the
use of physiological tests, such as the sweat patch (Phillips, 1982, 1984).

The test is based on ithe fact that the concentration of ethanol in sweat
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varies with the amount of alcohol consumed. A small watertight adhesive
patch is worn on the skin for about a week, and collects sweat at a steady
rate. At the end of the period the patch can be rapidly assayed to give a
measurement of the subject’s alcohol intake over the period. While there
appear to be some difficulties in field use (Phillips et al(, 1984) the method is

a promising way of obtaining accurate information in 2 non-invasive fashion.

5.1.3 Past consumption A recail of past consumption is the most commonly
used method of measuring alcohol intake. Within this category indirect obser-

vation, interview and guestionnaire techniques are mainly used.

Indirect observation, such as household expenditure on alcohol, does
not seem to have been much used in Australia. Estimates of apparent con—
sumption, based on production, sales, imports and exports of alcohol, while
giving more accurate information than survey data do not give any idea. of
the distribution of consumption across the population, although they can
serve as a useful check for total reported consumption obtained from ser—

veys.

A different approach to indirect observation is the informant method.
This entails having selected individuals report on the drinking practices of
groups familiar to them rather than having individuals report on their own
drinking behaviour. Smart and Liban (1982) reported that the method yielded
higher rates of drinking and of heavy consumption than did estimates based

on standard household survey methods.

Both interview and questionnaire methods can measure past consump-
tion by asking for either actual consumption over some recent period (e.g. 24

hours, seven days, a month) or for "usual” consumption.
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a. Actual consumption. In Australia the most commonly used method of
recording actual consumption has been the seven day recall using a struc-
tured gquestionnaire administered by interview (Rankin and Wilkinson, 1971;
Australian Bureau of Statistics (ABS), 1978) or self-administered (Barwon
Regional Association for Alcohol and Drug Dependence, 1977, Baghurst and
McMichael, 1978). For each of the last seven days, respondents are asked
the amount and type of their consumption; these quantities are then con-
verted to grammes and an average daily intake calculated. In pilot studies
for the 1977 ABS survey, Millwood and McKay (1878) considered two alter—
native questionnaire designs and found a 20% increase in reported daily con-
sumption by first asking the respondents whether or not they had been
drinking on each of the last seven days, and then asking for details of each
drinking occasion, rather than immediately asking for details when a drinking
occasion was given. This confirmed results previously observed in Scotland

by Dight (1976).

Australian users of the seven day recall have also made provision for
the respondents to state whether or not last week’s intake was a typical
one, and if not, to give a typical week’s intake. However the uses made
of this information vary. The ABS used the question to relieve any tension
in the interview resulting from respondenis perhaps feeling that they had said
too much, or that their drinking behaviour might be seen as excessive (Mill-
wood and McKay, 1978). Baghurst and McMichael (1978) used the typical
week’s consumption as their reported consumption, using the question on
actual consumption as a means of getting the respondent used to the ques-
tion format (pers. comm.) They reported finding no difference between the

consumption of those who reported last week as typical and those who did
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not. This conflicts with the findings of Chick et al (1981) who, using blood
tests to corroborate reported consumption of Scottish drinkers, found that
those who claimed last week’s consumption was atypical had heavier con—
sumption than those who did not. On the other hand, they discovered only a
trivial difference between their last week’s and their typical week’s consump-
tion, and concluded that they appeared to be attempting to deny habituatl
heavy consumption. Millwood and McKay (1978) and Dight (1976) concluded
that the error in measures of "last week" drinking is far preferable to the
even larger respondent biases present in reports of "usual" alcohol consump-

tion.

b. Usual consumption. Estimation of usual consumption has been used in
many Australian surveys (for example, Krupinski et al, 1967, Encel et al,
1972; Selge, 1975, McCall et al, 1978; Egger et al, 1978). If medical inter-
views are available, the information can be gleaned in a history-taking situa-—
tion. Thus Krupinski et al (1967) used fifth year medical students as inter-
viewers in a community health survey of Heyfield, Victoria. A somewhat dif-
ferent interviewing technique called "grogcount” has been suggested by
O'Neill (1977), particularly for use with excessive consumers, at no stage
during the assessment of alcohol intake is it suggested that the client is
using abnormally or excessively. Use of non-medical interviewers does not
allow these approaches, and a structured interview using a questionnaire has
been the most frequently used approach. Typically questions are asked
relating to the type of beverage drunk, the usual frequency with which each

is drunk, and the quantity consumed on a typical drinking occasion.

Various methods have been proposed for constructing measures of

aggregate volume of intake from survey data. Straus and Bacon (1953) first
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suggested a quantity—frequency (QF) measure. Each individual is placed in
one of several qualitative quantity—frequency classes by considering both the
usual quantity of alcohol in any form consumed on a drinking occasion, and
the frequency of drinking. This index has been modified by e.g. Maxwell
(1952), Mulford and Miller (1960) Mulford (1964), Knupfer and Room (1964),

to subdivide some of the classes further.

Various derivatives of the QF index have been proposed, among them

being

® the AA (absolute alcohol) index (Jessor et al, 1968) which provides

quantitative levels of intake;

® the QFV (quantity—frequency-variability) index (Cahalan et al, 18967)

which classifies respondents on a five point scale,

® the QV (quantity-variability) index (Cahatan et al, 1969) which classifies

respondents into eight categories;

® the VP (volume-pattern) index (Bowman et al, 1975) avoids discrete
classifications, but requires highly detaited information, implying long

interviews,

® the AAQP (absolute alcohol-quantity pattern) index (Little et al, 1977);

® the KAT (Khavari alcohol test) index (Khavari and Farber, 1978) which

provides total annual alcohol intake;

® the QFA (quantity—-frequency, adjusted) index (Armor and Pollich, 1982)
which combines the QF and QV indices.

Baghurst (1978) has given a useful review of some of these indices, and
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notes that most of them suffer from the disadvantage categorising drinkers
on the basis of subjective or arbitrary decisions. She says: "A typology
which governs the whole subsequent analysis is ... set up often without ade-

quate questioning of underlying assumptions”.



85

5.2 Units of measurement of alcohol consumption

Absolute alcohol intake is usually expressed as grammes per day (g/day),
centilitres per day (cl/day), centilitres per week (cl/wk) or litres/year (l/yr).
Table 5.1 shows conversion factors between the various units. It has been
calculated assuming the specific gravity of alcohol is 0.78945 (at 20°C), 1
week = 7 days, and 1 year = 365.25 days. Figure 5.1 presents a com-

parison of the units over their typical range.

Table 5.1
Conversion factors between commonly used units of alcohol consumption

(The entries in any row represent equivalent quantities of alcohol)

g/day cl/day cl/week L/yr

1 0.127 0.887 0.463
7.895 1 7 3.653
1.128 0.143 1 0.522
2.161 0.274 1.816 1

The most common unit in which details of alcohol consumption is initially
recorded in surveys is dlasses of beverage. To remove the effects of
differing alcoholic content of the differing beverages, this is usually con-
verted to e.g. grammes of absolute alcohol. This calculation requires

knowledge of both the size of glasses used and the alcohol content of the

various beverages.

Table 5.2 showing alcohol content of typical Australian drinks, is repro-

duced from the Australian Associated Brewers (1978).



g/day cl/day cl/week 1/year

0 | 0 |0 |0
- 20 |20 10
| 40 5 w | 20
60 o [ =
| 80 10
80 - 40

| 100

| 50
| 120 |15 - 100
| 140 - 120 = 60
' Y
| 160 20 | 140 i
. 180 | 160 - 80

| 90
_200 = 25 _180
| 789 100 700 | 265

Figure 5.1 A comparison of commonly used units of alcohol
consumption.



86

Table 5.2

Alcohol content of typical Australian drinks

"standard
alcohol drink”™ alcohol content (4)

Beverage content volume of mi gram

% v/v) beverage

(mb)

Beer 4.8 (1) 200 9.6 7.6
Wine 11.5 (2 g0 10.4 8.2
Fortified wine 18.5 (2) 60 11.1 8.8
Spirits 38.5 (3) 30 11.6 9.2

Notes:

(1) Australian average

(2) Approximate Australian average

(3) Approximate average for most commonly-encountered beverages.
Legal minimum in most states is 37.0

(4) Assumes specific gravity of alcohol = 0.79

As an example of the variation which can exist within these categories, Table
5.3 gives details of alcohol content analyses of South Australian beers in

January 1977. (source: SA Brewing Co.)

The alcohol content of standard bottles is given in Table 5.4, using the

same assumptions as for Table 5.2.

Regrettably there is no Australian standard for beer glass sizes, and
the names given to glass size (middy, 10oz, schooner, etc.) vary between
states. Table 5.5 gives the beer glass sizes and their common names used
in the various Austratian states. The information was provided by the Aus-
tralian Hotels Association in Queensland, Victoria, Tasmania, South Australia

and Western Australia, and in New South Wales.



Table 5.3
Mean values for analyses of SA beers — January 1977

Beer alcohol content (% v/v)

SA Brewing Co. Ltid.
Bitter beer (bulk)
Southwark & West End Bitter (packaged)
West End Draught (packaged)
Southwark Premium
Southwark Pilsener
Guinness Export Stout
Cooper & Sons Ltd
Big Barrel Lager
Gold Crown Beer
Diet Beer
Sparkling Ale
Light Dinner Ale
Extra Stout
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Table 5.4
Alcohol content of standard bottle sizes of typical Australian drinks

Beverage volume alcohol content
(ml) (%v/v) (9)

Beer — large bottle 750 4.8 28.4
Beer — small bottle 375 4.8 14.2
Wine 750 11.5 68.1
Fortified wine 750 18.5 108.6
Spirits 750 38.5 228.1
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Table 5.5
Standard beer glass sizes and their common names — Australia
glass contents Qid NSW Vic Tas SA WA NT

ml approx 9 ACT
fl. oz alcohol

115 4 4.4 4 oz pony

140 5 5.3 5 oz 5 oz 5 oz pony 5 oz
170 6 6.4 6 oz Dbutcher

200 7 7.6 7 oz 7 oz glass glass

225 8 8.5 8 oz 8 oz handte
255 9 9.7 schooner

285 10 10.8 pot middy pot 10 oz middy

425 15 16.1 schooner pint schooner pint
570 20 21.6 pint

575 20 21.8 pot

The most commoniy .sed glasses sizes are as follows (sources as for Table 5.5):
Qld: country 200 mi, city 225 ml
NSW/ACT: 285 ml
Vie: 200 mi, but is being replaced by 285 ml

in some parts of the metropolitan area

Tas. 170 ml or 225 mli
SA: 225 mt
WA: 200 ml

NT: 225 mi
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5.3 The validity of survey data on alcohol consumption

The main Australian study of validity of survey data on alcohol consumption
has been carried out by Millwood and McKay (1978), in conjunction with the
ABS survey in February 1977. The survey covered 15947 persons aged 18

years or over in all states, using a seven day recall questionnaire admin-

istered by trained interviewers, as outlined in section 5.1.3 (a).

Millwood and McKay found that overall, reported consumption accounted
for only 41% of apparent consumption based on production, sales, imports
and exports of alcohol (ABS, 1974-75). Fortified wines and spirits were
subject to the largest understatement, reported consumption accounting for
only 24% and 33% respectively of apparent consumption. Equivalent figures
for beer and wine were 44% and 4A3% respectively. This is in general agree-
ment with similar overseas surveys (Pernanen, 1974; Schmidt, 1973, Midanik,
1982). Wilson (1881) and Popham and Schmidt (1981) have suggested that

the understatement is greater for higher consumption categories.

We can examine possible reasons for this understatement under several

headings.

a. Incomplete coverage. The ABS survey excluded certain people from the

sample: those below eighteen years of age, members of the permanent armed
forces, certain diplomatic personnel customarily excluded from census and
estimated populations, patients in hospitals and sanitoriums, and inmates of
gaols, reformatories. The effect of those omissions is unknown. The sam-
ple was based on private and non-private dwellings, and certain groups of
moderate to heavy drinkers such as homeless men would not have been

included. If these groups drink predominantly one type of beverage, this
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would help explain the differences in the ratios of reported to apparent con-

sumption for the different beverages.

b. Nonresponse. Millwood and McKay noted that those respondents who
were difficult to contact (i.e. required 4-86+ calls to dwelling) had a higher
average consumption than those who were relatively easy to locate (1-3
calls). In a Swedish survey on alcohol use (Nilsson and Svensson, 1871), it
was discovered that nonrespondents were approximately 3 times more likely

to have been registered for drunkenness offences than the respondents.

c. Forgetting. Examination of frequency of recall of "drinking days” showed
a marked decline (52% to 47%) in the average proportion of drinkers who
reported drinking one day ago to two days ago. Over the seven day recall
period, the decline appears approximately exponential. A similar decline
appears when considering daily alcohol consumption. This confirms a finding
of Pernanen (1974) who also noted that, for Finnish drinkers, fregquent drink—
ers forgot their drinking occasions at a more pronounced rate than infrequent
drinkers. Millwood and McKay suggest that yesterday’s reported consump-
tion might provide a more accurate estimate of alcohol consumption but they
do not carry out the calculations. A shorter recall period would increase the

sampling error of estimates, but the gain may be worthwhile.

In the light of this evidence of decreasing recall with time and given the
fact that daily consumption increases considerably over the weekend (Mill-
wood and McKay, 1978), the day of interview provides another source of
bias if, as was the case with the ABS survey, the day of interview is not

balanced for days of the week.
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d. Selective reporting. Selective reporting of consumption may not be uni-
form across a sample, but may vary with sex, age, consumption level or
type of alcohol consumed. Popham and Schmidt (1981) gave evidence that
under-reporting is greater among heavy users in Canada by comparing the
distribution of alcohol purchases as reported in a survey with the distribution
from alcohol buying records. Miller et al (1977) reported differences in the
degree of self-disclosure (Cozby, 1973) for different categories of drinkers.
For the abstainer up to moderate drinker category, self-disclosure increases

with consumption, but decreases for the heavy drinker category.

e. Interviewer and questionnaire effects. It is known that there are effects

of interviewer and questionnaire wording. The questionnaire used in the ABS
survey was outlined in section 5.1.3 (a). Blair et at (1977) have shown that
threatening questions requiring quantified answers are best asked in long
questions using wording with which the respondent feels comfortable, allowing
the respondent to nominate their own quantity rather than forcing a choice
between a number of categories. Plant and Miller (1877) found no overall
benefit in disguising questions on drinking behaviour as a health and leisure
investigation, but noted that the disguised questionnaire produced a signifi—
cantly higher mean reported atcohol consumption than the undisguised ques-
tionnaire in a working class area, white the reverse occurred in a middle class
area. Kirsch et al (1965) demonstrated that the most accurate information
was obtained using male, non-abstainer, trained and supervised interviewers
collecting data in the household of the respondent, and using a structured
qguestionnaire that requires the responses to be made in a set form, predeter-

mined according to the nature of the population being investigated.
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McCall et al (1978), in a comparison of the 1966 Bussetton survey with
later ones, stated that it seems probable that heavy drinkers were reluctant
to identify themselves in a history taking situation, but most self-

administered questionnaires overcame the problem.

There has been interest recently in using randomised response tech-
niques (Volicer and Volicer, 1982) and scrambled randomised response tech-
niques (Eichhorn and Hayre, 1983) to overcome some of the problems

involved in asking sensitive questions about alcohol consumption.

In summary, the consequences of the under-reporting are that we are
tikely to have various biases in the reported distribution of consumption.
Incomplete sampling frames, greater nonresponse and selective response of
heavy consumers will probably lead to the proportion of heavy consumers
being under-represented in the sample. In other countries (e.g. Canada, Fin-
land) methods such as retail sales records provide alternative avenues for
study of the distribution, but in Australia these are not available and we

must make the best use we can of what data is available.
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5.4 The data

Table 5.6 lists forty—seven Australian surveys which contain information,
either quantitative or qualitative, on the distribution of alcohol consumption.
For each survey the following information is provided:

the date of the survey

the population sampled

reference

sample size

the survey method used

the method used to calculate alcohol consumption

a description of relevant data available from the survey

Tables 5.7 to 5.27 list the data sets for twenty-one of the surveys
which provide some quantitative information about the distribution of alcohol
consumption. A breakdown by sex and age is given where possible. Notes

following each table give relevant details of construction of scales, etc.



Table 5.8

Australian surveys containing information on the distribution of

alcohol conaumption

Date Population Reference EECRLE Survey method beal ol ESUENCS Sl Retievant data available
size alcohol consumption

1 ,Jan 18965 Heyfield, 200km east of ;Krupinski et ai (1967, 1940 interviews of entire po- |ususl drinking habits: type, |glasses of beer per week for
Melbourne 1970); Krupinski (1878) pulation by Sth year |frequency and quantity male and female adolescents,

medical studenis, using adults and elderly
history-taking approach [see Table 5.7]
2 | 1965-66 Perth male "social | Tofler et al (1868); 358 interview not stated consumption [(W beer or
drinkers” Tofier and Woodings equivalent/day)
(1981) [see Table 5.8]
3 [ Jul 1966-Jun |Palients presenting at | Wilkinson et al (1969) 220 interview by physician or {usual drinking habits: type, |histogram of daily consumption
1867 the Alcoholism Clnic at social worker {requency and guantity in grammes, by sex
St. Vincent's Hospital, {see Table 5.8)
Melibourne
4 |Nov-Dec Busselton, 240km south |Curnow et al (1969); 3393 interview questionnaire | self-perception as non-, |frequency in each category by
1966 of Perth McCall et al (1878) of entire popuiation ex—, mild, moderate or |age and sex separately
heavy drinker

S | 1967 Australian-born students |Sargent (1979) 2345 self administered ques— |not stated consumption in qualitative
aged 17-25 at 3 Sydney tionnaire groups, by sex
Universities

6 | Mar-Jun Prahran, an inner Mel- | Rankin and Wilkinson 2163 interview by 5th year |7 day recall, plus usual |daily consumption in grammes

1968 bourne suburb (1871) medical studenis patiern if last week atypical |by sex and: age, social stra-
ta, country of birth; relationship
of husband's and wife’s con-
sumption; daity consumption by
cigarettes smoked
{see Table 5.10]

7 | 1968-69 Sydney metropolitan | Encel and Kotowicz 823 combination of self ad- |usual drinking habits. type, |QFV index for consumption by
area residents, 15+ |(1870); ministered and inter— | frequency and quantity sex and: age, education, occu-
years Encel et al (1872) viewer administered pation, income, social class,

questionnaire migrant status, religion

8 | 1968 Busselton, WA McCall et al (1978) 3678 self administered ques- |self-perception as non-, |[frequencies in each category by

tionnaire to entire popu—- |ex-, mild, moderate or |sex
lation heavy drinker

9 | Jul-Aug residents aged 14-65 of |George (1872, 1973) 639 self administered ques- |usuat drinking habits: fre- |separate tables for frequency x

1971 Manly, a Sydney suburb tionnaire quency and quantity sex x age and quantity x sex

10 | Jul-Oct 1871 | Canberra  adults, 19+ |Hennessy et al (1973) 864 inlerview (using ques- |not stated frequency (never/special
years tionnaire?) by social occasions/weekends/daily) by

health visilors, experi— sex, with subdivision of daily
enced part-time inter— category into 3 quantities
viewers and postgradu-

ate sociology students

11 11872 Melbourne (a) secondary |Graves (1873) 3:2042 |self adminisiered ques- |usual drinking pattern, type |frequency; consumption (in
siudenis (b) tertiary b:1601 | tionnaire and quantity drinks) on a drinking day
studenis (¢) working c:307
youths

12 | Jul-Dec 1872 | Aborigines at Bourke, |Kamien (1875b, 1878) 412 participant observation observation of drinking ha- |consumpilion in g/day by age
NSW bils and sex [see Table 5.11}

v6



Table 5.8

Auslralian surveys containing informalion on the distribution of alcohol consumption

(continued)

) Sample Melhod of estimation of )
Date Population Reference Survey method Aetevant dala aveilable
size alcohol consumption

13 [Nov-Dec Busselton, WA Cullen and Woodings 3885 self administered ques- |self perception as non-, |frequency in each category by

1872 (18785); McCall et al tionnaire o entire popu- |ex-, mild, moderate or jage and sex
(1978) lation heavy drinker
14 | 1972-73 South East of SA Seige (18975) 1027 questionnaire admin- |usual drinking habits: fre- |[frequency x quantity; freguency
istered by registered | quency and quantity (in |by socioeconomic group; amount
public health nurses grammes) by socioeconomic group [see
Table §.12]

15 | 1973 NSW (a) high school |Bell et al (1975) a.5214 |self administered ques- |usual frequency, amount on |frequency for each group
students (b) technical b:1130 |tionnaire drinking days
college students c:748
(c) nurses (d) prisoners d:188
(e) probationers e:153
(f) delinquents fi214

16 | 1973 Redcliffe, 35km south | Schact et &l (1976) 994 questionnaire admin— |usual frequency and quanti- | consumption
of Brisbane istered by registered [ty, separately for beer, |(abstainer/moderate/heavy) by

nurses wines, spirils sex and age

17 | Apr=Jul Residenis of an outer |George (1974) 1011 questionnaire admin— |amount and frequency of |frequency of use by age and

1973 western Sydney suburb, istered by trained inter- |use sex
14-65 years viewer

18 | 1873 Canberra high school |Irwin (1976) 4952 seif administered ques- |self perception as non-, |self perceived use by sex and
students, 11-19 years tionnaire light, medium or heavy user |form

of alcohol

19 | 1874 Canberra high school |Irwin (1976) 5138 self adminisiered ques- |self perception as non—, |self perceived use by sex and
siudents, 11-19 years, (match |[tionnaire light, medium or heavy user |[form
including matched sam- 2612) of alcohol
ple from 1973 survey

20 | Jan-Jul 1874 |[Hobart women, 18-60 | Carringlion—-Smith (1978) 500 questionnaire admin- | frequency and guantity frequency only
years istered by trained inter-

viewer

21 | Aug 1974 Ballarst, Vic., Graves (1977) al738 self administered ques- |usual drinking pattern, |for each group: frequency;
(a) secondary students b:63 tionnaire quantily and type number of drinks 1n one day;
(b) apprentices c:282 combination of these into a QF
(c) teriiary students scale

22 | 1874 Adelaide secondary | Quinn et &l (1975) 455 self administered ques- |usual drinking habits. fre— |frequency by age and sex.
schools, 3rd and 5th tionnaire quency and quantity quantity (in glasses) on week-
year students days by age, sex and type of

alcohol; similarly for weekends

23 | Jun-Aug Bradbury, a south | Strombom (1975) 575 inlerview questionnaire, |usual frequency and gquanti- |frequency by quantity; frequen-

1974 western Sydney suburb, usually to housewife ty cy by age and sex; quantity by
18+ years sex,

24 | Oct 1974 Adolescents, 12-17 |Egger et al (1976) 2741 self administered ques- |frequency; type; quaniity |frequency and quantity
years, in 30 schools tionnaire for each type separately, by age and sex
throughout NSW

25 [ 1974 Qld schoolchildren, 11- | Turner and Mclure 3362 seif administered gques- |usual frequency; quantity |frequency by grade; guantity by
17 years, from 132 |(1975) tionnaire on drinking days for |grade
schools beer/wine/spirits/liquer

SB



Table 5.6

Australian surveys containing information on the distribulion of alcohol consumption

(continued)

Date Population Reference S:T;Zle Survey method Me:lhcc::\o(lﬁc::::\r:szznc’f Relevant data available
26 |Dec 1974 = |Persons admitted to | Ryan and Salter (1977) 225 interview usual frequency and quanti- |consumption in g/day by BAC
Aug 1875 casualty at the Atfred ty [{see Table 5.13]
Hospitat, Melbourne,
following a road crash
27 |1974-75 Elizabeth, SA Selge (pers. comm.) 1525 queslionnaire admin- |usual drinking habits: fre~ |usual quanlily on drinking occa~
istered by registered | quency and quantity sion (grammes) by sex
public health nurse
28 | 1875 Busselion, WA Cullen et al (1980) 3352 self administered ques- |usual consumption per week |consumplion (g/day) for beer,
tionnaire to entire popu-— |(bottles of beer or wine, |wine, spirits, by age and sex
tation glasses of spirits) [see Table 5.14]
29 [Apr 18975 = | Adull members of AWU, |Gibson et al (1977) 9829 questionnaire usual frequency and quanti- |frequency by quantity and sex
Aug 1976 Sydney ty [see Table 5.15]
30 | Jun-Dec AlL  adults undergoing |Reynolds et al (1976) 8516 self administered ques— |usual frequency and quanii- |frequency by aquantity by sex
197S Medicheck screening in tionnaire on visual |ty [see Table 5.16]
Sydney display terminal
31 | Jan-Nov All  adults undergoing |Reynolds et &l (1877) 14516 self administered ques- |usual frequency and quanti- [frequency by gquaniity by sex
1976 Medicheck screening in tiennaire on visual |ty [see Table 5.16]
Sydney display terminal
32 | Jan 1976 Young people on |Barwon Regional Asso- 1344 groups on beaches were |7 day recall (last Sunday |[number of 7oz beers/day by
beaches near Geelong, |ciation for Alcohol and approached, and if |[to previous Monday) plus |sex and. age, area of
plus tocal youth groups Drug Dependence agreeable, completed a |provision for a "typical” |residence, at school or not,
(BRAAD) (1877) self administered ques- |week tiving at home or not
tionnaire [see Table 5.17]
33 | Jan-Jun North West region of [O’Connell et al (1879) 2006 questionnaire admin- |usual frequency and quanti- jconsumption (g/day) by sex
1876 Melbourne istered by S5th and final |ty and: age, marital status, coun-
year medical students try of birth, education, qualifi-
cation, employment status, oc-
cupational status, income
(see Table 5.18]
34 | Aug 1976 Secondary schools in | BRAADD (1977) 6005 self administered ques- |7 day recall (“last week”™) |number of 7oz beers by sex
Geelong area tionnaire plus provision for “typical” |and age [see Tabie 5.18]
week
35 | 1976 Australian-born stu— |Sargent (1878) 725 self administered ques— |not stated consumption in qualitative
dents, 17-25 vyears, at {ionnaire groups by sex
3 Sydney universities
36 |late 19786 Employees of 9 com- |Graves and Travers 651 self administered ques—- |number of drinks on a usu- |QF classes by sex; number of
panies in Geelong (1977). BRAADD (1877); tionnaire al drinking day. number of |drinks on a usual drinking day,

Krupinski (1878)

drinks in a 4 day period:
yesterday + last Friday to
Sunday. wusual intake on

each day in a typical week.
Converted to qualilative
classes using QF index

in usual week and last week
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Table 5.6

Australian surveys containing information on the distribution of

(continued)

alcohol consumption

|— i Sample Method of estimation of
[ | Date Population Reference A Survey meihod atcohol consumption Relevani data available
37 :1976 Alcohol abusers | O'Neill (1977, 1879) 100 interview using the tech- [usual intake consumption in g/day
presenting to the Com- nigue "grogcount’ [see Table 5.20]
munily  Addiction Ser~-
vice, Newcastle, NSW
38 [Feb 1977 Australian population | Australian Bureau of 15947 interview questionnaire |7 day recall, for each day, |consumption (g/day) by sex
18+ years Stalistics (1978); administered as part of |number, type and size of |and: age, state, occupation,
Milwood and McKay ABS Labor Force Survey |drink was recorded and |state capital/other area, marital
(1878) converted to grammes of |status, number of
atcohol cigareties/day [see Table 5.21]
39 | Oct-Nov NSW adolescents, 12-17 |Egger et al (1878) 2298 self administered ques— |frequency, type, quantity |frequency by age and sex
1977 years, at 30 schools tionnaire for each iype
40 |Dec 1977 - | Attendees at Sydney | Cooke et ai (1882) 20820 self administered gues- |not stated consumption (units/week) by
Mar 1978 Hospital Health Informa- tionnaire, with assistance sex
tion and Screening Ser- of lrained sisted [see Table 5.22)
L vice
41 11978 First year Adelaide | Baghurst and McMichael 221 self administered ques- | 7 day recall plus usual in- | consumption (g/day) by sex
University students (1978) tionnaire take [see Table 5.23]
42 | 1978 Bussetton, WA Cullen et ai (1980) 4002 self administered ques- |frequency, plus details of |consumption (g/day) for beer,
tionnaire 1o entire popu- |an average weeks’s con- |wine, spirits, by age and sex
lation sumption [see Table 5.24)
43 1 1978-79 Non-officer RAAF re- |Baghurst and McMichael |a:563 self administered ques~- (7 day recall plus usual |consumption (g/day) by age
cruits,  Edinburgh SA, [(1978); Baghurst (pers. |[b:611 tionnaire weekly intake [=2ee Table 5.25)
(a) at beginning, (b) at |comm.)
end of course
44 |1978-79 Perth male "social | Tofler and Woodings 320 interview nol stated consumption . beer or
drinkers” (1981) equivalent/day) [see Table 5.8)
45 | July 1978 Tasmanian high school [Lynch et al (1881) 1211 questionnaire 7 day recall categorised consumption of
students (ages 12-16) drinker (never, past, preseni
light, present heavier) by age
and sex
46 |Jan - June |Qid human-service stu- |[Engs (1882) 1449 questionnaire average frequency plus | consumption (g/day) by sex; by
1980 dents usuat amount consumed per |year of study, by course, by
occasion in past year perceived importance of religion
[see Table 5.26]
47 | June 1980 residents of Townsville, | Grichting (1983) 303 interview recall of last 24 hours + |consumption (g/day) by age
L aged 15-85 last weekend. If atypical, |and sex
usual consumption used. [see Table 5.27]

.16
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Alcohol consumption - Heyfield, 1985

Consumption Age

(g/day) 14-21 22-64 65+ Total

Males
0 85 50 12 147
€5.4 25 118 15 158
5.4-32.6 7 154 12 173
>32.6 5 130 1 136
Total 122 452 40 614

Females
0 81 115 20 256
£5.4 24 166 7 197
5.4-32.6 = 68 3 71
>32.6 - 7 7 14
Total 105 396 30 538

Notes:
References: Krupinski et al (1967); Krupinski et al (1970).

Consumption unknown: 12 males, 7 females.

The class limits were originally 1-5, 5-30, 31+ glasses of beer/week, and
were converted by Krupinski (1978) to 1-7.15, 7.15-42.9, 42.9+ g/day.
The error in this conversion, based on 10 g alcohol/200 mi glass beer,
was pointed out by the Australian Associated Brewers (1878). The
present limits were calculated from the data in Table 5.2.
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Table 5.8
Alcohol consumption — Perth male "social drinkers”

Consumption 1965-66 1978-79

(g/day)

0 72 67
1-36 9% 91
37-72 72 74

73-135 54 46
>1356 66 42
Total 359 320

Notes

References. Saker et al (1967), Tofler et al (1969), Tofler and Woodings
(1981).

Subjects for the survey were obtained by "visiting a number of hotel
managers in the Perth metropolitan area, and asking them to volunteer
for a medical examination. In turn these men asked their friends, col-
leagues and business associates to take part. To be accepted for the
survey, subjects had to be fully employed males who considered them-
selves healthy, particularly with regard to the cardiovascular system.”
(Tofler and Woodings, 1981).

Alcohol intake was converted to equivalent volume of beer intake per day.
Conversion factors used were 3 for light wine, 5 for fortified wine, and
10 for spirits. Conversion to g/day is on the basis that W.A. beer con-
tains approximately 4% alcohol by volume. (Saker et al, 1967).
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Table 5.9
Alcohol consumption — Alcoholism Clinic patients, 1966-67

Consumption Males Females

(g/day)

<100 0 0
100-150 39 18
150-200 20 2
200-250 43 4
250-300 15 3
300-350 9 1
350-400 6 -
400-450 6 -
450-500 2 -

>500 3 -

Total 143 28

Notes

Reference:. Wilkinson et al (1969).

Data is taken from a photographic enlargement of Figure 7 of the refer-
ence. The authors state that there were 179 men and 41 women but
"data obtained from 38 men and 12 women were incomplete or unreliable
in part”. This leaves 141 men and 29 women, which agrees fairly
closely with figures as taken from the histogram.
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Table 5.10

Alcohol consumption — Prahran, 1968

Consumption Age Total
adults
(g/day) 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70+ (20+) all
Males

0 96 TA 35 16 15 14 21 15 116 286

1-10 7 33 68 40 25 28 21 18 200 240

11-40 - 8 83 49 A4 32 25 16 249 257

41-80 - 0 33 18 10 12 6 5 84 84
81-120 34

120+ 1 17 12 11 4 14 1 25 60

Total 103 116 236 135 105 90 87 55 708 927

Females

0 116 103 78 34 37 26 39 61 275 494

0-10 14 55 160 55 41 A9 38 42 385 454

11-40 - 8 54 23 25 35 16 13 166 174

41-80 - - 1 1 3 4 1 - 10 10

81-120 3] 6

120+ - N 2 2 L - 1 N 3 3

Total 130 166 295 118 107 114 95 116 845 1141

Notes:

Reference: Rankin and Wilkinson (1971).
Consumption unknown: 34 men, 22 women (adults)

The consumption was calculated on the basis of 10g alcohol being con-
tained in "one 7 oz glass of beer, 1 fluid ounce of whisky or gin, or
two fluid ounces of sherry”. This conversion is incorrect (see Table
5.2), but as the mix of drink type is unknown, it is impossible to
correct it.



102

Table 5.11

Alcohol consumption — Bourke aborigines, 1972

Consumption age Total
(g/day) 10-19 20-29 30-39 40-49 50+ adults(20+) all
Males

0 64 0 2 4 6 12 76

1-10 10 5 8 0 1 14 24
11-40 4 6 2 1 3 12 16
41-80 2 8 5 1 3 17 19
81-120 - 8 8 4 2 22 22
121-180 - 19 9 8 4 31 31
180+ - 2 3 3 5 13 13
Total 80 41 37 19 24 121 201

Females

0 80 36 26 14 15 91 171

1-10 . 3 3 3 3 12 12
11-40 - 7 0 5 1 13 13
41-80 = 3 2 0 0 5 5
81-120 - - 0 1 0 1 1
121+ - - 1 - 2 3 3
Total 80 49 32 23 21 125 205

Notes:

Reference: Kamien (1975b).

Consumption unknown: 3 males, 3 females.
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Table 5.12

Alcohot consumption — South East S.A., 1972-73

Consumption Persons

(g/day)

0 85
1-10 388
10-30 121
30-80 10

80+ 4
Total 618

Notes:
Reference: Selge (1975).

The data have been converted from a quantity—frequency state to an
absolute alcohol state as follows: We assume
0.1-0.9/month

rarely =
once/month = 1/month
once/fortnight = 2-3/month
once/week = 4-8/month
every few days = 9-27/month
daily = 28-30/month
Selge gives the quantity as grammes of alcohol. The various

frequency—quantity states given in Selge’s Table 10:9 are then con-
verted to g/day as shown in Table 5.12a (Intakes above 300g were not
included in Table 10:9, and were kindly identified by Dr. B. Selge).
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Table 5.12a

Conversion of QF data to g/day - South East S.A.

Consumption| Frequency Quantity|Daily consumption (g)| No. of
group (g9) min  mean max | persons
0 nondrinkers 0.0 0.0 0.0 95

rarely 1-10 .0 .1 .3 102

1/mnth 1-10 .0 .2 .3 7

1/1nt 1-10 . .4 1 8

rarely 10-50 .0 .5 1.5 103

1/mnth 10-50 .3 1.0 1.7 33

1/week 1-10 . 1.0 2.7 7

rarely 50-100 .2 1.3 3.0 g

1/fnt 10-50 .6 2.5 5.0 22

< 10 1/mnth 50-100 | 1.7 2.5 3.3 2
rarely 100-200 .3 2.5 6.0 0

ev.few days 1-10 .3 1.3 3.0 9

rarely 200-300 .7 4.2 9.0 2

daily 1-10 .9 4.8 10.0 11

1/mnth 100-200| 3.3 5.0 6.7 0

1/week 10-50 1.3 6.0 13.3 66

1/fnt 50-100 | 3.3 6.3 10.0 2

rarely 500+ 1.7 8.3+ - 1

388

1/fnt 100-200{ 6.7 12.5 20.0 0

1/week 50-100 | 6.7 15.0 26.7 11

10-30 ev.few days 10-50 3.0 18.0 45,0 54
daily 10-50 9.3 29.0 50.0 56

1/week 100-200( 13.3 30.0 53.3 0

121

ev.few days 50-100|15.0 45.0 g0.0 7

30-80 daily 50-100 | 46.7 T72.5 100.0 3
10

ev.few days 100-200|30.0 90.0 180.0 1

> 80 1/week 400-500|53.3 90.0 133.3 1
daily 100-200|93.3 145.0 200.0 2

4
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Table 5.13

Alcohol consumption — road crash victims, 1874-75

Consumption BAC (g%)

(g/day) 0-0.049 30.05 Total

0 13 1 14

<1 33 0 33

1-10 53 14 67

11-40 38 33 71

41-80 6 18 24

81-120 2 9 11

>120 2 3 5

Total 147 78 225

Notes:

Reference. Ryan and Salter (1977).
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Table 5.14

Alcohol consumption — Busselton, W.A., 1975

Consumption Age
(g/day) < 30 30-39 40-49 50-59 60-68 70+ Total
Males
0] 82 56 70 62 115 73 A58
1-20 149 114 102 104 82 66 617
21-40 51 56 58 56 62 32 315
41-60 23 19 24 27 22 10 125
61-80 5] 8 1 4 5 5 38
81-100 5 1 1 5 4 5 21
100+ 1 5 4 3 3 3 18
Total 316 259 270 261 293 194 1593
Females

0 193 160 156 184 182 134 1019
1-20 122 99 111 101 66 39 538
21-40 22 22 24 34 25 8 135
41-60 8 4 8 9 12 3 A4
61-80 1 2 2 4 3 0 12
81-100 (0] 0 0 - 2 1 3
100+ 1 2 2 = 1 2 8
Total 347 289 303 332 301 187 1759

Notes:
Reference:. Cullen et al (1980).

Alcohol intake calculated on the basis that one 750 ml bottle of beer
contains 29.5 g alcohol, one 750 ml bottle of wine contains 90 g
alcohol and one bottle of spirits averages 340 g alcohol per litre (sic).
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Table 5.15
Atcohol consumption — AWU members, 1975-76

Consumption Males Females

(g/day)
0 401 1691
<10 1256 3876
10~-40 1164 1157
40-80 172 27
80+ 70 14
Total 3063 6765

Notes:
Reference: Gibson et al (1977).

Data has been converted from QF scale as follows!
Quantity:
Since the most common size of a Sydney glass of beer is 285 ml, 1
glass has been assumed to contain 10 g alcohol.
Frequency:
1/8 per week
1 per week
2—-4 per week
5-7 per week.

very rarely
once a week
couple of times per week
most days
Table 5.16a shows the conversion.

Data from both Medicheck samples (Reynolds et al, 1976, 1977) has been
converted using Table 6.16a also.
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Table 5.16

Alcohol consumption — Medicheck screenings, 1975, 1976

Consumption 1975 1976
(g/day) Males Females Males Females

0 1140 1719 1739 3112

1-10 1001 861 1801 1821
10-40 2100 897 3270 1548
40-80 376 AT 639 66
80+ 176 1" 246 13
Total 4793 3535 7695 6558

Notes
References. Reynolds et al (1976, 1977).

The data have been converted from QF classes to absolute alcohol as in
Table 5.16a.
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Table 5.16a

Conversion of QF data to g/day — AWU workers and Medicheck

Consumption| Frequency Quantity|Daily consumption (g)| AWU Males

group (drinks) | min mean max % no.

0 nondrinkers 0.0 0.0 0.0 |13.1 401
very rarely 1-2 .2 .3 4 1129
very rarely 3-5 .5 .7 .9 2.6
very rarely 6-8 1.1 1.2 1.4 0.3
< 10 very rarely > 9 1.6 1.6+ - 0.1
once/week 1-2 1.4 2.1 2.8 8.3
once/week 3-5 4.3 5.7 7.1 6.3
couple/week 1-2 2.8 86.4 11.4 [10.3
once/week 6-8 8.6 10.0 11.4 1.1

1256
most days 1-2 7.1 12.9 20.0 .9
once/week > 9 12.9 12.9+ = 0.7
couple/week 3-5 8.6 17.1 28.6 |10.6
10-40 couple/week > 9 25.7 25.7+ - 1.0
coupte/week 6-8 17.1  30.0 A5.7 .1
most days 3-5 21.4 34.3 50.0 |14.7

1164

40-80 most days 6-8 42.9 60.0 80.0 5.6 172

80+ most days >898 77 TTA+ - 2.3 70
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Table 5.17

Alcohol consumption — Geelong beach survey, 1976

Consumption Age
(g/day) 10-14 156-19 20-24 25+ Total
Males
0 25 134 31 2 182
1-30 24 212 49 32 317
31-60 4 69 16 10 99
61-90 - 49 29 7 85
90+ = 25 11 6 42
Total 53 491 136 57 735
Females

0 48 148 18 9 223
1-30 25 232 55 28 340
31-60 3 16 17 2 38
61-90 = 4 2 - 6
90+ = 4 = - 4
Total 76 400 92 39 607

Notes:

Reference. Barwon Regional Association for Alcohol and Drug Dependence
1977).

Figures in the body of the table are derived from published percentages
and so many may not agree with totals. Totals for age groups are
correct. Consumption was given in "7 oz glasses beer/day"” and has
been converted to grammes/day on the basis of 7 oz beer = 7.6 g
alcohol.



Table 5.18

Alcohol consumption — North West Metbourne, 1978

Consumption Age
(g/day) 15-19 20-28 30-38 40-49 50-59 60-69 70+ Total
Males
0 54 23 21 20 15 17 15 165
1-9 65 124 88 71 58 40 20 466
10-39 17 A4 45 29 33 17 7 192
A0-79 7 30 29 34 19 15 4 138
80+ 2 10 10 21 7 6 1 57
Total 145 231 193 175 132 95 AT 1018
Females
0 60 A9 49 A7 35 43 27 310
1-9 80 176 123 107 89 A8 34 657
10-39 5 17 24 12 14 1M 5 88
A0-79 - (6] 2 10 3 1 . 22
80+ = 1 - A3 = - - 1
Total 145 249 198 176 141 103 86 1078
Notes:

Reference: O’Connell et &l (1979).

Details of conversion from a QF measure to g/day are given by Krupinski
(1978). His assumptions are:

1. a standard drinks contains 10 g alcohol
2. most days = 20 days/month

3. weekends = 8 days/month

4. social occasions = 1 day every 2 months
5. rare occations = 1 day every 2 months

6. mean daily consumption = mean no. of drinks per occasion x no.
of occasions per month + 30.
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Table 5.19

Alcohol consumption — Geelong School Survey, 1976

Consumption Age
(g/day) 14 15 16 17 18 "Other” Total
Males
0 565 492 365 126 26 36 1609
1-8 209 295 183 83 15 10 795
9-15 64 86 95 56 18 4 322
16-30 17 80 60 27 15 1 201
31-60 13 19 26 10 3 1 72
61-90 3 13 3 5 1 - 25
91+ 1 3 4 1 = - 9
Total 872 987 736 308 78 52 3033
Females
0 640 598 397 164 20 26 1845
1-8 189 291 204 118 20 9 831
9-15 28 67 65 39 4 3 206
16-30 11 20 20 17 - 1 69
31-60 4 4 1 4 - 1 14
61-90 0] A 2 - = - 6
91+ 1 - . - = - 1
Total 873 984 689 342 44 40 2972

Notes:

Reference. Barwon Regional Association for Alcohol and Drug Dependence
(1977).

"Other” includes ages 11-13, 19 or not stated.
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Table 5.20
Alcohol consumption — Newcastle alcohol abusers, 1976

Consumption No. of persons

(g/day)

< 80 )
80-120 1
120-180 AT
180-240 19
240-300 15
300-360 11
360-420 1
420-540 0
540-600 1
600-660 2
660-720 0
720-780 2
780-800 1
Total 100

Notes.

Reference. O'Neill (1877).



Table 5.21

Alcohol consumption — ABS survey, 1977

Consumption Age
(g/day) 18-24 25-44 45-84 65+ Total
Males
0] 355 645 613 345 1959
1-9 328 750 527 223 1829
10-19 204 523 325 102 11563
20-29 167 450 275 54 946
30-39 103 239 173 31 545
40-49 100 189 134 18 4431
50-58 34 160 104 16 313
60-68 39 85 77 7 208
70-79 28 66 35 7 136
80-89 4 34 26 4 71
80-99 | 34 17 | 67
100-109 | 17 ) | 38
110-118 61 22 | 8 42
120-148 | 28 60 | 52
150-199 | 14 | | 37
200+ ¥ 7 ¥ ¥ 19
Total 1419 3263 2366 809 7856
Females
0 651 1402 1275 796 4125
1-9 519 1130 672 260 2580
10-18 138 400 223 46 808
20-29 55 119 100 23 297
30-39 27 51 61 9 148
40-49 7 33 16 0] 56
50-59 1 12 15 2 30
60+ 9 20 13 5 A7
Total 1408 3167 2375 1141 8091

Notes:

Reference. Australian Bureau of Statistics (1878).
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The ABS publication does not give sample values for the distributions, but
expresses their results in terms of the total Australian population. The
total sample size was 15947, split amoung the states as follows: NSW

3395; Qid. 2435,

3885; Viec.

SA 2232;

WA 2188;

Tas. 1157,

NT 145;
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ACT 510 (D. Seal, ABS, pers. comm.). The values in the table above
have been calculated on the basis of the sampling fractions for age and
sex being equal to the population values, which is a reasonable
assumption according to Seal. The values in the table are in reason-
able agreement with those calculated from the sum of the individual
state categories, particularty at higher consumption levels:

Consumption Total persons calculated from
age—sex breakdown atate values

o 6084 5900

1-39 8306 8482

40-79 1207 1210

80+ 350 353

Total 16947 150947
Table 5.22

Alcohol consumption — December 1977 to March 1981
Sydney Hospital Health Information and Screening Service

Consumption Males Females

(g/day)
0 3061 3423
1-9 3004 2109
10-29 4128 1526
330 3342 327
Total 13535 7385

Reference. Cooke et al (1982).

Cooke et al give consumption in units per week, where "one unit = 10 g

of ethanol = one glass of beer”.



Table 5.23
Alcohol consumption — Adelaide University students, 1978

Consumption Males Females

(g/day)
0 51 16
1-10 T4 38
11-20 29 5
21-30 3 2
31-40 1 -
A1+ 1 -
Total 159 62

Notes:

Reference: Baghurst (pers. comm.)

116
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Table 5.24

Alcohol consumption — Busselton W.A., 1978

Consumption Age
(g/day) {30 30-39 40-49 50-58 60-69 70+ Total
Males
0 92 87 69 a9 126 115 568
1-20 114 127 111 a7 110 94 653
21-40 83 66 54 45 40 43 331
41-60 30 28 19 39 27 12 1556
61-80 7 10 5 15 14 4 55
81-100 7 2 10 8 6 2 35
100+ 8 4 6 5 5 3 31
Total 341 304 274 308 328 273 1828
Females

0] 204 1569 167 234 217 192 1173
0-20 174 177 131 129 125 68 804
21-40 21 17 27 42 25 10 142
41-60 3 8 7 10 13 1 42
61-80 3 0 3 = 2 1 9
81-100 - 1 ~ - 1 - 2
100+ - - = - 2 ¥ 2
Total 405 362 335 415 385 272 2174

Notes:

Reference: Cullen et al (1880).

Alcohol conversion on the basis of one 750 ml bottle of beer = 29.5 g
alcohol, one 750 ml bottle wine contains 90 g alcohol, and alcohol con-—
tent of spirits is either 340 g/l or 260 g/l.

Note: the paper by Cullen et al contains a misprint in Table §. The fre-
qguency of total beverage consumption for agegroup 50-59, consumption
group 100+ g/day, should be 5, not 6. This error has been corrected
here.



Alcohol consumption — RAAF recruits, 1978-78

Table

5.25

Incoming recruits
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Consumption Age
(g/day) 17-20 21-25 28+ Unknown  Total

o 86 15 16 2 119

<30 203 66 52 5 326

30-50 33 23 7 1 64

50-70 16 11 5 1 33

70-90 4 2 3 0] 9

>90 4 5 3 0] 12

Totat 346 122 86 9 563

Outgoing recruits

(0] 88 9 18 5 120

<30 182 73 42 7 304

30-50 60 26 13 3 102

50-70 21 14 10 (0] 45

70-90 10 3 3 0 16

>90 13 5 5 1 24

Total 374 130 91 16 611

Notes:
Reference: Baghurst and Dwyer (1981); numerical Baghurst (pers.

comm.)
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Table 5.26

Alcohol consumption — Queensland human—service students, 1980

Consumption
(g/day)

Males Females

0
1-19
20-39
40-59
80-79
380

Total

118 63
469 512
127 55
42 12
23 2
24 2
803 646

Notes

Reference: Engs (1982).

Alcoho! conversion on the basis of each 10 oz (285 ml) beer was con-
sidered to contain 10.4 g alcohol, each wine glass of wine (90 ml) was
considered to contain 8.2 g, and each "nip" (30 ml) of distilled spirits
to contain 9.2 g of absolute alcohol.

Factors used in calculating the amount of beverage consumed were:

every day 365
3 or 4 times a week 182
1 or 2 times a week 78
2 to 4 times a month 34
2 or 3 times a year 3.5
about once a year 1

used or experimented with 0.1
0

never used
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Alcohol consumption — Townsville residents, 1980

Consumption Age
(g/day) 15-17 18-24 25-44 A5-64 65+ Total
Males
0 6 7 13 9 8 A1
1-40 5 13 20 12 6 56
41-80 1 17 11 4 5 38
81-120 0 3 10 2 1 16
120 0 2 3 1 0 6
Total 12 42 57 28 18 157
Females

o] 10 12 31 18 8 79
1-40 2 21 24 14 8 69
41-80 0 1 2 4 1 8
81-120 0 0] 0 0 0 0
>120 0 1 0 0 0 1
Total 12 35 57 36 17 157

Notes

Reference. Grichting (1983), Grichting (pers. comm.).

No information available for 44 of the total sample size

dents.

Alcohol conversion on the basis of

light beer
regular beer
table wine

fortified wine

spirits

2.4%
4.8%
15.0%
18.0%
40.0%

of 358 respon-



Chapter 6

Results.

6.1 Scope of analyses

The previous chapter listed data from 21 Australian surveys on alcohol
consumption. In this study, the main interest lies in the examination of data
from samples of what could loosely be termed "typical Australians”. Three
surveys (Alcoholism Clinic patients, Bourke aborigines, and Newcastle alcohol
abusers) were considered to represent atypical populations and have been

excluded from the comments and analyses of this chapter.

It is possible to envisage analyses of greater complexity than are

presented in this chapter, but this has not been done for several reasons:

1. In general, the guality of survey data on alcohol consumption does not
warrant complex analysis. The previous chapter discussed the large
discrepancies between reported and apparent consumption of alcohol.
There is littlte point in building complex constructions on poor founda-

tions.

2. It has been shown consistently that the distribution of alcohot consump-
tion is "unimodal, continuous, positively skewed, and similar to a log-
normal distribution” (see Chapter 2) and there are no a priori reasons
why Australian data should be grossly different to that overseas. The
analyses to be presented are sufficient, so far as the data will allow

it, to detect discrepancies from this description.
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As is usual in alcohol studies, we will be concerned primarily with data
about consumers of alcoho! and ignore data about abstainers. We therefore

take a brief look at abstainers now.
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6.2 Abstainers

Table 6.1 shows the percentage of abstainers from adult samples in the
surveys. The data are shown graphically in Figure 6.1. In recent years
there is no strong discernible trend in the proportion of abstainers, the most
notable feature of the figures being the wvariation. This reflects the diverse

nature of the populations sampled.

Table 6.1

Percentage of adult abstainers.

percent abstainers

Survey date male female ratio
Heyfield 1965 12.6 31.7 0.40
Perth social drinkers 1965-66 20.1 - -
Prahran 1968 16.4 32.5 0.50
South east SA 1972-73 15.4 .
Roadcrash victims 1974-75 6.2 -
Busselton 1875 28.8 57.9 0.50
AWU members 1975-76 13.1 25.0 0.52
Medicheck 1975 23.8 48.6 0.49
Medicheck 1976 22.6 47.5 0.48
Geelong beach 1976 17.4 20.8 0.84
NW Melbourne 1976 12.7 26.8 0.47
ABS survey 1977 24.9 50.9 0.49
Sydney Hospital 1977-81 22.6 46.4 0.49
Adelaide Univ. 1978 32.1 25.8 1.24
Busselton 1978 31.1 54.0 0.58
RAAF ingoing 1978-79 21.1 - -
RAAF outgoing 1978-79 19.6 N -
Perth social drinkers 1978-79 20.9 =

Qld students 1980 14.7 9.8 1.50
Townsville 1980 24 .1 47.6 0.51

However with three exceptions, the ratio of male to female abstainers shows
a remarkable stability, at approximately 0.5. Two of these three samples
are student populations, and are notable for the fact that they are the only

samples in which there is a greater proportion of female drinkers than male
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drinkers.
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6.3 Consumers — sample statistics

The remainder of this chapter will be concerned with data conditional on
a non—-zero consumption. Table A1 lists sample statistics from each of the
21 surveys. Where possible, details are given separately for each agegroup
and sex. Additionally, if the survey included youths, statistics are given for
both the adult and youth portions of the sample. The definition of "youths"
varies for each sample, depending on which agegroups the experimenter has
used in presenting the results. The actual agegroups used are noted in

Table A1.

The statistics listed in the table are the sample size, the number of
classes into which the total sample is grouped, the mean (in g/day) of the
individual alcohol consumption, the standard deviation of the logarithm of the
alcohol consumption, and the skewness of the sample. Since the class inter—
val widths differ from survey to survey, Shepherd’s correction has been
applied to the standard deviation and skewness, to remove the grouping bias

(Bliss, 1967).

In most cases the upper class interval has only a lower bound, say
x - The usual assumption has been made, namely the midpoint of the
uppermost class interval is taken to be the same distance above Xm. as the

midpoint of the previous class interval is below it.

6.3.1 Sample sizes and_ groupings Sample sizes (including abstainers) range
from about two hundred to in excess of twenty thousand, and reflect the
methodology used in carrying out the survey (see Table 5.6). Those surveys
with small sample sizes usually used an interview to obtain information, while

the larger ones tended to use self-administered questionnaires, sometimes
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with input directly to a computer via a visual display terminal.

Once abstainers are removed from the sample, the numbers of consu-—
mers in the samples range from 154 to 14709, with a median of 1287.
Corresponding figures for male consumers in the samples are 108, 10747 and
684, while for female consumers, the minimum, maximum and median are
respectivelty 46, 5074 and T68. Thus the sample sizes are positively
skewed; that is, there are more samples with sizes towards the lower end of

the range.

In considering the distribution of consumption, there are good reasons
to think that the consumption patterns of different agegroups may differ.
When we consider that the sample sizes referred to in the previous paragraph
may subsequently be divided among four to six agegroups, we see that in
many cases, sample sizes in age x sex subgroups are very small. Table A1

shows that they range from 2 to 2618. The median size is 125.

Data on alcohol consumption is usually published as grouped frequency
data, typically with four to six classes. Common choices for class intervals

(in g alcohol/day, rounded to the nearest gramme) are

1-10, 11-40, 41-80, 81+
1-10, 11-40, 41-80, 81-120, 121+

1-20, 21-40, 41-80, 61-80, 81-100, 101+

Additionally, there are often no observations in the upper class intervals for
some age x sex subgroups. Of the 18 surveys under consideration, there
were 2,7,4 and 4 surveys with 3,4,5 and 6 classes respectively, and one

(ABS, 1978) where consumption was subdivided into 15 classes, although in
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this latter survey, there are only 7 classes for each of the female age-

groups, and only one male agegroup has data for the full 15 classes.

6.3.2 Mean consumption and standard deviation As may be expected from

such a diverse group of surveys, the values for mean consumption cover a
wide range. The agegroup means for males range from 11.1 to 56.4 g/day;

the corresponding range for females is 2.7 to 28.8 g/day.

Since the age subdivisions used in the surveys are not standardised, it
is difficult to be specific about any overall trends with age. There is a
suggestion in some samples (ABS, NW Melbourne and others) of a quadratic
response with age. That is, lower consumption in the lower agegroups,
increasing in the central agegroups, and finally decreasing again in later age-

groups.

Taking adult samples only, the range for the means of the male sam-

ples is 8.9 to 77.3, and for females 7.0 to 25.8 g/day.

Bruun et al (1975) examined the relation between the mean consumption
and the standard deviation of the logarithm of consumption using data from
European surveys. The figure they used to do this has been the subject of
much discussion in the literature, and has been reproduced several times
(Duffy, 1977a; Duffy and Cohen, 1978, Skog, 1980a, 1983; Mohan et al,
1980). It is reproduced again here as Figure 6.2. (Bruun et al gave the con-
sumption in terms of litres of alcohol per year; it has been converted to
grammes per day in Figure 6.2). The 14 data points represent 6 adult popu-

tations, plus 8 subgroups from 2 surveys of Scandinavian youths. It is of
interest to compare it with a similar figure, Figure 6.3, derived from Aus-—

tralian data. The data for Figure 6.3 is taken from Table A1, and comprises
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the samples for both adults and youths of both sexes. These four

categories are differentiated on the figure.

It is evident from Figure 6.3 that the samples of females have, in gen-
eral, both lower mean consumption and lower standard deviation than the
samples of males. The other striking feature is that the scatter of points in
Figures 6.2 and 6.3 is very different. While the data of Bruun et al demon-
strated a negative correlation between the two statistics, the Australian data
is positively correlated. Bruun et al stated, by visual inspection of their fig-
ure, that "differences as to dispersion between populations with similar levels
of consumption are quite small”. This conclusion is obviously quite inap-—

propriate for the Australian data.

6.3.3 Skewness All samples exhibit positive skewness (see Table A1), indi-
cative of the preponderance of light and medium drinkers in the samples.
(Most skewness coefficients are significantly greater than zero, however in
the present instance there is little interest in testing departure from normal-
ity). Comparisons within the one survey of corresponding agegroups for
males and females show that the skewness is greater for females than
males, with very few exceptions. The reason for this is that although both
male and female consumption is distributed over a similar range, the lower

mean consumption for females means that the distribution for females is more

"squashed” to the left than that for males.
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6.4 Fitted distributions

6.4.1 Introduction In Chapter 7 we show that the maximum likelihood esti-
mation of distributions from grouped data can be formutated as an iterated
weighted regression. The method requires specification of the first deriva-
tives of the class probabilities with respect to the parameters. The neces-
sary derivatives for fitting the two and three parameter lognormal distribution,

both untruncated and truncated, were given in Section 4.4,

Tables A2 to A24 give information about various lognormal and gamma
distributions fitted to 19 of the 21 data sets given in Chapter 5. All lognor—-
mal distributions were fitted using the above method. Programs were written
using Matlab (Moler, 1976) and run under the Unix operating system on a
DEC Vax 11/750 computer. Gamma distributions were fitted using the pro-

gram MLP (Ross, 1980), on the same computer.

The tables in the Appendix list, for each fit, the number of observa-
tions, the parameter estimates, the x2 goodness-of—fit statistic and the pro-
bability of its significance. The log-likelihood ratio 12 statistic (Fisher,
1950b), rather than the more usual Pearson statistic, has been used, since it
requires no pooling of the tail freguencies, which in this case are of consid-
erable interest (Bliss, 1967). Larntz (1978) has shown that the test tends to
be conservative in comparison with the Pearson statistic. Other information
has been omitted in the interests of trying to make a targe amount of infor-
mation more readable. The tables are not exhaustive, in that details of fits
of all possible lognormal and gamma distributions are not given for every
data set, although the two simplest models, the two parameter lognormal

and the gamma distributions, have been fitted to most agegroups for all data
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sets. For instance, in Table A9 (Busselton 1975, females) details are given
for fits of the two parameter lognormal to each agegroup, but only for
adults for the same distribution censored at 40 g alcohol/day. This is occa-
sionally because of the difficulty in finding adequate starting values for a
particular fit, but usually just because it was felt that including the extra
detail serves no useful purpose. In the particular case of Table A8, since
the (unrestricted) two parameter lognormal is an adequate representation of
the data in each agegroup, it was felt unnecessary to supply details for each
agegroup for the censored fit as well. (In fact, censored fits with non-
significant x2 values exist for all agegroups except ages 50-59, which does
not have enough class intervals to permit the censored distribution to be fit—-

ted.)

Before examining the fits we note that two data sets (Heyfield, Table
5.7; Sydney Hospital, Table 5.22) contain only three classes of consumers.
This is not enough to permit the fitting of a two parameter distribution. An
exponential distribution (one parameter) was fitted to both these data sets,
but the only fit which gave a non-significant x2 value was Heyfield males
aged over 65 (parameter value 0.123, xf = 0.79). This agegroup contains

only 28 observations, with one class interval containing only one of these.

In attempting to summarise the results of nearly 30 pages of tables
covering nearly 400 distributional fits, it is neither helpful nor of interest to
give a detailed description of each fit. Our primary interest is in the elucida—
tion of overall patterns. As a first stage we will ignore data about indivi-
dual agegroups, and consider fits to aggregate adult agegroups, where they

exist.
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6.4.2 Fits to aggregate adult groups Seven of the data sets contain only

four class intervals, permitting the fitting of only the two parameter lognor-
mal and the gamma distributions. Of these seven, neither specification gives
an adequate fit to the data from South East S.A. (Table AB), to the AWU
members, both sexes (Table A10), to the Medicheck data, again both male
and female (Table A11), to male data from the Geelong Beach study (Table
A12), or to male data from the North-west Melbourne study (Table A13).
Both distributions are acceptable as descriptions of the Geelong Beach female
data (Table A12), and both male and female data for the Townsville
residents (Table A24). The lognormal, but not the gamma distribution fitted
both year’s data from the Perth social drinkers (Table A2) and the opposite
situation held for the North—-west Melbourne females (Table A13). In cases
where neither specification fitted, neither the exponential nor the Weibull dis-
tributions could provide a better fit. Given the small numbers of class inter—
vals in all these data sets, it is impossible to try fitting models such as the
three parameter tognormal, or to fit a two parameter distribution to the data
with some of the lower classes censored. As we will see later, both of
these alternatives have merit if our interest lies predominantly in the upper

tail of the distributuion.

The remaining data sets (that is, the ones with five or more class inter—
vals), show no particular predisposition to either a two parameter iognormal
or gamma specification. Of the six data sets for females, three (Busselton
1975 and 1978, Tables A8 and A21, Queensland students, Table A23) are
adequately described by both the lognormal and gamma distributions, and
three (ABS, Table A18; Geelong School study, Table A15; Prahran, Table

A4) by neither. Both specifications fit the data for males from the surveys
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of Adelaide University (Table A19), RAAF trainees (Table A22) and Queens-
land students (Table A23), while for only one data set (ABS, Table A17)
will neither specification suffice. The lognormal but not the gamma describes
the male samples from the Geelong School survey (Table A14), Busselton
1975 (Table A8) and Prahran (Table A4); the reverse holds for the Busselton

1978 males (Table A20).

These data sets, however, do allow more freedom with the choice of a
specification. One possibility is to use a specification depending on more
than two parameters. A three parameter lognormal distribution gave a non-
significant wvalue of x2 for all adult samples mentioned above, except for

ABS males.

A second possibility is to use either a censored or a truncated two
parameter lognormal distribution. In fact the grouping of observations
amounts to a censoring of the distribution; what we consider here is to amal-
gamate the first two (or more if the number of class intervals permits) class
intervals, and refit the two parameter lognormal with the reduced number of
class intervals. In doing this, we are censoring information in the lower tail
without discarding it entirely, and might reasonably expect the fit to be more
dependent on the shape of the upper tail. On the other hand, truncation of
one or more of the lower class intervals, although leaving the fit more
dependent on the upper tail, discards much of the available information.
Graphically we can demonstrate the difference between the censored and
uncensored fits by means of a log-probability plot. Figure 6.4 shows a plot
for the ABS adult male data. The solid line represents the uncensored fit to
the data (12 = 236, P < 0.001). The points at the lower end of the line,

having greater weight, have an obvious influence on the fit of the
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distribution. Censoring the distribution at 50 g/day is equivalent to removing
from the plot the four points shown as circles in Figure 6.4. The censored
fit is represented by the dashed line. (12 = 9.8, P = 0.28). Thus censoring
the lower tail has improved the fit in the upper tail. The Appendix tables
show that in all cases, with appropriate choice of the point of censorship,
the data for adult males and females does not deviate significantly from a
censored two parameter lognormal distribution. A truncated two parameter
lognormal distribution also gave an adequate fit for those data sets for
which it was fitted. (ABS males and females, Tables A17, A18; Busselion

males, 1975 and 1978, Tables A8 and A20).

A note on terminology. A distribution which is neither censored nor
truncated we shall term "unrestricted” where it is necessary to distinguish it

from the other cases.

Other distributions which were tried on some of these data sets were a
censored gamma distribution, with moderate success (see, for example, Table
A7), and several with little or no success: exponential (one parameter),
Weibull (two parameters), beta type II (three parameters) and log-

hypergeometric (four parameters).

6.4.3 Fits to age subgroupings We return now to the problem of the age
subgroupings. In fitting a specification to a subpopulation, we quite often
find we are dealing with only a small sample size. We have already said
that the median size for an age x sex subpopulation in these data sets is
125. When it is considered that these observations have a positively skewed
distribution over several class intervals of alcohol consumption, it is not

surprising that some of the freguencies in the upper tail are very small.
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However for completeness, and in recognition of the fact that in some
instances interest will lie in a particular agegroup rather than in the total
population, Tables A2 to A24 list details of fits to individual agegroups in

many instances.

While we would expect that there may be differences between age-
groups in consumption patterns, it may be reasonable to assume that these
differences vary continuously over the age range of the population, without
any discontinuity. The model given in Section 4.5 allows us to assume a
lognormal distribution for each subpopulation, with the parameters having a

quadratic relation with age. Thus if t is the age in years, we can assume
= + a,t + t2
H =8 1 82
2

bo+b1t+b2t

and estimate the coefficients ai and bi from all the subpopulation data,

g

always providing there are enough agegroups for the quadratic fit. Substi-

tuting an appropriate value of t gives values for u and ¢ defining a lognor-

mal distribution for age t.

This model was fitted to several of the data sets (Tables A4, A8, AS,
A13, A14, A15, A17, A18, A20, A21, A22). Details given in these tables are
the equations for u and o, the overall 12 value for the fit, plus the
predicted fits at values of t corresponding to the actual age subgroups. The
overall xz value is the sum of the x2 values for the individual agegroups. In
only two cases (Busselton 1975 females, Table A9; RAAF outgoing recruits,
Table A22) was the overall 12 value non-significant; however in nine of the

other ten cases, all subgroups but one gave non-significant x2 values.
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Let us take the Busselton 1978 females (Table A21) as an example.
The model was fitted using data from all agegroups except 50-58 years, as
this agegroup contained only three class intervals. Note that the remaining
agegroups have differing numbers of class intervals, but all have a minimum

of four (Table 5.24). The fitted model gives

0.7298 + 0.0564t - 0.000505 t2

u

0.9150 + 0.0023¢ - 0.0000291‘2

o
(x2 = 18.99, P=0.030). Taking for example, t = 35, we find u = 2.086 and o
= 0.961, which defines a two parameter lognormal model for age 35 years.
A xz test of the probabilities predicted by this model and the data for the
agegroup 30-38 gives a value of x2 which is significant at P=0.046. However
there are no significant differences between the predicted models and the
data for any of the other agegroups, and we may be prepared to accept the
overall model, and use it as a basis for prediction. Figure 6.5 shows the

two fitted curves for u and o, and as a comparison, the values obtained by

fitting a two parameter lognormal distribution directly to each age group.

As an example of a possible predictive use, taking ¢t = 55, the model
provides a parametric estimate of the distribution of consumption in the 50-89
year agegroup. This is not estimable directly from the data. As another
example, we may have available data on the age distribution of the popula-
tion in five year class intervals. We could estimate the proportion of heavy
drinkers in each of these class intervals from the overall model, and combine
this information with the population estimates to get an estimate of the total

number of heavy drinkers in the population.

For the cases of the ABS males (Table A17) and Busselton 1975 males

(Table A8) the model has been fitted wusing a censored two parameter
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lognormal distribution. For the RAAF recruits, only the linear term was used

in the prediction of u and o.

6.4.4 The relation between the parameters of the two parameter lognormal

fits Following Ledermann’s (1956) work, it was assumed that there was
some sort of constant relationship between the parameters of the lognormal
distribution such that the proportion of heavy users is related to mean con-
sumption (for example, Skog, 1982). While this was often stated, it has

rarely been tested empirically. The current data presents an opportunity to

look at this relationship.

On Figure 6.6 are plotted the vailues of u and ¢ obtained from all the
unrestricted two parametric lognormal fits which gave non-significant x2
values when fitted to aggregate adult and aggregate youth samples. The
two sexes, and adult and youth samples, have been distinguished as shown
in the key to the figure. Inspection of the figure shows that values of u for
adult populations typically lie between 2 and 4, and for o, between 0.6 and
1.2. Youth populations tend to have lower values of u, and higher values
of o, than adult ones. There is little evidence of a relationship between u
and o in any one group, or overail. The one anomalous value for adult
females (u=0.5, 0=1.75) is from the Prahran survey (Tables 5.10 and A4).

There appears to be no particular reason for this.

6.4.5 Comparison of censored and truncated lognormal fits Where the data

have permitted, both censored and truncated lognormal distributions have
been fitted. It has been said above that, in the context of grouped data,
censoring information in the lower tail involves combining two or more of the

lower class intervals, and fitting a lognormal distribution to the resulting fre-
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quencies. This is in contrast to truncation, where we delete some of the
lower classea. We have supposed that both these procedures may result in a
fit downgrading the effect of the observations in the lower tail, and thus

depending more on the upper tail of the distribution.

One of the data sets (ABS males, Tables 5.21 and A17) had enough
class intervals to enable several censored and truncated distributions to be
fitted. Details are given in Table A17. An unrestricted lognormal distribution
did not fit the data at all well (x32 = 236), however for a point of censor-
ship or point of truncation at or above 40 grammes per day, adequate fits to
the data were obtained. The censored fit has two substantial advantages

over the truncated fit however.

All censored fits use 100% of the available data, in marked contrast to
the truncated fits. With a point of truncation at 40 grammes per day, only
24% of the data was used, and this percentage steadily declined: truncation
at 60 g/day used only 11% of the data, and at 80 g/day, less than 8% was

used.

Table 8.2

Comparison of censored and truncated distributions
Prediction of p(60) and p(80)

Data: ABS survey, males, all ages [Tables 5.21 and A17]

L censored at [ truncated at [
p(60) p(80) p(60) p(80)
20 11 .062 .154 .081
30 A1 .058 .207 .108
40 113 .058 .129 .068
50 .115 .0568 .062 .031
60 .113 .058 .045 .022
70 .110 .057 .101 .052

80 .105 .055 .381 .222
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The second advantage of the censored fit is the stability of the upper
tail produced by successive censorship of class intervals, compared with
similar truncated fits. Table 6.2 shows predicted proportions of the tail
above both 60 and 80 g/day. Over the whole range of points of censorship
used, the predicted proportions of consumers drinking more than 60 and 80
g/day remained at approximately 0.11 and 0.06 respectively, although there
is some variation. There is a slight reduction in the p(80) values with increas-
ing censorship, and as the point of censorship increases the p(60) values ini-
tially increase, but then decrease for censorship at levels greater than 50
g/day. By contrast the similar proportions for the truncated distributions

show no such stability.

6.4.86 Comparison of censored and _uncensored lognormal fits We have

already shown (Figure 6.4) the effect of fitting a censored rather than an
uncensored distribution to one set of data, but in that case, the uncensored
distribution did not give an acceptable fit to the data. It is of interest to
examine the effect of censoring on those data sets for which both censored
and uncensored lognormal distributions gave fits with non-significant 12
values. This is done in Figure 6.7, where the plotted points represent the
parameters of the uncensored distribution. Male and female samples are
represented with crosses and circles respectively. From each of these points
a line has been drawn to the position of the parameters of the censored dis-
tribution. Superimposed on Figure 6.7 is the fan of contours of p(80), the
proportion of consumers drinking in excess of 80 g/day. The contours are

taken from Figure 4.8, and are given for p(80) = 0.1, 0.05, 0.01 and 0.001.

The effect of censoring the distribution is to move the values of u and

o a small distance, almost parallel to the contours, but in most cases
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moving slightly in the direction of increased p(80). That is, if both the cen-
sored and uncensored fits give adequate fits to the one data set, the cen-
sored fit has usually predicted a slightly greater percentage of heavy users
than has the uncensored fit. The notable exception on the figure is for the
Geelong school survey males, the only youth sample included. By comparison
of the changes shown in Figure 6.7 with the scatter associated with y and o
shown in Figure 6.6, we note that censoring the distribution has caused small

rather than gross changes in the values of the parameters.
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6.5 Mean consumption and proportion of heavy consumers

The early applications of Ledermann’s work assumed a mathematical
relationship between the mean consumption and the proportion of excessive
users (see Chapter 2). Subsequently, following the research which lead up to
the report of Bruun et al (1975), this relationship was supposed to hold only
approximately, and alcohol control policies have been based on an observed
empirical relationship between mean consumption and excessive consumption.

We now examine the nature of this relationship for the Australian data.

An immediate problem is what values of mean consumption and propor-

tion of excessive users to use. There are two candidates:
i. non-parametric estimates obtained directly from the data

ii. parametric estimates obtained from distributions fitted to the data
Parametric estimates have the advantages of smoothing the grouped frequen-—
cies and being less sensitive to sampling errors. Additionally, estimates of
tail probabilities may not be available directly from the data. Assuming that
there exists a distribution which provides an "adequate™” fit to the data, we
prefer estimates based on it. Our approach has been to estimate the mean
consumption from an unrestricted fit, and the proportions of heavy consumers
from a censored fit, where these are both available (that is, there are
enough class intervals to fit both forms of the distribution, and both have x2
values which are non-significant at P = 0.05), since in estimating the mean
we are interested in using all the data, while in estimating the proportion of
heavy consumers we require a mode of inference which concentrates on the
upper tail. Where both two and three parameter lognormal fits are available,

estimates from the two parameter fit have been used, since in general they



"Best estimate” of proportions of consumers
with consumption in excess of 60 and 80 g/day
(Samples are adults unless otherwise stated)

Table 6.3

141

Sample source of estimates mean p(80) p(80)
mean/heavy consumers (g/day)
Females
Prahran 3LN/C2LN 14.0 .019 .013
Busselton 1975 2LN/C2LN 17.5 .035 .016
AWU members NP /NP 10.1 = .003
Medicheck 1975 NP /NP 16.9 o .0086
Medicheck 1976 NP/NP 15.4 . .004
Geelong beach (youth) 2LN/2LN 12.8 .030 .017
Geelong beach NP/NP 21.8 .019 -
NW Melbourne NP/NP 9.3 = .001
Geelong school (youth) 2LN/C2LN 6.7 .004 .002
ABS 2LN/C2LN 11.2 011 .004
Busseliton 1978 2LN/C2LN 13.9 .014 .004
Qld. h—-s students 2LN/C2LN 10.5 .008 .003
Townsville 2LN/2LN 20.9 .048 .022
Males
Perth 1965-66 2L N/2LN 109.5 .490 .389
Perth 1978-79 2LN/2LN 82.5 .A33 .322
Prahran 2LN/C2LN 34.2 .144 .093
Busselton 1975 2LN/C2LN 25.6 .072 .033
AWU members 2LN/2LN 17.8 044 .023
Medicheck 1975 NP /NP 26.7 - .048
Medicheck 1976 NP /NP 25.8 = .041
Geelong beach (youth) NP/NP 34.3 .193 -
Geelong beach NP/NP 42.9 331 -
NW Melbourne (youth) 2LN/2LN 15.4 .049 .034
NW Melbourne NP /NP 25.9 - .072
Geelong school (youth) 2LN/C2LN 1.7 .020 .010
ABS NP/C2LN 28.6 .115 .058
Adelaide Uni. 2LN/C2LN 9.0 .003 .001
Busselton 1978 3LN/C2LN 26.3 .098 .048
RAAF incoming 2LN/C2LN 25.4 .078 .035
RAAF outgoing 2LN/C2LN 32.4 121 .063
Qld h—-s students 2LN/C2LN 21.0 .063 .035
Townsville 2LN/2LN 54.2 .312 .181
Mixed
SE SA NP /NP 10.2 = .008
Road crash victims 2LN/C2LN 25.6 - .078

wilt have lower standard errors than those based on the three parameter fit.
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Table 6.3 lists the estimates, together with their sources. The follow-

ing abbreviations are used for the sources of the estimates:

2LN: two parameter lognormal distribution
3LN: three parameter lognormal distribution
C2LN: censored two parameter lognormal distribution

NP: non-parametric

The relationship of the proportion of females drinking more than 60 g/day
[p(60)] and more than 80 g/day [p(80)] to the mean consumption is illus-
trated in Figures 6.8 and 6.9 respectively. Parametric estimates are shown in
circles, while non—parametric ones are shown as crosses. Figures 6.10 and
6.11 present similar data for males, but with very different scales to the
previous two figures. Because of these scale differences the data for both

sexes is combined in Figures 6.12 and 6.13.

We note firstly that there is no consistent difference between the
parametric and non-parametric estimates. This can be further checked by
comparing the parametric estimates of Table 6.3 with non-parametric ones
derived from the data given in Chapter 5, and again there is no consistent

pattern of differences.

There is an obvious relationship between proportion of heavy users and
mean consumption. Over the ranges of data present for females, the rela-
tionship is linear, and described by the regressions (letting x = mean con-

sumption in g/day)

p(60) = -0.0097 + 0.002132 x

standard errors. 0.0113, 0.000748;, Fisher’'s A = 47.0%, n

]
©

p(80) = -0.0092 + 0.001290 x
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Figure 8.8 'Best estimate’ of p(60) - females. Figure 6.0 ‘Best estimate’ of p(80) - females.
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Figure 8.10 "Best estimate’ of p(80) - males. Figure 8.11 ‘Best estimate’ of p(80) - males.
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standard errors: 0.00531; 0.000385; Fisher’'s A = 48.3%;, n = 12
These regressions are plotted on Figures 6.8 and 6.9, together with a 95%
confidence interval for one extra observation. There was no significant evi—

dence of curvilinear behaviour.

The data for mates however extends over a much greater range of
mean values and there is evidence of slight curvature in the relationships.
Cubic polynomials were fitted to both p(80) and p(80) data, with the follow-
ing results

p(60) = -0.0623 + 0.00529 x + 0.0000618 x2 - 0.000000582 x3

standard errors: 0.0481, 0.00360, 0.0000760, 0.000000448;
Fisher's A = 94.2%;, n = 16
p(80) = 0.0058 - 0.00068 x + 0.0001053 x2 - 0.000000613 x3
standard errors. 0,0147, 0.00108, 0.0000224, 0.000000132;
Fisher's A = 99.0%, n = 17
These are plotted on Figures 6.10 and 6.11, together with a 95% confidence

interval.

Similar regressions describe the data from both sexes together, and
these are plotted on Figures 6.12 and 6.13.

p(60) = -0.0414 + 0.00331 x + 0.0001035 )(2 - 0.000000826 x3

standard errors. 0.0275, 0.00238, 0.0000547, 0.000000336;
Fisher's A = 95.0%;, n = 25

2 0.000000565 x°

p(80) = -0.00476 - 0.000032 x + 0.0000950 x
standard errors. 0.00820, 0.000733, 0.0000173, 0.000000108;
Fisher's A = 98.6%, n = 31

While these regressions include a cubic term, in practical terms, over the
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usual range of mean values, say up to 50 g/day, the relationship is essen-

tially guadratic.
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6.6 Discussion

Over the last thirty years, there has been interest in fitting statistical
distributions to alcohol consumption data. While the main interest has revolved
around the use of the two parameter lognormal distribution, other distribu—
tions, such as the gamma distribution, have been considered. But in all the
attempts, there has seldom been any explicit recognition of the inference to
be made from use of a particular specification. This has resulted in various

conflicts of interest.

Despite a declining interest in recent years in the explicit fitting of dis—
tributions, it is still useful in a variety of situations, among the most impor—
tant being to judge the effect of alcohol control policies on heavy consump-

tion.

In this chapter we have shown that when our main interest lies in infer—
ence about the upper tail of the distribution, the conventional unrestricted
two parameter distribution may not be a suitable choice of model. This is
because, on the logarithmic scale, the distribution demands a strict symmetry,
and so the shape of the upper tail is constrained to correspond to the shape
of the lower tail. We have suggested that better models for this purpose
may result from censoring the lower tail of the distribution, or from adding a
third parameter to the distribution, both of which measures we would expect,
heuristically, to leave the observations on heavy drinkers more free to deter-

mine the upper tail.

We have shown that for those data sets containing enough class inter-—
vals, the censored two parameter lognormal distribution gives a good fit to

the upper tail, and have used these facts to examine the relationship
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between mean consumption and prevalence of heavy drinkers, showing that
over the common range of mean consumptions, the relationship is approxi-

mately quadratic.

However the fact that there is an empirical relationship between propor—
tion of heavy consumers and mean consumption derived from about twenty
Australian surveys is not necessarily applicable directly to changes over time

within the one population.

The data considered does however contain some information on longitu-
dinal changes. Both the Busselton surveys (1975 and 1978) and the Medicheck
surveys (1875 and 1976) contain information for both sexes, and additionally
the surveys of Perth social drinkers (1965-66 and 1978-79) and the RAAF
recruits (ingoing and outgoing) contain information on male drinkers. Details of
mean consumption and proportion of heavy users for these surveys are con-—
tained in Table 6.3. In all cases, the changes in mean consumption and pro-
portions of heavy use are in in the same direction, four showing decreasing
consumption and two surveys showing increasing consumption. Thus we do
have some evidence that, under the conditions prevailing in these particular
populations, mean consumption and proportion of heavy consumers both

increase and decrease together.

But it is important to remember that values of both mean consumption
and proportion of heavy drinkers are the results of drinking habits of the
population, and are not variables which can be directly changed. Any change
in the drinking habits of the population will be reflected by changes in both

these statistics.
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Without a thorough examination of the conditions under which these
changes in drinking habits occurred, it is not possible to infer directly from
these results to public health policies aimed, say, at reducing mean consump-
tion in the hope that excess consumption will also decline. To do this, it
would be necessary to know that the observed changes have resulted, via
changes in drinking habits, from such things as, for example, price increases
and reduced availability of beverage outlets, rather than representing random

fluctuations in drinking habits.
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Details of fitted distributions
Table A1

Sample statistics — consumers
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sample no of s.d.
Sample R mean skewness
size classes (log)

Heyfield [Table 5.7]
male youths (14-21) 37 3 11.7 1.19 1.84
males 22-64 402 3 23.0 1.29 0.38
males 65+ 28 3 11.2 0.88 2.07
male adults (22+) 430 3 22.2 1.29 0.46
female youths (14-21) 24 1 2.7 = -
females 22-64 241 3 8.6 0.79 2.69
females 65+ 17 3 23.5 1.58 0.18
female adults (22+) 258 3 9.5 0.91 2.44

Perth social drinkers [Table 5.8]
males 1965-66 287 4 77.3 1.23 0.56
males 1978-79 253 4 68.7 1.19 0.87

Alcoholism clinic [Table 5.9]
males 143 10 226.7 0.40 1.15
females 28 6 166.1 0.32 1.33

Prahran [Table 5.10]
male youths (10-19) 42 4 11.1 0.83 5.06
males 20-29 201 4 30.3 1.13 1.43
males 30-39 119 4 31.1 1.15 1.41
males 40-49 90 4 32.5 1.10 1.50
males 50-59 76 4 27.1 1.09 1.65
males 60-69 66 4 37.7 1.27 0.99
males 70+ 40 4 22.3 1.04 2.00
male adults (20+) 592 5 32.4 1.14 1.90
female youths (10-19) 63 2 6.2 0.39 29.98
females 20-29 217 4 111 0.62 4.94
females 30-39 84 4 16.8 0.85 3.05
femailes 40-49 70 4 15.9 0.87 3.13
females 50-59 88 3 15.2 0.86 1.79
females 60-69 56 4 13.4 0.78 4.02
females 70+ 55 2 7.2 0.73 3.63
female adults (20+) 570 5 13.5 0.76 4.70
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Sample statistics — consumers
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sample no of s.d.
Sample i mean skewness
size classes (log)

Bourke aborigines [Table 5.11]
male youths (10-19) 16 3 16.3 1.08 1.78
males 20-29 48 6 98.4 1.20 -0.18
males 30-39 35 6 90.68 1.52 0.15
males 40-49 15 6 134.3 0.59 -0.33
males 50+ 18 6 117.2 1.14 -0.03
male adults (20+) 109 6 100.6 1.29 0.08
females 20-29 13 3 27.3 1.05 0.71
females 30-39 6 5 45.8 1.72 1.30
females 40-49 g 4 26.7 1.10 2.863
females 50+ 6 5 53.3 1.82 0.93
female adults (20+) 34 5 35.4 1.24 1.85

South East of SA {[Table 5.12]
all persons 523 4 10.2 0.58 5.65

Road crash victims [Table 5.13]
BAC < 0.049 134 6 156.7 1.27 3.52
BAC > 0.05 77 6 42.9 1.07 1.26
all 211 6 25.6 1.41 2.08

Busselton, WA, 1975 [Table 5.14]
males < 30 234 6 21.7 0.79 2.26
males 30-39 203 6 24.5 0.88 2.25
males 40-49 190 6 24.0 0.85 2.41
males 50-59 199 6 25.8 0.91 1.94
males 60-69 178 6 27.1 0.91 1.91
males 70+ 121 8 26.9 0.95 1.90
male adults ({30+) 1135 6 25.1 0.89 2.03
femates < 30 154 6 16.0 0.35 4.35
females 30-39 129 6 17.1 0.48 4.20
females 40-49 147 6 17.6 0.53 3.79
females 50-59 148 4 18.6 0.64 2.30
females 60-69 109 6 23.0 0.84 2.15
females 70+ 53 6 20.6 0.71 3.09
female adults (<30+) 740 6 18.4 0.60 3.35

AWU members [Table 5.15]
males 2662 4 19.8 0.95 2.60
females 5074 4 10.1 0.53 4.51
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Sample sample gy mean s.d. skewness
size classes (log)
Medicheck screenings [Table 5.16]
males 1975 3653 4 26.7 0.93 2.17
males 1976 5956 4 25.8 0.95 2.14
females 1975 1816 4 16.9 0.82 2.90
females 1976 34486 4 15.4 0.79 2.80
Geelong beach survey [Table 5.17]
males 10-14 28 2 19.2 0.71 11.85
males 15-19 355 4 35.5 0.93 1.34
males 20-24 105 4 45.6 1.09 0.52
males 25+ 55 4 37.9 1.00 1.22
male youths (10-19) 383 4 34.3 0.90 1.45
male adults (20+) 160 4 42.9 1.07 0.74
females 10-14 28 2 18.2 0.43 56.48
females 15-19 256 4 19.2 = 7.70
females 20-24 74 3 23.5 0.39 2.84
females 25+ 30 2 17.0 < =
female youths (10-19) 284 4 19.1 = 8.15
female adults (20+) 104 3 21.6 - 4.11
North West Melbourne [Table 5.18]
male youths (15-19) 91 4 15.1 0.90 2.82
males 20-29 208 4 21.7 1.13 1.81
males 30-39 172 4 25.0 1.18 1.56
males 40-49 165 4 33.7 1.35 0.94
males 50-58 M7 4 25.3 1.17 1.58
males 60-69 78 4 27.2 1.25 1.35
males 70+ 32 4 19.2 1.07 2.15
male adults (20+) 782 4 25.9 1.21 1.48
female youths (15-189) 85 2 5.6 = —
females 20-29 200 4 8.8 0.37 5.10
females 30-39 148 3 8.9 0.43 3.92
females 40-49 129 3 10.7 0.75 2.90
females 50-59 106 3 9.1 0.49 3.94
females 60-69 60 3 9.5 0.52 3.55
females 70+ 39 2 6.2 0.41 26.87
female adults (20+) 683 4 9.3 0.45 4.34
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(continued)

Sample statistics — consumers

Sample sample no of mean S0 skewness
size classes (log)

Geelong school survey [Table 5.19]
males 14 307 6 9.3 0.71 4.30
males 15 A96 6 12.3 0.89 3.32
mates 16 371 6 13.4 0.90 3.35
males 17 182 6 13.8 0.90 3.09
males 18 52 5 15.7 0.85 2.53
male youths (all) 1424 6 12.3 0.87 3.40
females 14 233 6 6.9 0.44 7.30
females 15 386 5 7.4 0.53 5.67
females 16 292 5 7.8 0.55 5.83
females 17 178 A 8.2 0.64 2.59
females 18 24 2 5.3 0.52 9.40
female youths (all) 1127 6 7.5 0.54 5.82

Newcastle alcohol abusers [Table 5.20]
all persons 100 13 233.5 0.42 2.66

ABS survey [Table 5.21]
males 18-24 1064 9 26.9 1.09 1.12
males 25-44 2618 15 29.5 1.11 2.39
males 45-64 17563 11 28.5 1.11 1.33
males 65+ ABA 9 17.8 1.00 1.83
male adults (18+) 5897 15 28.8 1.12 2.55
females 18-24 757 7 10.5 0.68 2.99
females 25-44 1765 7 11.2 0.73 2.78
females 45-64 1100 7 12.5 0.81 2.26
females 65+ 345 7 9.6 0.60 3.61
female adults (18+) 3966 7 11.3 0.74 2.70

Sydney Hospital Health Service [Table 5.22]
males 10474 3 22.1 1.10 0.20
females 3962 3 13.7 0.83 1.14

Adelaide University students [Table 5.23]
males 108 5 8.9 0.52 3.23
females A6 3 7.0 0.12 4.81
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sample no of s.d.
Sample i mean skewness
size classes (loq)
Busselton, WA, 1978 [Table 5.24]
males <30 249 6 28.6 0.95 1.88
males 30-39 237 6 25.2 0.89 1.97
males 40-49 205 6 27.3 0.95 1.90
males 50-59 210 6 31.9 1.04 1.26
males 60-69 202 <] 28.3 0.99 1.57
males 70+ 158 6 22.9 0.83 2.51
male adults ({30+) 1260 6 27.5 0.95 1.78
females < 30 201 4 13.6 - 6.13
females 30-39 203 5 13.6 - 6.03
females 40-49 188 4 16.0 0.37 3.36
females 50-59 181 3 16.9 0.53 2.29
females 60-69 168 6 18.5 0.60 3.29
females 70+ 80 4 13.8 = 6.02
female adults (<£30+) 1001 6 15.4 0.25 4.25
RAAF recruits [Table 5.25]
incoming 17-20 260 5 23.3 0.30 3.37
incoming 21-25 107 5 30.2 0.79 1.89
incoming 26+ 70 5 27 .1 0.62 2.31
incoming adults (atl) 444 5 25.6 0.54 2.65
outgoing 17-20 286 5 29.7 0.76 1.96
outgoing 21-25 121 5 30.7 0.81 1.75
outgoing 26+ 73 5 34.1 0.91 1.40
outgoing adults (all) 491 5 30.6 0.80 1.81
Queensland human—service students [Table 5.26]
males 684 5 20.9 0.75 2.36
females 583 5 13.2 - 7.54
Townsville residents [Table 5.27]
male youths (15-17) 6 2 26.6 1.06 7.20
males 18-24 35 4 53.1 0.97 1.23
males 25-44 44 4 56.4 1.08 0.74
males 45-48 19 4 43.2 0.92 1.78
males 65+ 12 3 43.3 0.95 1.00
male adults (18+) 110 4 51.6 1.01 1.07
female youths (15-17) 2 1 20.0 - -
females 18-24 23 4 27.0 - 5.79
females 25-44 26 2 23.0 - -
females 45-64 18 2 28.8 1.16 3.75
females 65+ 9 2 24.4 0.61 27.04
female adults (18+) 76 4 25.8 = 9.01




Table A2

Details of fitted distributions
Perth "social drinkers” [Table 5.8]

Sample n parameter estimates xz df prob

two parameter lognormal (u,0)
males 1965-66 287 4.067, 1.121 0.28 1 .594
males 1978-79 253 3.927, 0.986 0.81 1 .367

gamma (a,pB)
males 1965-66 287 0.964, 92.937 3.02 1 .082
males 1978-79 253 1.104, 66.445 4.51 1 .034

153



Table A3

Details of fitted distributions
Alcoholism Clinic [Table 5.9]

Sample n parameter estimates X df prob
two parameter lognormal (u,o0)

males 143 5.344, 0.404 33.81 6 <.001

females 28 5.056, 0.333 19.18 2 <.001
two parameter lognormal, censored below 200 g/day

males 143 5,366, 0.393 8.78 § .118

females 28 5.098, 0.361 0.57 1 .450
three parameter lognormal (u,o0,7)

males 143 4,788, 0.685, 78.951 25.94 5 <.001
gamma (a,B)

males 143 6.142, 37.010 42.42 7 <.001

females 28 8.685, 19.164 21.83 3 <£.001
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Table A4

Details of fitted distributions
Prahran [Table 5.10]

Sample n parameter estimates x2 df prob

two parameter lognormal (u,0)

mates 20-28 201 2.817, 1.190 1.43 1 .232
males 30-39 119 2.834, 1.236 0.17 1 .680
males 40-48 90 2.950, 1.152 1.65 1 .199
males 50-59 76 2.701, 1.119 1.13 1 .289
males 60-69 66 3.017, 1.805 1.78 1 .183
males 70+ 40 2.458, 1.091 0.76 1 .382
male adults (20+) 592 2.816, 1.198 2.71 2 .258
females 20-29 217 1.668, 0.990 4.75 1 .029
females 30-39 84 1.646, 1.587 5.2 1 .021
females 40-49 70 2.078, 1.031 0.03 1 .856
females 60-69 56 1.770, 1.130 0.81 1 .367
female adults (20+) 570 1.800, 1.080 7.46 2 .024
two parameter lognormal, censored below 40 g/day
male adults (20+) 5982 2.914, 1.110 1.61 1 .205
female adults (20+4) 570 0.506, 1.737 2.11 1 .1486
three parameter ltognormal (u,0,T)
male adults (20+) 592 3.063, 1.035, -3.877 1.30 1 .253
female adults (20+4) 570 -0.144, 1.975, 7.875 2.48 1 .115
gamma (a,B)
males 20-29 201 0.780, 37.994 0.26 1 .610
males 30-39 119 0.740, 42.052 0.77 1 .380
males 40-49 g0 0.859, 38.153 5.84 1 .016
males 50-58 76 0.816, 31.066 0.00 1 >.999
males 60-69 66 0.543, 86.655 4.54 1 .033
males 70+ A0 0.754, 26.261 0.04 1 .842
male adults (20+) 592 0.723, 42.974 7.61 2 .023
females 20-29 217 0.490, 16.173 8.90 1 .003
females 30-39 84 0.289, 52.329 8.86 1 .047
females 40-49 70 0.647, 20.080 0.75 1 .387
females 60-869 56 0.455, 22.779 2.06 1 .151
female adults (20+) 570 0.464, 22.437 21.83 2 <£.001
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Details of fitted distributions

Prahran [Table 5.10]
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Sample n parameter estimates x2 df prob
two parameter lognormal with covariance on t = age in years
male adults (20+) 592 u=2.1954 + .0331t - .00038t§
o =1.0019 + .0083t - .00006¢ 17.70 6 .007
t=25 2.784, 1.168 1.66 1 .197
t=35 2.887, 1.213 0.36 1 .546
t=45 2.812, 1.244 2.16 1 .142
t=55 2.862, 1.283 3.66 1 .055
t=65 2.735, 1.269 8.09 1 .005
t=75 2.532, 1.262 1.76 1 .185
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Details of fitted distributions
Bourke aborigines [Table 5.11]
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Sample n parameter estimates x2 df prob

two parameter lognormal (u,o)
males 20-29 A1 4,241, 1.058 37.77 3 <£.001
males 30-39 35 3.949, 1.511 27.59 3 <.001
males 40-49 15 4.831, 0.548 3.88 2 167
males 50+ 18 4,585, 1.259 1.73 3 .630
male adults (20+) 109 4,248, 1.241 53.89 3 <.001
female adults (20+) 34 2.821, 1.398 0.47 2 .790

two parameter lognormal, censored below [ g/day
male adults (20+) 109  4.563, 0.585 (L =80)

female adults (20+4) 34 2.768, 1.452 (£ =40)

gamma (a,B8)

males 20-29 A8 1.422, 69.492
males 30-39 35 0.765, 126.103
mates 40-49 15 4,280, 32.425
males 50+ 18 1.126, 129.366
male adults (20+) 109 1.104, 97.561

female adults (20+) 34 0.571, 64.185

gamma, censored below [ g/day
male adults (20+) 108 2.839, 38.595 (L =80)
female adults (20+) 34 0.338, 105.820 (L = 40)

5.16 1 .023
0.46 1 .499

23.32 3 <.001
17.32 3 <.001
2.27 3 .518
0.65 3 .885
28.18 3 <.001
1.76 2 .A14
3.07 1 .080

0.79 1 .374
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Table AB

Details of fitted distributions
South East of South Australia [Table 5.12]

Sample n parameter estimates X df prob
two parameter lognormal (u,0)
all persons 523 1.674, 0.957 7.95 1 .005

gamma (a,B)
all persons 523 0.546, 13.900 20.10 1 <.001
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Table AT

Details of fitted distributions
Road crash victims [Table 5.13]

Sample n parameter estimates x2 df prob

two parameter lognormal (u,o0)

BAC < .049 134 1.368, 1.798 7.26 3 .064

BAC > .05 77 3.301, 1.008 4.24 2 .120

all 211 2.088, 1.774 22.85 3 <.001
two parameter lognormal, censored below 40 g/day

BAC > .05 77 3.473, 0.812 1.82 1 ATT

all 211 2.739, 1.087 1.95 1 .163

three parameter lognormal (u,o,7)
BAC < .049 134 2.067, 1.213, —-2.436 0.59 2 774

all 211 2.727, 1.142, -3.840 2.62 2 .270
gamma (a,8)

BAC < .049 134 0.422, 32.765 3.7 3 .290

BAC > .05 77 1.165, 35.785 0.79 3 .148

all 211 0.510, 47.237 0.96 3 .811
gamma, censored below 40 g/day

BAC < .049 134 0.128, 78.493 0.02 1 .888

BAC > .05 77 1.160, 35.881 0.79 1 .374

all 211 0.447, 52.411 0.717 1 .399
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Details of fitted distributions

Busselton 1975, males [Table 5.14]
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Sample n parameter estimates 12 df prob
two parameter lognormal (u,0)
ages < 30 234 2.708, 0.854 6.13 3 .105
ages 30-39 203 2.863, 0.843 2.58 3 .481
ages 40-49 190 2.928, 0.738 10.94 3 .012
ages 50-59 199 2.959, 0.791 5.38 3 .146
ages 60-68 178 3.065, 0.715 1.32 3 .724
ages 70+ 121 2.891, 0.928 2.24 3 .525
adults (<30+) 1135 2.911, 0.8186 3.58 3 .31
two parameter lognormal with covariance on t = age in years
adults ({30+) 1135 M=2.0864 + ,0309¢t - .00026t§
0 =1.3213 - .0227t + .00022¢ 32.40 18 .020
t=25 2.895, 0.894 6.42 3 .083
=35 2.848, 0.801 3.26 3 .353
t=45 2.948, 0.753 11.22 3 .o
t=55% 2.997, 0.750 5.87 3 .18
t=65 2.8993, 0.791 3.09 3 .377
t=75 2.937, 0.877 2.54 3 .468
two parameter lognormal, censored below 40 g/day
ages < 30 234 2.981, 0.670 3.05 2 .218
ages 30-39 203 2.840, 0.860 2.56 2 .278
ages 40-49 190 2.974, 0,703 10.84 2 .004
ages 50-59 198 3.101, 0.683 4.03 2 .133
ages 80-69 178 3.054, 0.723 1.32 2 .518
ages 70+ 121 2.861, 0.951 2.21 2 .330
adults (<30+) 1135 2.995, 0.753 1.51 2 .4869

two parameter lognormal,

adults (£30+)

t=25
t=35
t=45
t=55
t=65
t=75

1135

M =2.4808 + .0208¢ - .00020t§

o=1.0474 - ,0158¢ + .00018¢ 27.35
2.877, 0.766 3.78
2.967, 0.717 4.05
3.017, 0.704 11.19
3.028, 0.727 4.35
2.999, 0.786 1.60
2.931, 0.881 2.37

MNNNMDNNDND

censored below 40 g/day, with covariance on ¢

.007
.1561
.132
.004
.13
.449
.306




Table A8
(continued)

Details of fitted distributions
Busselton 1975, males [Table 5.14]

Sample n parameter estimates 12 df prob
two parameter lognormal, truncated below 20 g/day
ages < 30 85 3.424, 0.544 3.01 2 .223
ages 30-39 89 2.621, 0.930 2,51 2 .288
ages 40-49 88 2.799, 0.785 10.91 2 .004
ages 50-59 95 3.332, 0.623 4.41 2 .110
ages 60-69 96 2.981, 0.749 1.29 2 .524
ages 70+ 85 2.859, 0.901 2.23 2 .328
adults (<30+) 518 3.181, 0.703 1.89 2 .388
three parameter lognormal (u,o,t)
ages < 30 234 4.093, 0.363, -48.039 2.96 2 .227
ages 30-39 203 2.684, 0.929, 3.091 2.50 2 .287
ages 40-49 190 2.758, 0.813, 3.020 10.85 2 .004
ages 50-59 199 3.452, 0.581, -12.606 4,50 2 .101%
ages 60-69 178 2.965, 0.761, 2.010 1.29 2 .526
ages 70+ 121 2.991, 0.878, -2.019 2,22 2 .328
adults ({30+) 1135 3.218, 0.679, -6.911 2.04 2 .360
gamma (a,B)
ages < 30 234 0.849, 21.093 3.20 3 .362
ages 30-39 203 1.054, 22.321 65.40 3 .145
ages 40-49 190 1.392, 16.824 14.35 3 .003
ages 50-59 199 1.257, 19.956 5.10 3 .165
ages 60-69 178 1.588, 16.866 3.80 3 .284
ages 70+ 121 0.905, 28.555 2.69 3 .442
adults (<30+) 1135 1.154, 21.026 6.43 3 .093
gamma, censored below 40 g/day
ages < 30 234 1.144, 18.532 2.86 2 .239
ages 30-39 203 0.691, 30.294 3.567 2 .168
ages 40-49 190 1.028, 20.921 13.56 2 .001
ages 50-59 199 1.218, 20.416 5.09 2 .079
ages 60-69 178 1.070, 22.645 1.88 2 .372
ages 70+ 121 0.612, 38.241 1.39 2 .499
adulits (<30+) 1135 0.958, 24.073 4.5 2 ,126
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Busselton 1975, females [Table 5.14]

Table A9

Details of fitted distributions

182

Sample n parameter estimates X df prob
two parameter lognormal (u,o0)
ages < 30 154 2.261, 0.906 3.03 2 .220
ages 30-39 129 2.276, 0.975 3.00 2 .223
ages 40-48 147 2.325, 0.970 2.82 2 .244
ages 50-58 148 2.631, 0.771 0.08 1 .778
ages 60-69 109 2.779, 0.855 1.90 3 .594
ages 70+ 53 2.155, 1.320 2.87 2 .238
adults (<30+) 740 2.443, 0.917 3.22 3 .360
two parameter lognormal with covariance on t = age in years
adults ({30+) 740 u=0.9732 + .05683¢ - .00050t§
o=1.7720 - .03969¢ + .00042¢ 20.83 12 .083
t=2%5 2.082, 1.042 3.90 2 .142
t=35 2.350, 0.896 3.28 2 .194
t=45 2.518, 0.834 4.58 2 .101
t=55 2.588, 0.857 0.74 1 .390
t=65 2.557, 0.963 4,74 3 .192
=75 2.426, 1.152 3.59 2 .166
two parameter lognormal, censored below 40 g/day
adults (<304 740 2.533, 0.862 2.87 2 .238
three parameter lognormal (u,o,Tt)
ages < 30 154 2.927, 0.661, —-11.988 2.84 1 .092
ages 30-39 129 0.426, 1.833, 14.160 1.73 1 .188
ages 40-49 147 2.127, 1.065, 2.605 2.80 1 .094
ages 60-69 109 3.920, 0.422, -36.396 0.60 2 .742
ages 70+ 53 0.852, 1.978, 10.972 2.56 1 .110
adults (<30+4) 740 2.572, 0.863, -2.045 3.16 2 .208
gamma (a,B)
ages < 30 154 0.629, 19.865 3.17 3 .368
ages 30-39 129 0.549, 24.919 5.40 3 .145
ages 40-49 147 0.587, 24.5186 4.07 3 .254
ages 50-59 148 1.135, 15.184 0.07 1 .791
ages 60-69 109 0.992, 21.782 0.71 3 .87
ages 70+ 53 0.348, 50.228 3.82 3 .282
adults (<304+) 740 0.698, 22.457 6.94 3 .074
gamma, censored below 40 g/day
adults (<30+) 740 0.514, 27.255 5.43 2 .066
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Table A10

Details of fitted distributions
AWU members [Table 5.15]

Sample n parameter estimates xz df prob

two parameter lognormal (u,o)
males 2662 2.370, 1.008 3.78 1 .052
females 5074 1.680, 0.864 28.59 1 <.001

gamma (a,B)
males 2662 0.801, 21.492 49.15 1 <.001

females 5074 0.604, 11.534 59.47 1 <.001
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Table A11

Details of fitted distributions
Medicheck screenings [Table 5.16]

Sample n parameter estimates X df prob
two parameter lognormal (y,0)
males 1975 3653 2.822, 0.887 24.32 1 <.001
males 1976 5956 2.766, 0.907 8.19 1 .004
females 1975 1816 2.348, 0.742 6.73 1 .010
females 19786 3448 2.248, 0.736 7.90 1 .005
gamma (a,B)
males 1975 3653 1.258, 19.500 150.53 1 <.001
males 1976 5956 1.183, 19.876 144.65 1 <.001
females 1975 1816 1.328, 10.422 30.23 1 <.001
females 1976 3446 1.262, 9.777 38.39 1 <.001
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Table A12

Details of fitted distributions
Geelong beach survey [Table 5.17]

Sample n parameter estimates 12 df prob

two parameter lognormal (u,0)

male youths (10-19) 383 3.127, 0.979 12.48 1 <.001
males 15-19 355 3.180, 0.972 13.46 1 <.001
males 20-24 105  3.540, 0.926 23.87 1 <.001
males 25+ 55 3.184, 1.122 1.19 1 274
male adults (20+) 160 3.430, 0.990 22.68 1 <.001
female youths (10-19) 284 1.819, 1.207 0.14 1 .708
females 15-19 256 1.890, 1.298 0.03 1 .871
gamma (a,p)
male youths (10-19) 383 0.833, 39.714 6.32 1 012
males 15-19 355 0.871, 39.825 7.11 1 .008
males 20-24 105 1.169, 40.601 18.20 1 <.001
males 25+ 55 0.707, 55.006 0.51 1 .AT5
male adults (20+) 160 0.988, A5.14A7 16.28 1 <.001
female youths (10-19) 284 0.235, 40.535 0.67 1 .413
females 15-19 256 0.202, 46.211 0.35 1 .554




Details of fitted distributions
North—west Melbourne [Table 5.18)

Table A13
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Sample n parameter estimates X df prob
two parameter lognormal (u,0)
male youths (15-19) 91 1.394, 1.638 217 1 .140
males 20-29 208 1.936, 1.877 14.61 1 <.001
males 30-39 172 2.304, 1.508 11.556 1 <£.001
males 40-49 155 2.585, 1.865 20.13 1 <£.001
males 50-59 117 2.358, 1.460 5.96 1 .015
males 60-89 78 2.312, 1.676 8.24 1 .004
males 70+ 32 1.833, 1.577 1.89 1 .169
male adults (20+) 762 2.244, 1.659 58.36 1 <.001
females 20-29 200 0.151, 1.838 2.717 1 .100
female adults (20+) 683 0.812, 1.477 12.09 1 <.001
two parameter lognormal with covariance on t = age in years
male adults (20+) 762 u#=0.1935 + .0943t - .00096t¢
o=1.5621+ .0044¢ - .00005¢ 68.58 6 <.001
t=25 1.849, 1.8637 14,68 1 <.001
t=35 2.313, 1.649 12.61 1 <.001
t=45% 2.485, 1.649 22.87 1 <.001
t=55 2.464, 1.639 8.05 1 .005
t=65 2.250, 1.618 8.48 1 .004
t=75 1.843, 1.586 1.90 1 .169
gamma (a,p)
male youths (15-19) g1 0.253, A47.985 0.47 1 .493
males 20-29 208 0.331, 61.237 5.87 1 .015
males 30-39 172 0.446, 53.763 4.04 1 .044
males 40-49 155 0.392, 100.000 10.862 1 .001
males 50-59 117 0.475, 50.839 1.64 1 .200
males 60-69 78 0.396, 69.541 3.84 1 .050
males 70+ 32 0.335, 50.454 0.70 1 .403
male adults (20+) 762 0.387, 66.578 23.22 1 <.001
females 20-29 200 0.109, 43.403 0.75 1 .387
female adults (20+) 683 0.185, 29.525 4.27 1 .039




Table A14

Details of fitted distributions

Geelong school survey, males [Table 5.19]
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Sample n parameter estimates x2 df prob
two parameter lognormal (u,o0)

age 14 307 1.561, 1.066 10.53 3 .015

age 15 496 1.811, 1.151 12.78 3 .005

age 16 371 2.086, 0.973 2.26 3 .521

age 17 182 2.152, 0.919 6.38 3 .094

age 18 52 2.464, 0.704 0.77 2 .681

youths (atl) 1424 1.821, 1.036 6.56 3 .087
two parameter lognormal, censored below 15 g/day

youths (all) 1424 1.848, 1.082 4.58 2 .101
two parameter lognormal with covariance on t age in years

youths (all) 1424 u=-1.6618 + .24310¢t - .00083¢

o=-5.8417 + .95490¢t - .03284¢ 36.99 14 <.001

t=14 1.580, 1.090 10.82 3 .013

t=15 1.799, 1.092 14.27 3 .003

t=16 2.016, 1.029 3.688 3 .298

t=17 2.232, 0.900 T7.42 3 .060

t=18 2.446, 0.706 0.79 2 .850
three parameter lognormal (u,o,T)

youths (all) 1424 1.663, 1.171, 1.734 4.44 2 .109
gamma (a,f8)

age 14 307 0.501, 15.477 22.06 3 <.001

age 15 496 0.326, 55.127 58.31 3 <.001

age 16 371 0.806, 15.352 16.99 3 <.001

age 17 182 0.897, 14.288 17.86 3 <.001

age 18 52 1.831, 8.106 2.91 2 .233

youths (all) 1424 0.660, 16.711 50.48 3 <.001
gamma, censored below 15 g/day

youths (all) 1424 0.417, 23.730 13.08 2 .001




Table A15

Details of fitted distributions

Geelong school survey, females [Table 5.19]
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Sample n parameter estimates X df prob
two parameter lognormal (u,o)

age 14 233 1.057, 1.1562 2.81 2 .271

age 15 386 1.385, 0.989 8.69 2 .013

age 16 282 1.666, 0.777 7.76 2 .021

age 17 178 1.730, 0.829 0.01 1 .923

youths (atl) 1015 1.495, 0.907 10.53 3 .015
two parameter lognormal, censored below 15 g/day

youths (all) 1127 1.151, 1.108 4,13 2 127
two parameter lognormal with covariance on t = age in years

ages 14-17 1103 u=-20.6087 + 2.6240¢t - .07704t§

o= 18.5706 - 2.1615¢t + .06572¢ 19.89 7 .006

t=14 1.027, 1.191 2.69 2 .261

t=156 1.416, 0.935 9.17 2 .010

t=16 1.652, 0.811 8.01 2 .018

t=17 1.734, 0.818 0.02 1 .876
three parameter lognormal (u,0,7)

youths (all) 1127 0.492, 1.343, 4.162 3.54 2 A7
gamma (a,B8)

age 14 233 0.320, 14.793 7.78 3 .051

age 15 386 0.507, 11.384 22.711 2 <.001

age 16 292 1.103, 6.619 18.34 2 <.001

youths (all) 1127 0.629, 9.583 40.00 3 <.001
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Table A16

Details of fitted distributions

Newcastle alcohol abusers [Table 5.20]

Sample n parameter estimates X df prob

two parameter lognormal (u,o)

all 100 5.344, 0.431 56.95 7 <.001
two parameter lognormal, censored below [ g/day

all 100 5.209, 0.594 (£ = 180) 22.07 6 .001

all 100 5.198, 0.604 (g = 240) 22.04 5 <.001

two parameter lognormal, censored below 180 g/day and above 360 g/day

all 100 5.229, 0.484 2.49 2 .288
three parameter lognormal, censored below [ g/day

all 100 4.642, 0.842, 80.739 (£ =180) 20.87 5 <.001

ail 100 3.475, 1.354, 181.376 (f = 240) 18.35 4 .001

gamma (a,B8)
all 100 0.728, 49.383 77.72 10 <.001

gamma, censored below [ g/day
all 100 2.168, 97.752 (L =180) 25.93 8 .001
all 100 1.788, 113.636 (L = 240) 24.93 7 <.001




Table A7

Details of fitted distributions
ABS survey, males [Table 5.21]

Sample n parameter estimates 12 df prob
two parameter lognormal (u,0)
ages 18-24 1084 2.890, 1.051 51.71 6 <.001
ages 25-44 2618 2.934, 1.000 109.44 12 <.001
ages 45-64 1753 2.922, 1.044 86.18 8 <.001
ages 65+ 464 2.379, 1.051 12.38 8 .054
adults (18+) 5897 2.879, 1.028 235.56 12 <.001
two parameter lognormal, truncated below 20 g/day
ages 18-24 532 3.369, 0.727 15.56 4 .004
ages 25-44 1345 3.312, 0.760 25.95 10 .004
ages 45-64 901 3.427, 0.708 11.01 6 .088
ages 65+ 139 3.291, 0.817 3.59 4 .464
adults (18+) 2915 3.329, 0.752 29.65 10 .001
two parameter lognormat, truncated below [ g/day
adults (18+) 1969 3.549, 0.668 (L = 30) 18.91 9 .026
adults (18+) 1424 3.226, 0.768 (£ = 40) 11.57 8 A72
adults (18+) 983 2.733, 0.856 (£ =50) 9.02 7 .251
adults (18+) 670 2.516, 0.930 (L =60) 8.90 6 179
adults (18+) 462 3.043, 0.824 (L =70) 8.44 5 .134
adults (18+) 326 3.806, 0.621 (g =80) 5.72 4 .221
two parameter lognormal, censored below 20 g/day
ages 18-24 1064 3.007, 0.908 20.67 5 .001
ages 25-44 2618 3.038, 0.883 35.51 11 <.001
ages 45-64 1753 3.043, 0.900 24.44 7 .001
ages 65+ 464 2.515, 0.934 7.83 5 .166
adults (18+) 5897 2.996, 0.901 58.75 11 <.001
two parameter lognormal, censored below [ g/day
adults (18+) 5897 3.039, 0.864 (£ =30) 46.75 10 <.001
adults (18+) 5897 3.130, 0.797 (L =40) 11.79 9 .225
adults (18+) 5897 3.167, 0.780 (L =50) 10.08 8 .259
adults (18+4) 5897 3.141, 0.789 (L =60) 9.73 7 .205
adults (18+) 5887 3.100, 0.811 (L =70) 8.44 6 .208
adults (18+) 5897 3.045, 0.838 (£ =80) 7.13 5 211
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Table A17
(continued)
Details of fitted distributions

ABS survey, males [Table 5.21]

Sample n parameter estimates 12 df prob

two parameter lognormal censored below 50 g/day with covariance on t

adults (18+) 5897 u=2.4900 + .0325¢ - .000341‘2

o =0.9606 - .0054¢ + .00001¢ 29.08 16 .023
t=21 3.024, 0.852 7.94 2 .019
t=3%5 3.213, 0.787 13.05 8 .110
t=55 3.253, 0.704 6.66 4 .155
=75 3.022, 0.632 1.43 2 .488
three parameter lognormal (u,o,1)
ages 18-24 1064 3.631, 0.604, —-17.883 15.52 5 .008
ages 25-44 2618 3.620, 0.660, —-13.282 24,73 11 .010
ages 45-64 1753 3.702, 0.587, -19.810 10.35 7 170
ages 65+ 464 3.203, 0.837, —-13.882 4.44 5 .487
adults (18+) 5897 3.519, 0.661, —-14.321 30.02 11 .002
gamma (a,p)
ages 18-24 1064 0.982, 28.5086 17.90 6 .007
ages 25-44 2618 1.008, 28.944 34.93 12 <.001
ages 45-64 1753 0.980, 29.621 16.22 8 .039
ages 65+ 464 0.777, 22.262 3.06 6 .801

adults (184) 5897 0.941, 30.048 61.68 12 <.001




Table A18

Details of fitted distributions
ABS survey, females [Table 5.21]

172

Sample n parameter estimates 12 df prob
two parameter lognormal (u,0)
ages 18-24 757 1.824, 1.001 9.66 4 .047
ages 25-44 1765 1.963, 0.942 3.40 4 .493
ages A45-64 1100 2.035, 1.000 18.84 4 .001
ages B5+ 345 1.502, 1.173 10.50 3 .015
adutts (18+4) 3966 1.825, 0.989 9.33 4 .053
two parameter lognormal, truncated below 10 g/day
ages 18-24 238 2.439, 0.769 7.72 3 .0562
ages 25-44 635 1.803, 0.994 3.22 3 .359
ages A5-64 A28 2.751, 0.683 6.92 3 .074
ages 65+ 85 2.359, 0.867 9.78 2 .008
adults (18+) 1386 2.371, 0.820 3.24 3 .356
two parameter lognormal, censored below 30 g/day
ages 18-24 767 2.047, 0.860 7.21 2 .027
ages 25-44 1765 2.018, 0.918 2.29 2 .318
ages 45-64 1100 2.455, 0.723 4.62 2 .099
ages 656+ 345 1.296, 1.250 7.74 1 .005
adults (18+) 3966 2.149, 0.852 1.64 2 .440
two parameter lognormal with covariance on t = age in years
adults (18+) 3966 u=1.0737 + .0453¢ - .00052t§
o=1.1930 - .0128t + .00017¢ 50.65 15 <.001
t=21 1.795, 0.998 10.16 4 .038
t=35 2.019, 0.951 8.67 4 .070
t=55 1.982, 0.997 21.20 4 <.001
t=75 1.527, 1.178 10.62 3 .014
three parameter lognormal (u,o0,7)
ages 18-24 757 2.384, 0.759, -5.648 7.93 3 .048
ages 25-44 1765 1.864, 0.988, 0.805 3.24 3 .356
ages 45-64 1100 3.065, 0.557, -15.064 6.44 3 .092
ages 65+ 345 2.090, 0.912, -5.118 9.90 2 .007
adults (18+4) 3966 2.341, 0.802, -4.169 3.16 3 .368
gamma (a,pB)
ages 18-24 757 0.634, 14.545 10.37 4 .035
ages 25-44 1765 0.749, 13.650 20.92 4 <.001
ages 45-64 1100 0.724, 15.931 6.44 4 .169
ages 65+ 345 0.408, 18.914 11.41 A .022
adults (18+) 3966 0.684, 14.914 15.52 4 .004




Table A19

Details of fitted distributions
Adelaide University students [Table 5.23]

Sample n parameter estimates x2 df prob

two parameter lognormal (u,0)
males 108 1.987, 0.842 1.40 2 .498

two parameter lognormal, censored below 20 g/day
males 108 1.278, 1.021 0.003 1 .959

three parameter lognormal (u,0,7)
males 108 0.034, 1.482, 7.906 0.004 1 .948

gamma (a,B)
males 108 1.530, 5.469 3.09 2 .213
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Table A20

Details of fitted distributions
Busselton 1978, males [Table 5.24])
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Sample n parameter estimates X df prob
two parameter lognormal (u,o)
ages <30 249 3.071, 0.794 3.42 3 .331
ages 30-39 237 2.931, 0.797 2.40 3 .493
ages 40-49 205 2.896, 0.944 7.17 3 .087
ages 50-59 209 3.118, 0.884 14.60 3 .002
ages 60-69 202 2.915, 0.982 8.38 3 040
ages 70+ 158 2.790, 0.835 0.47 3 .925
adutts (<30+4) 1260 2.985, 0.876 8.40 3 .039
two parameter lognormal, truncated below 20 g/day
ages < 30 135 2.476, 1.013 2.57 2 .276
ages 30-39 110 3.309, 0.629 1.41 2 .495
ages 40-49 94 2.815, 0.975 7.16 2 .028
ages 50-59 112 3.763, 0.486 0.54 2 .762
ages 60-69 92 3.705, 0.549 0.07 2 .967
ages 70+ 64 1.737, 1.147 0.06 2 .969
adults ({30+) 607 3.356, 0.6986 2.67 2 .263
two parameter lognormal, censored below 40 g/day
ages < 30 249 2,986, 0.863 2.82 2 .244
ages 30-39 237 3.064, 0.698 1.20 2 .549
ages 40-49 205 2.852, 0.978 7.08 2 .029
ages 50-59 209 3.399, 0.625 0.43 2 .807
ages 60-69 202 3.217, 0.730 0.65 2 721
ages 70+ 158 2.658, 0.925 0.13 2 .936
adults (<30+4) 1260 3.083, 0.781 2.47 2 .29
two parameter lognormal with covariance on t = age in years
adults (<30+) 1260 H=2.9326 + .0057¢ - .00009t§
v 0 =0.4307 + .0179t - .00016¢ 49.60 18 <.001
t=25 3.015, 0.778 4,82 3 .159
t=35 3.015, 0.861 6.69 3 .083
t=45 2.996, 0.912 8.87 3 .034
t=55 2.959, 0.931 18.89 3 <.001
t=65 2.902, 0.918 9.35 3 .025
t=75 2.827, 0.873 1.18 3 .758




Table A20
(continued)

Details of fitted distributions

Busselton 1978, males [Table 5.24]

Sample n parameter estimates x2 df prob

three parameter lognormal (u,o,7)
ages < 30 249 2.689, 0.995, 6.757 2.65 2 .279
ages 30-39 237 3.431, 0.584, -12.554 1.56 2 .460
ages 40-49 205 2.851, 0.967, 0.851 7.6 2 .028
ages 70+ 158 2.303, 1.067, 7.072 0.06 2 .968
adults ({30+) 1260 3.486, 0.635, -13.622 2.82 2 .245

gamma (a,B)
ages < 30 249 1.307, 21.730 9.40 3 .024
ages 30-39 237 1.226, 19.928 2.16 3 .540
ages 40-49 205 0.880, 29.949 8.76 3 .033
ages 50-59 209 1.147, 27.181 6.21 3 .102
ages 60-69 202 0.858, 31.867 2.44 3 .486
ages 70+ 158 1.014, 21.383 3.18 3 .3865
adutts (£30+) 1260 1.052, 25.426 4.46 3 .216
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Table A21

Details of fitted distributions

Busselton 1978, females [Table 5.24]
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Sample n parameter estimates x2 df prob
two parameter lognormal (u,o)
ages < 30 201 1.927, 0.964 0.80 1 .A38
ages 30-39 203 1.845, 1.017 5.67 1 .017
ages 40-49 168 2.340, 0.852 0.14 1 .708
ages 60-69 168 2.335, 1.017 3.38 3 .337
ages 70+ 80 2.138, 0.825 0.46 1 .496
adults ({30+) 1001 2.272, 0.853 A.56 3 .207
two parameter lognormal with covariance on t = age in years
adults ({30+) 820 u=.7298 + .0564¢t - .000505t§
except 50-59 o =.9150 + .0023¢t - .000029¢ 17.86 7 .013
=25 1.825, 0.955 1.76 1 .185
t=35 2.086, 0.961 8.50 1 .004
t=45 2.247, 0.961 0.74 1 .389
t=65 2.264, 0.943 5.81 3 .12t
t=75 2.121, 0.925 1.05 1 .305
two parameter lognormal, censored below 40 g/day
adults (<30+) 1001 2.623, 0.666 0.40 2 .818
three parameter lognormal (u,o,1)
adults (<30+) 1001 3.564, 0.436, -31.198 1.117 2 573
gamma (a,B)
ages < 30 201 0.456, 19.301 1.42 1 .233
ages 30-39 203 0.394, 21.372 A.74 2 .094
ages 40-49 168 0.774, 16.932 0.0t 1 .920
ages 60-69 168 0.561, 27.137 2.86 3 .414
ages 70+ 80 0.673, 14.734 0.88 1 .348
adults (<30+) 1001 0.698, 17.232 1.48 3 .687




Table A22

Details of fitted distributions
RAAF recruits [Table 5.25]

Sample n parameter estimates x2 df prob
two parameter lognormal (u,o)
incoming 17-20 280 2.765, 0.826 1.67 2  .435
incoming 21-25 107 3.173, 0.763 1.70 2 .428
incoming 26+ 70 2.680, 1.123 1.22 2 .543
incoming adults (atl) 444 2.867, 0.859 2.73 2 .255
outgoing 17-20 286 3.118, 0.802 0.45 2 .798
outgoing 21-25 121 3.211, 0.736 1.59 2  .453
outgoing 26+ 73 3.247, 0.8863 1.52 2 .469
outgoing adults (all) 491 3.158, 0.800 0.86 2 .652
two parameter lognormal with covariance on ¢ = age in years
incoming adults (all) A37 4 =2.9138 - .000085¢
0 =0.2435 + .027916t 2.16 6 .059
incoming t=18.5 2.912, 0.760 3.92 2 .1569
incoming t=23 2.912, 0.886 6.01 2 .050
incoming t=29.5 2.911, 1.011 2.22 2 .330
outgoing adults (atl) 480 u=2.8729 + .01388t
o =0.6465 + .00669¢ 4,32 6 .634
outgoing t=18.5 3.130, 0.770 0.70 2 7086
outgoing t=23 3.192, 0.800 2.04 2 .361
outgoing 1=29.5 3.255, 0.830 1.58 2 .454
two parameter lognormal, censored below 50 g/day
incoming 17-20 260 3.020, 0.672 0.38 1 .538
incoming 21-25 107 3.180, 0.757 1.70 1 .193
incoming 26+ 70 3.059, 0.850 0.13 1 722
incoming adults (all) AA4 3.049, 0.738 1.17 1 .278
outgoing 17-20 286 3.017, 0.877 0.00 1 .979
outgoing 21-25 121 3.307, 0.662 1.26 1 .262
outgoing 26+ 73 3.427, 0.703 0.52 1 AT
outgoing adults (all) 481 3.1565, 0.802 0.85 1 .355
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Details of fitted distributions
RAAF recruits [Table 5.25]

Table A22
(continued)

2
X

Sample n parameter estimates df prob

three parameter lognormat (u,o,7)
incoming 21-25 107 2.918, 0.881, 1.64 1 .200
incoming adults (all) 444 3.661, 0.555, 1.86 1 .173
outgoing 17-20 286 2.833, 1.036, 0.03 1 .870
outgoing 21-25 121 3.520, 0.608, 1.50 1 .221
outgoing 28+ 73 4,292, 0.428, 0.86 1 .327
outgoing adults (all) 491 3.033, 0.858, 0.80 1 .37

gamma (a,f)
incoming 17-20 260 0.844, 23.288 0.91 2 .634
incoming 21-25 107 1.285, 23.180 2.48 2 .288
incoming 26+ 70 0.515, 45.413 0.48 2 .787
incoming adults (all) 444 0.856, 26.560 2.07 2 .355
outgoing 17-20 286 1.132, 25.491 2,57 2 .277
outgoing 21-25 121 1.405, 21.716 1.75 2 .7
outgoing 26+ 73 1.100, 31.201 1.07 2 .588
outgoing adults (all) 491 1.171, 25.641 3.31 2 191
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Table A23

Details of fitted distributions

Queensland human service students [Table 5.26]

Sample n parameter estimates x2 df prob
two parameter lognormal (u,0)

males 685 2.488, 1.053 1.04 2 .59856

females 583 1.951, 0.896 0.58 2 .T46
two parameter lognormal, censored below 40 g/day

males 685 2.530, 1.024 0.95 1 .329

females 583 2.120, 0.817 0.43 1 .511
three parameter lognormal (u,o,7)

males 685 2.755, 0.926, -4.616 0.81 1 .369

females 583 2.365, 0.760, -5.561 0.51 1 ATB
gamma (a,B)

males 685 0.596, 31.456 2.27 2 .321

females 583 0.492, 16.915 1.01 2 .604
gamma, censored below 40 g/day

males 685 0.439, 39.185 0.17 1 .681

females 583 15.326, 1.777 56.22 1 <.001
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Details of fitted distributions

Townsville residents [Table 5.27]

Table A24

Sample n parameter estimates x2 df prob
two parameter lognormal (u,0)
males 18-24 35 3.855, 0.542 0.67 1 .413
males 25-44 44 3.812, 0.767 4.45 1 .035
males 45-64 19 3.392, 0.911 0.27 1 .801
male adults (18+) 110 3.761, 0.680 1.24 1 .266
gamma (a,p)
males 18-24 35 3.029, 17.778 1.39 1 .238
males 25-44 A4 1.587, 36.049 2.85 1t .091
males 45-64 19 0.914, 44.883 0.09 1 .764
male adults (18+) 110 1.894, 27.4865 0.23 1 .632
female adults (18+) 76 0.559, 29.735 3.57 1 .059
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Chapter 7

Inference on linear functions of class probabilities.

7.1 Introduction

In Part 1 of this thesis we considered the problem of choosing a
specification to describe aspects of the distribution of individual alcohol con-
sumption. We demonstrated that censoring the lower tail of a lognormal dis-
tribution gave a better fit in the upper tail of the distribution, as did adding

a lower threshold parameter to the specification.

In this second part we will consider these and related inferential prob-
lems in a more mathematical fashion. At the base of the matter lie the prin-
ciples of relevance and noncoherence, as given by Wilkinson (1977). For the
relevance principle requires that any inferential statements be made on the
basis of all the relevant information in the sample, excluding all irrelevant or
spurious information. The determination of which information is relevant can
only be made by a precise formulation of the questions which the inference is
designed to answer. The noncoherence principle implies that the inference
may change radically in response to slight changes in the guestion (James,

1977).

Related to these principles are two aspects of the statistical analysis of
data: value and validity. By value we refer to the information in the data
and its relevance as mentioned above. Validity includes the goodness-of-fit

of the models by which we interpret the data.

For frequency distributions, a linear functional of the frequencies or
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probabilities can highlight either value or validity. Functionals whose domain
is restricted to that of the probability vector, that is, to the estimation
tocus, will be functions of the parameters or their estimates, and hence
express aspects of inference assuming the parametric specification. For
example, in our studies of the distribution of alcohol consumption three

important linear functionals highlighting three different values are

i. the mean alcohol consumption.

ii. the proportion of heavy drinkers, for example, above 60 g/day.
iii. an index of excess consumption over and above, say, 60 g/day.

On the question of validity of a proposed specification, functionals of
the deviations (f—a) of the relative frequency vector from the estimated pro-
bability vector will express aspects of the goodness-of-fit of the data to
the specification. Certain functionals determine the components of a x2
goodness-of-fit test. If a component is significant, the specification must be
amended to incorporate the significant effect. However we shall be con-

cerned with the situation in which, although a component of 12 may not be

significant, it is imprudent to trust that there is no real effect.

Our approach is to decompose a linear functional to show that a non-
parametric estimator of a particular contrast or value is partitioned into the
parametric estimator plus a second component whose expected value is zero,
the variances of these two components being additive. In gaining the advan-
tage of the smaller variance of the parametric estimator, we are depending
on the validity of the specification to assume that the second component has

zero expectation. If we have some doubt as to the validity of a particular
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aspect of the parametric specification, for example the symmetry of the log-
normal distribution on the log scale, we may modify the specification and
transfer a further component from the second component to the parametric
estimator, and be confident that the expectation of the new, reduced second
component is zero. We would then have greater confidence in the validity of

the modified specification.

We will show that, in the case of estimation of the distribution of
alcohol consumption by the two parameter lognormal, modifying the specifica-
tion by the addition of the third parameter, or altering the the fitting pro-
cedure by censoring the lower class frequencies, may ensure validity with
respect to certain values. An example will be presented where the two alter—

natives have almost identical effect.

Questions of validity with respect to different values may come into
conflict; there may be no single fitted distribution which has optimal validity
in respect of disparate values. This is an example of the noncoherence prin—

ciple.

The formulation of these important qualitative inferential ideas in a pre-
cise quantitative manner using linear functionals of relative frequencies and
probabilities requires a very careful algebraic treatment. For example, sup-
pose we estimate the proportion of drinkers consuming more than 60 g
alcohol per day. Since the probabilities and relative frequencies add to unity,
an estimate of this proportion implies equivalently an estimate of the propor-
tion of consumers of less than 60 g per day, and the variance of the esti-
mate of the complementary proportion will be the same as for the estimate

of the proportion.
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This point is made to show that there is a certain redundancy in the
problem and this must enter into its algebraic formulation. We shall develop
the mathematics of linear functionals in a later section, but firstly explore
some general considerations in the choice of a suitable specification for the
distribution of alcohol consumption, and introduce some linear functionals

relevant to this study.
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7.2 The choice of a specification for the distribution of alcohol consumption

We can distinguish several broad motivations for fitting a mathematical

distribution to a set of data:

i. To summarise and describe a situation, when we wish to smooth the
class frequencies. The summary may be for its own sake, or to examine
an hypothesis involving the distributional form as a conseguence, such
as the hypothesis that alcoholics are not essentially different from other
drinkers, or more precisely, that the distribution of consumption is not

bimodal.

ii. To enable estimation of population characteristics not readily obtainable
directly, for example, for small and moderate sized samples, the extra-
polation to relative frequencies in the extreme upper tail from a fit
based primarily on the middle and low upper—tail frequencies. While this
procedure is subject to the usual uncertainties and doubts of extrapola-
tion, if a specification has been established from large data sets with
reasonable absolute frequencies in the upper tail, then in the absence
of information to the contrary, the best inference one can make for
small samples is to assume that they will be similar and use estimates

based on the fitted specification.

jiii. Various reasons such as error estimates, tests between and within sam-

ples, interpolation and graduation of frequencies etc.

Researchers in the alcohol fietd have tried to find a single specification
for the distribution of individual consumption which would serve all these

needs.
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However the choice of a specification or the method of fitting should
depend upon which aspects of the data are considered important for infer-
ence. A specification which is satisfactory for one purpose may be quite
unsuited to another. Even a "good fit" is not necessarily a sound basis for
inference, in that the test of fit does not establish the distribution, it merely

assesses the evidence against this specification. It is guite possible for a

particular distribution to be in close agreement with a data set for the central
80-90% but be in disagreement with the population in the tails, where less
data is available to assess the fit. This situation may be acceptable if we
wish to make inferences about, say, the mean of the distribution, but infer-
ences about the probabilities in the tails of the distribution are much more

sensgitive to the specification.

Since alcohol! consumption is inherently non—negative, and since the
overwhelming majority consume miniscule amounts of alcohol in relation to the
amounts consumed by the still appreciable minority of problem drinkers, it is
clear & priori that the distribution of alcohol consumption will be skewed to
the left. The most common way of accommodating this skewness is to pos-
tutate that the logarithm of consumption has a symmetric distribution, say

normal.

This postulate is usually, in gross terms, highly effective. We do not
wish to imply that the lognormal distribution is correct, but merely that the
log transformation results in a good visual description of the distribution, and
that the residual asymmetry is so slight, and indeed the accuracy of record-
ing so coarse, that any formal test of fit would require a very large sample

to register significant evidence of departure.
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More importantly, however, any fitted symmetric distribution to the
transformed data will effect a compromise between the upper and lower tails
of the distribution. Unfortunately in the case of alcohol studies the interest
in the distribution is not so symmetric and non—-committal, but rather concen-
trated on the upper tail of the distribution. This leads to something of a
dilemma, because inferences about heavy drinkers can be influenced substan-
tially by inconsequential variations in the habits of the light drinkers; that is,
information about light drinkers is being spuriously used to make inferences

about heavy drinkers.

To demonstrate this point consider some real data. Table 7.1 (a subset
of Table 5.24) shows a frequency distribution for the alcohol consumption for
1001 femates of all ages in the 1978 Busselton, W.A., survey (Cullen et al,
1980). For convenience, we shall refer to this data as the "Busselton data”

throughout this chapter.

Table 7.1

Effect of a small adjustment to the tower tail of the
two parameter lognormal distribution.
Busselton, W.A., females, 1978

class Original data Adjusted data
int. nf f P nf p
1-20 804 .8032 .8020 814 .8119
21-40 142 .1418 L1497 132 .1407
41-60 42 .0420 .0320 42 .0308
61-80 9 .0080 .0096 ] .0096
81-100 2 .0020 .0036 2 .0037
>100 2 .0020 .0031 2 .0034

Suppose we "adjust” the frequencies by moving 10 people (about 1% of the
sample) from the 21-40 class interval to the 1-20 interval. We fit two

parameter lognormal distributions to both the original and adjusted data. The
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parameter estimates change from (g, @) = (2.2717, 0.8529) to (2.2148,
0.8826), and the )(2 goodness—of-fit test statistic on 3 degrees of freedom
changes from 4.56 (P = 0.207) to 5.92 (P = 0.115). Table 7.1 shows the
frequencies and fitted values for the two cases. The small adjustment to
the lower tail has changed the combined probabilities for the two upper
classes from 0.0067 to 0.0071, a 8% change. Similarly, an adjustment of 2%
in the lower tail produces a change of 10% in the upper tail. Thus the area
of most importance to us, the upper tail, has been substantially affected by

a small change in which we have little interest, in the lower tail.

To compensate for this anomalous situation, we look for a mode of
inference which is less sensitive to perturbations in the lower tail when the

inferential emphasis is on the upper tail.

There are good historical precedents for choosing a particular parametric
specification in order to obtain prescribed estimators as the maximum likeli-
hood ones. Gauss (1809) assumed that "when any number of equally good
direct observations M, M’, M’’, ... of an unknown magnitude x are given,
the most probable value is their arithmetic mean” (Whittacker and Robinson,
1932). Using this postulate he then deduced that the observations must be
Normally distributed about the true value. Von Mises (1918) asked "For what
distribution on the unit circle is the unit vector ﬁ = (cos 90 sin 90) a maximum
likelihood estimator of a direction 90 of clustering or concentration?" (Bing-
ham, 1980). And Fisher (1953) in his paper on the distribution of dispersion
on the sphere, similarly chose his specification in order to obtain as the
maximum likelihood estimator of location the three dimensional analogue of

A

Von Mises’ pu.



189

Various solutions are worthy of consideration in the present case. The
simplest is possibly just to truncate the distribution at some arbitrary point,
and consider onty drinkers whose consumption exceeds (say) 60 g alcohol per
day. This procedure suffers from two drawbacks: the choice of the trunca-
tion point is arbitrary, and more seriously, truncating any more than the con-
sumptions of the very light drinkers throws away most of the data, as refer-

ence to most of the tables of consumption data in Chapter 8 will show.

A less severe alternative is to censor the data rather than truncate it.
That is, we assume we know only the proportion of the distribution lying
below the point of censorship (60 g alcohol per day, say) and have no
detailed knowledge of the consumption values for this portion of the data.
For the typical grouped data that is available from alcohol consumption sur-
veys, this amounts to combining the lower class intervals into one class.
This solution suffers from the same problem of arbitrariness as does trunca-
tion, but has the great advantage that we are not discarding the information

about the light and moderate drinkers entirely.

Another solution of the problem is to introduce a lower threshold
parameter, 1, to the specification, and so fit a three parameter lognormal
distribution. Heuristically, we would expect the threshold parameter to be
mainly determined by the smaller observations and thus use more of the
information contained in these values than in larger observations. Since the
information in the smaller observations is largely "used up” in the estimation
of 1, it will be removed, to a considerable extent, from the estimation of the
two remaining parameters, u and o, which consequently will depend more
heavily on the larger observations. These points will be demonstrated quan-

titatively later when the requisite mathematical machinery has been set up.
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A similar situation arises in the context of mining. For about a decade
prior to 1960, many gold, uranium and pyrite value distributions in South
Africa were estimated using the two parameter lognormal distribution, first
introduced* by Sichell (1947). However Krige (1960) showed that there was
usually a systematic departure from this model, the departure being in the
lower tail. When considered on a log scale the data showed a negative
skewness, leading to a positive bias for ore grade estimates. Krige advo-
cated using a threshold parameter to overcome this problem. This three
parameter model made significant changes to the lower tail of the distribution
with only small adjustments to the upper tail, and it reduced the bias in the
mean ore grade estimates. Moreover it was found that the estimated mean
ore grade values were not very sensitive to changes in the value of the
threshold parameter ranging from close below to well in excess of the
optimum value (Krige, 1981, Link and Koch, 1975). The introduction of a
third parameter into the specification did not change the overall form of the
distribution very much;, however we show how it radically changes the fitting

of it, leading to more reliable inferences in the middle and upper ranges.

* Rasumovsky (1940) had earlier established that ore samples could be
represented best by this model. This was unknown to Sichell at the time.
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7.3 Linear functionals relevant to alcohol studies

In the introduction to this chapter, we noted some important linear func-

tionals highlighting different values relevant to studies of the distribution of

alcohol consumption. In this section we will consider these in relation to the

Busselton data, to set the scene for a further mathematical development of

linear functionals and the estimators of their values.

"Mean consumption”. Suppose we wish to estimate the mean consump-
tion of the Busselton data of Table 7.1. The parameter to be
estimated can be written as q* ’ p; q¥* is the linear functional and q* ' p
is its value. In this case, q* = q;“ as given in Table 7.2, with the
* peing the midpoints of the corresponding class intervals.

t

(nq:“ ‘p is the total consumption; hence the subscript t).

elements of q

Table 7.2

Some linear functionals relevant to alcohol consumption

class interval q¥* q,": q¥*

t e

1-20 10 0 0

21-40 30 0 0
41-80 50 0 0
61-80 70 1 10
81-100 90 1 30
>100 110 1 50

The value of the final element qr*r‘1 of g* poses some problems, in
that the final class interval has only a lower bound, Xm' A satigfac-

tory pragmatic approach is to take q;l to be the same distance above



192

x as g* is below it, i.e.
m m-1

* = .
g x + (x qm—1)

There are two obvious estimators of the value of q¥* ' p: q*'ﬁ
and q* ' f are the parametric and nonparametric estimators respectively.

The value of the parametric estimator, q¥* ' 6, will of course wvary with

the distribution fitted to the data.

For the Busselton data we have q;"f = 15.415 g alcohol per
day, and assuming a two parameter lognormal model (g = 2.272, o0 =
0.853) we have qr'ﬁ = 15.447. We note that this is in reasonable

agreement with qFf ' f, i.e. the difference q¥ ’ (f-s) is small in relation
t t

to q; ‘£ (in fact, only 2% of it).

"Number of heavy consumers”. Suppose the linear functional consists

of unit elements corresponding to the classes designated "heavy drink-
ers", and zeros elsewhere. Then ng* " p is the number of heavy con-
sumers, nq* ' f is the number estimated from the data, and nq*'a is

the estimate from the fitted distribution.

If we define "heavy consumption” as consumption in excess of 60
g alcohol per day, then for the Busselton data, gq* is given by q,": of
Table 7.2; the estimate from the data is nq,*;'f = 13, i.e. from the
sample we estimate there are 13 women who would be classed as
"heavy drinkers” according to our definition. The estimate of this
number from the fitted two parameter lognormal distribution is nq,’: '6 =

16.34 women. Thus nq}’ (f-p) = -3.34, or 26% of nq¥’f.
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By adjusting the position of the unit elements in the vector in the
obvious way, this functional could estimate the numer of tlight or
medium drinkers in a population. But it is the heavy drinkers in whom

we are interested in this study.

"Excess consumption”. If we put

class midpt - x if consumption > x

! ¢

qg¥ = ,
i 0 otherwise

then g* ' p represents consumption in excess of X, 9 alcohol/day, with
corresponding interpretations for q*'ﬁ and g* " f. The vector q: in
Table 7.2 is the linear functional which gives consumption in excess of
60 g/day for the Busselton data. We have q: "f = 0.250 g/day, i.e.
the average daily consumption in excess of 60 g is 0.25 g per person,
as determined by the data. The fitted two parameter tognormal distri-
bution gives an estimate of 0.359 g alcohol per person per day, giving
q: *(f-p) = —-0.109. This is a 44% difference from q: * £, as compared

to the 2% difference we noted for the mean consumption.
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7.4 Linear algebra for estimation from grouped data — preliminaries

7.4.1 Basic definitions _and notation <Consider a variate X and a sample of

size n, X X Suppose the data are grouped into m classes.

17 X2, e p

Then we have a (column) vector of frequencies

a = (61 8, ... am)
m
ra =n
=1"
or
1 '‘a=n
m

where 1m is a vector of unities. In general we work with the relative fre-

guencies

The expectations of the relative frequencies are the class probabilities

ELf] = p = p(&) (r.o1

determined by the probability distribution of X, with

e = (91 92 Ok)

being the parameters of the distribution. At times we will need to write the

probability vector p as a diagonal matrix, and write

P = diag(p)
Let X(0) be the m x k matrix of derivatives of the probabilities p with

respect to the parameters, that is

dp o d
X = X(@) = [35'l 331 . sjll
1 9%
=[lp, P, ---pP, ]
0, Po, 0,

Note that since
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m
Y p. =1
=1

identically, it follows that

m dp m O2p

§ =E L e =0 (7.02)
-, 00 =, 06 06

J=1 a Jj=1 a b

Now the frequencies a are assumed to be multinomially distributed,

M(n,p(8)). Thus the likelihood function is

2 = Pr(a) = P
a,! ... !
1 m

and the variance—covariance matrix L is defined by

1

var(f) = N L=—(P -pp") .

]
n
In terms of the relative frequencies, f, the likelihood function is

' nf nf
- n! o 1 p m
N )
(nf1). - (nfm). 1 m

4

and the loglikelihood function is
m

log? = constant + n L f. logp,
=1 J

or, in an obvious matrix notation,

= constant + nf’ log p(@

Differentiating with respect to 8_ gives the ath score component

a
dlog ¥ m f; Op;

S (8 = =n L
a o6 . p. 06
a J=1 7 a

and we can write the vector of k score components, the score vector, as

dlog¥
00

|
nxXp f. (7.03)

S(0)

A second differentiation of the loglikelihood function gives
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2

2 m f. op. Op. f. 0p.
_ 9 lo 2=n): A S AN B B I

06 06 ) 2 06 06 p. 06 06
a b J=1 pj a b J a b

Taking the expectation, and using (7.01) and (7.02) gives the information

matrix

2
19) = E[_Q_Lg_gie

26°
m op. Op.
_ n[ [ A N __z] ]
5y P; 36, 36,
= nx'P 'x (7.04)

Equating the score vector (7.03) to zero, we can write the likelihood

equations as

x'p = 0, (7.05)

The solution of these equations is the maximum likelihood estimate, 6, of 0.

7.4.2 Asymptotic assumption The matrices P, L and X are functions of the
parameter variable &. It would be ideal to consider them at the true value
8% of the parameter. However, as 6% is unknown in our example of the dis-
tribution of alcohol consumption, we cannot make the numerical calculations

we require tater on with unknown P, £ and X.

If we take them at the maximum likelihood estimator 3, they become
random. A random geometry is unnecessarily complicated and inferentially

inappropriate.

Consequently, we shall make the usual asymptotic assumption that there
is a domain of parameter space including 6% and & for which variations of P,

I and X are negligible. We take P, £ and X at an initial value 00 within this
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domain, and write Py = p(Oo), p* = p(6%), 6 = p(a), with similar notation for

P, L and X.

7.4.3 Maximum likelihood estimation as iterated weighted regression

Although it is well known that maximum likelihood estimation can be effected
as iterated weighted regression (e.g. Bliss, 1935, Finney, 1952; Fisher, 1954,
Nelder and Wedderburn, 1972, Cox and McCullagh, 1982; Green, 1984), we

outline the theory for completeness.

To solve the likelihood equations, we can use the method of scoring

for parameters (Fisher, 1935, 1954). That is, we choose an initial estimate 6

0
of @, close to 6, and setting r = 0 in the following equation, calculate a
new estimate, 01:
-1
OH_1 = 9r+l (Or) S(Or) (7.086)

The process is continued iteratively until the desired accuracy is reached.

We now show that this iterative scheme is equivalent to iterated

weighted regression of y = X0 +f-p on X, with P_1 as the weight matrix.

Since X’P_1b S ok, we can write the score vector (7.03) as

S(0) = nX'P (f-p) (7.07)

Then by (7.07) and (7.04), the iterative scheme (7.08) becomes
] =0 +x P ) P Nr-p) (7.08)
r+1 r ror r ror r D

Multiplying throughout by Xr’P;1Xr gives
1
X ‘P 'X)0
r r r r+

=x'P ' (xe +f-p) (7.09)
1 r.r rr r

Let

y, = X6, +f-p (7.10)

and then we can write equation (7.09) as
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x P xye  =x'Ply
r r r r+i r r r
which are the normal equations for an iterated weighted regression of yr on
Xr with weight matrix P;1. By the usual regression theory, the solutions at
the rth iteration will be given by

T g —
04y = (xr P, xr) X Py,

which, using (7.10), is equation (7.08).

If we use a one—-step approximation, then from (7.08) we can write
80, + &P 0P - p )
where X and P are evaluated at 0 = 90. Then, approximately,

a T T
5-6,=xP v 'x'p (f - py)

and since

A

x(e—oo) = P-P,

we have the approximation
A R U ) |
P-Pqy = XX'P X) X'P (f—po) (7.11)

Geometrically, the situation is shown in Figure 7.1. This shows the
one-step situation where we require only one iteration to get from 00 to .
In the general case the regression of a vector y on the columns of a matrix
X is equivatent to finding the orthogonal projection of y onto the range of X,
that is, the orthogonal projection onto the vector space spanned by the
columns of X. In the present case, orthogonal projections are relative to the
metric P_1. Detaited reasons for this will be given below. Figure 7.1 shows
that the orthogonal projection, relative to P_1 of X .0 +f—p0 onto the range

00

of X, R(X), is X000+6—p0, and these are the fitted values for the regres-

sion. The figure also shows that we could formulate the regression in terms

of an alternative dependent variable, f—po, whose orthogonal projection,



+ f

+p

Figure 7.1 Geometry of maximum likelihood estimation as regres-
sion.
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relative to P-1, onto R(X), is a—po. This formulation leads to the same
estimate of @, but use of X090+f—p0 as the dependent variable provides

the estimate of @ directly from the iterated regression.

This iterative regression formulation of the solution of the maximum
likelihood equations has as its basis large sample maximum likelihood theory.
Sir Ronald Fisher in his book Statistical Methods and Scientific Inference (3rd

Edition, 1973) sought "to bring a wider class of cases into togical connection

with the Analysis of Variance”. The regression formulation implies that we
can apply all the ideas, both mathematical and inferential, of analysis of

variance, regression and covariance, to estimation.
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7.5 Sample and contrast spaces

7.5.1 Sample space We shall be considering parameters of the form Q¥ ' p
and their parametric and nonparametric estimators q*'ﬁ and q* " f. The
sample relative frequencies, f, lie in an m-1 dimensional hyperplane deter-
mined by 1m'f = 1. Since it is mathematically simpler to deal with quantities
which add to zero rather than one, we subtract some fixed probability vector
Py from f, and consider the equivalent problem of estimating q* ’ (p—po) by

* ' (p— %' (fF-p).
q* " (p po) and g¥* " ( po)

#

The vector f - po, then, lies in a subspace of R™ namely {1m} .

where

{1m}# =1 r=0,r¢ R™)

We regard this subspace as the sample space, ¥. The sample vectors f—po

witl lie in a bounded subset of ¢.

Thus the sample space incltudes all vectors which annihilate 1m. This
includes the vectors of derivatives of the probabilities with respect to the

parameters

pei i=1, ...,k

Defining X as above, we thus have 1m'X B Ok'

Also in the sample space is the vector P-Py = p(e)—p(Oo), since
1m'(p—p0) = 0. As O varies, p - Py traces out a k dimensional surface in

9, which we call the estimation locus.

The tangent subspace at p(@) to the estimation locus is the range of

X(0), denoted by R(X) and given by
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9¢(X)={yly=X3,yeRm,seRk).

The vector 6 - p0 will lie in this subspace.

The sample space is a Euclidean or inner product space. We defer dis-
cussion of the metric of the inner product and the identity operator on sam-

ple space until we have considered the dual space in the next subsection.
The results of this section are summarised in Table 7.3.

7.5.2 Contrast space Let x be a vector of sample space. A linear func-
*
tional on sample space is a vector g¥ ¢ rR™ , with value the (scalar) contrast

qg* ’ x. Since

the addition to g¥ of multiples of the vector 1m does not alter the value
g* ' x. Hence we may consider q¥ as modulo 1m in this context, and define
the conjugate or dual space, which in accordance with statistical usage we

call the contrast space, to be the guotient space of cosets g¥* + {1m}. That

is, we define the contrast space as
* *
ex =R™ /(1 ) = {q*+{(1 )| ag*eR™)
m m
The asterisk denotes the space as the dual space, or a vector as belonging

to this space.

While we can consider q* as modulo 1m in relation to the contrast
q*’ (p—po), when we go back to consideration of g* ' p we must take note
of which element of the coset q¥ + {1m} has been used in order to obtain the

correct interpretation.



7.5.3

Table 7.3

Summary of properties of Sample and Contrast Spaces

Sample space, ¥

Contrast space, €%

1 % < R7 R™ /01 )
elements

f - Py

- -

P - P, p

P il Po, * 0,

i

(the score-functionals)

Estimation locus, c {1m}#
elements
P - po

tangent subspace
RX)

score—functional subspace
®P~ %) mod (1 )
m

inner product matrix
=P o1 1
m m
(restricted to {1} )
inner product

{u,v> = UL v

E =

P - pp

’

{u*,v¥*> = u*’Lv*

identity operator
Im - p1m

orthogonal decomposition

T = R(X), dimension k u
U = R(CEL), dim. m-k-1 T

T | U relative to &~

R(P—1X), dimension &
R(L) mod {1m}, dim m—k-1

9'# 1 'u# relative to E

Inner product metrics and identity operators

contrast space have natural inner products, and thus an inner product

<u,v> = u'Mv

202

Both the sample and the

is defined for any two vectors u, v in the space. M is the matrix of the inner
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product, or the metric of the space.

The matrix

L =P-pp’ (7.12)
forms the natural metric on contrast space, since the covariance of two con-

trasts q%“ ! (f—po) and Qs ’ (f—po) is given by the bilinear form

I %y g
A 97 Loy

Therefore, as the metric on sample space, we can take a generalised

inverse £ of £ (Dempster, 1969). We choose

r =P -1 1 °. (7.13)

To see the reasons for this choice, consider the representation of the
muttinomial distribution as the joint distribution of m independent Poisson
variates, conditional on their sum (e.g. Fisher, 1922; Rao, 1952). The
unconditional variance matrix of these variates is nP, and we have (by 7.12)

the decomposition

nP = nE+npp’ (7.14)
Corresponding to this we can decompose the information matrix of the Pois-
son variates, i—P_1, into two parts which are respectively generalised
inverses of the components of (7.14) and which annihilate the other com-
ponent:

lpt ol p 1y g7
n n n mm

This leads to (7.13) as the choice of metric on the sample space. Instead

of £L and ¥ , we could equally use nE and %t—, but it is convenient to use

the unscaled versions.
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The choice of these two metrics (7.12) and (7.13) leads naturally to the

choice of matrices which represent most conveniently the identity operators on

the two spaces. On the sample space we choose

L = lm—p1m
since R(EX ) is the sample space, and LT leaves vectors in the sample

space invariant and maps m-component vectors outside the sampte space into

that space. On the contrast space, we choose

"E=1 -1 p’
E lm rnp
which is the transpose of the sample space identity. £ & maps m-component

vectors into a cross-—section of contrast space.

7.5.4 The score—functional subspace of contrast space In general the con-

trast space contains mappings by I  of the vectors of the sample space,
including the score—functionals (that is, the functionals giving the components

of the score vector)

which are the columns of P_1X. The score—-functionals span the score-

functional subspace ®P™'X) mod {1m}.

7.5.5 Orthogonal decompositions of sample and contrast spaces Let 9 be

a k dimensional subspace of the sample space, and fT# its m-k-1 dimensional
annihilator in contrast space. The columns of a matrix X (mx k) will be a

basis of T if they lie in F, X has rank k and 1m'X=0. Then T = R(X).

Similarly the cosets li*+{1m}’ i=1,..., m—k-1 will be a basis of 9'# if

the li* are the columns of a matrix L (mx (m-k-1)) such that L'X=0 and

[L|1m] has rank (m-k). Then ET# = R(L) mod(1m}.
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The variance matrix £ maps ET# into the orthogonal complement U of T

in sample space, relative to the metric I = P_1 —1m1 '

U will also have
dimension m—-k-1. For conciseness and emphasis, we say U is L -orthogonal

to 9. We prove this in the following iemma:

Lemma: T and U are L —orthogonal subspaces of the sample space.

Proof: By definition, 9 = R(X), ET# = R(L) mod {1m} and U = R(EL). Then for

any x € 9 and y € U, we have

k
x = Xw w € R
y = ELz Z ¢ th_kn1
Therefore

dx ,y> = XLy = wX'P ELz - wX’1 1 ‘ELz
m m

wX'Lz - wX'1 p'Lz - 0
m
=0

which proves the lemma. o

Thus we have the decomposition of the sample space into the direct

sum of I -orthogonal subspaces

#
0, )

T e U
1

R(X) & RO

RX) @ R(EL)

An equivalent situation holds in the contrast space. L maps T into

#

U , the k dimensional annihilator of U. Then

w=e@ 0 = 0
#

U and fT# are I-orthogonal complements of contrast space. This can be

shown by a proof analogous to that of the lemma above.
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Then in the contrast space, we have the decomposition into E-
orthogonal subspaces

'u#efr#

m¥*
R /701 )

e ' @ o Vol

®(P'X) ® RW) mod {1 )

These decompositions are summarised in Table 7.3

Since the cosets l‘.*+ {1m} are a basis of 9'# the columns of IL will be
a basis of 1U. Additionally we have the columns of X as a basis of 7.
Then since & and U are orthogonal complements in sample space, the
columns of X and IL will be a basis of sample space. Similarly the columns

of P_1X and L will be a basis of contrast space.

We note also that the inclusion of p with the basis for the sample

space gives a basis for Rm; similarly, the inclusion of 1m with the basis of

. i m#¥*
contrast space gives a basis of R .
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7.8 Decomposition theorem

In some sections of this chapter, we wish to decompose vectors in

sample space into components in  and U, or those in contrast space into

#

components in g'# and U . We therefore derive the decompositions of the
identity transforms of the sample and contrast spaces into projections onto
the relevant subspaces. Similarly we will need decompositions of the metrics

of the two spaces, the variance and information matrices. These decomposi-

tions are given in the fotlowing theorem.

Theorem: Let T be a k-dimensional subspace of sample space, and U is

m—-k-1 dimensional }Zm—orthogonal complement. Let ﬂ'# be the m-k-1 dimen-

sional subspace of contrast space which is the annihilator of 9, and 'u# the

k dimensional I-orthogonal complement of U in contrast space. Relative to

9 and U in sample space, and fT# and ’ll.# in contrast space, we have the

following decompositions

1. of the identity transform in sample space into idempotents

1. -p1 = xx'p o 'xp?

’ -1 ’ ’
m + TL(L'EL) L (lm. - p1m ) (7.15)

2. of the identity transform in contrast space into idempotents

1 -1 p" = PP ' %" + (lm—1mp')L(L'£L)_1L'): (7.16)

3. of the variance matrix

= xx’P 0 % + s (7.17)

4, of the information matrix

—1 [

Pl 11 = p e 0! !
m m

X'P o+

1

(lm—1mp') L(L'EL) 'L (lm—-p1m') (7.18)
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Proof: All four decompositions can be proved individually. However having
derived any one decomposition, the others follow from it simply by appropri-

ate pre— and/or post—multiplication. We shall do this and subseguently indi-

cate briefly how direct proofs can be given.

We consider the decomposition of the identity transform on sample
space

m_p1m.

into projections onto the subspaces 7 = ®(X) and U = R(IL). We suppose
= ’ = + .
lm p1m E1 E2 (7.19)

Then E1 is the projection onto 9 parallel to U, that is to say, the projection

whose range is R(X) and whose kernel is Q(X)l, where the perpendicularity is

—1 14

relative to the metric £ = P —1m1m One form which satisfies these

requirements is

E, XAX'E

XAX'P !
where A is a k x k matrix to be determined. Since E1 is a projection matrix,

it is idempotent:

xAx’P 'xax'P~! = xax'p”’
that is
AX'P 'xA = A
Since E1 must have rank k ( = dimension of R(X)), A must be nonsingular.

-1
Pre— and post-multiplying by A , and inverting, gives

A= xp !

Therefore

1 1

E, = xx'P o xp” (7.20)
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is the first required component of the identity transform.

Similarly we can deduce the form of E E, must be the projection

2’ 2
whose range is R(EL) and whose kernel is R(EL)-L, again with perpendicularity

defined relative to the metric £ . Therefore we can take
E. = TLAL'E(P -1 17
2~ mm
= ELAL (lm— p1m)

Since E2 is a projection, it is idempotent:

ILAL'(0_ -p1 DILAL'A_-p1 ") ILAL'A_-pt ")
m m m m m m

that is

AL (lm - p1m JELA

"
>

which reduces to

AL'ILA A .

Now IL has full column rank because L is carefully constructed to have no
linear function of its columns entirely in the null space of E. Hence L'EL is

nonsingular, and we can write

-1
A = (L'IL)

Therefore
E = FLL'EL) LA -p1 " (7.21)
2 m m

is the second component of the identity transform. Thus equations (7.19),
(7.20) and (7.21) give the first decomposition (7.15) of the theorem:

., s =t =1, -1
1 -p1. = XX'P X XP

’ _1 ’ ’
+ IL(L'EL) L (lm— p1m )
The other decompositions then follow from this one as follows!

-1
i. the identity transform in contrast space (7.16). pre—-multiply by P and

post—-multiply by P.
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the variance matrix (7.17): post—multiply by P,

the information matrix (7.18). pre—multiply by p.

This completes the proof of the theorem. [s]

An indication of the method of direct proof of the other three decom-

positions follows.

To deduce a decomposition of the identity in contrast space, we

proceed similarly to the proof above. For a supposed decomposition

1 -1 p’" = E¥ + E*
m rnp E1 E2

we note that E*{ must be the projection whose range is %(P_1X) and
whose kernel is Q(P_1X)l, while E’2“ is the projection whose range is

R(L) and whose kernel is R(L)'L. We then follow a similar argument to

that for the sample space.

To deduce the decomposition of the variance matrix, E, we can use
equation (7.19) to decompose a vector x of sample space into com-

ponents E_x and E2x. Since E and E are projections on £ -

1 1 2

orthogonal complements, consideration of the variances of x and its two

components gives, say,

We then have

):1 = V(E1x) = E1!:E1
}:2 = V(E2x) = E2£E2
and substitution for E1 and E2 from (7.20) and (7.21) gives the required

decomposition.
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For this decomposition, we note that

a. rank ( 21 ) = &k, rankv( }:2 ) = m~-k-1

b. 92(21) = R, 92(22) = R(EL),

c. I is a generalised inverse of t1, since

- I TUES TP SRUPRTRIS, IS IO
LEL, = XX'P X)) X(P -1 1 IXXP X)X

= x<x'P'1x)‘1x'

::1

d. Similarly, £ is a generalised inverse of 22.

iii. To decompose the information matrix, we note that the information

matrix is a generalised inverse of the variance matrix, and use the

decomposition of the variance matrix already derived:

r =Ef ¥

= N =
I (21 22)2

Substitution for }:1 and ):2 produces the required decomposition.

Equivalent decompositions for the multinormal distribution, with E

of full rank, were given by James (1973).
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7.7 Partitions of contrasts in parametric estimation

7.7.1 Introduction A contrast, that is, a linear function of the class proba-
bilities, can be used to highlight aspects of inference for grouped frequency
distributions. In a previous section we have discussed some linear function-
als which generate contrasts of interest in the present study of alcohol con-

sumption.

Typicaily in the estimation of contrasts from a set of data, one specifi-
cation is fitted and then all contrasts estimated using this specification. We
suggest that the assumptions made in using any specification are never per—
fectly satisfied, but may be better satisfied for some contrasts than for oth-
ers, and that the validity of assumptions made in estimating a contrast needs

to be examined for each contrast estimated.

As we have explained earlier, for mathematical convenience we subtract
some fixed probability vector, Py from p, and consider contrasts of the
form q¥ " (p - po) rather than q¥* "p. This leaves the variance of q¥ ' p

unchanged.

In this section, we will be using the decomposition theorem of the pre-

vious section to partition the nonparametric estimate

q* " (f - po)
of the contrast

* -

q* " (p-py)
into two components, one representing the parametric estimate

q* " (p-py)

of the contrast, the second component being an estimator of zero if we can
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assume that the parametric specification is correct.

By similarly decomposing the variance and information matrices, we can
get an indication of the extent to which the estimate of the contrast is

dependent on the values of the parameters, and the extent to which it is

dependent on the choice of model.

We begin by examining the partition of contrasts.

7.7.2 Partitions of contrasts We can approach this in two ways. via

decomposition of the sample space vector (f—po), or via the decomposition

of the linear functional g¥* of contrast space. We will show that both

approaches lead to identical results.

a. Sample space approach. The identity
f-py = (p-py) + F-p)
by the nature of the estimation process, decomposes the sample space vec-—

tor f—po into its projection on the tangent subspace R(X) and its £ -

orthogonal compiement, 92()()‘L or R(IL).

We can also effect an orthogonal decomposition of f—po using the
decomposition of the sample space identity transform derived in the previous

section (equation (7.15)):

(lm—p1m )(f—po) = E1(f—po) + E2(f—p0)

that is,

f—po ] E1(f—p0) + E2(f—po) (7.22)
where, by (7.20) and (7.21)

E, = xx'P 1) Ixp?
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- ’ _1 4 [
E2 = EL(L'EL) L (lm p1m) :

Thus
E,(f-py = XX'P 0T XP (4-p
1T Py’ = ~Po
which are the one-step approximations to the fitted values (7.11) from the

regression formulation of maximum likelihood estimation. Thus

E1(f—po) =P-Pgy -

Also we can write

Ez(f - po) {a - p1m') - E1} f - po)

m
= f—a

Thus the two decompositions of f—po are equivalent, and, in summary, we

have

=
|

R
1}

<6—p0> + (F-p)

Y
|
©

|

] - + -
E1(f po) E2(f po)
The first component lies in the tangent subspace R(X), while the second lies

in its £ —orthogonal complement.

We can then use these decompositions to partition the contrast

* ' (f - :
q* " (¢ po).
q¥* " (f - po) = q¥% "(p- po) + g% (f-p) (7.23)
* ' (f - = g%’ - + q*’ B
q* " (f po) q E1(f po) q E2(f po) (7.28)

We now show that we can arrive at the same result by decomposing the

linear functional q¥.

b. Contrast space approach. Since g* lies in the contrast space, we can

use the decomposition of the contrast space transform (7.16) to decompose

q¥*:
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- yg* = E¥g* + E¥g*
(lm 1mp )q E1q E2q

where

-1 - -
E? =P XX'P 1X) 1x'
= E1
-1
* = _ 4 r’ 4
E3 a -1.p JW(L'EL) L'E
= E2

-1
The first component is in the score—functional subspace, R(P X), while the
second component lies in its E-orthogonal complement, R(L) mod { 1m}.

We can then apply this decomposition of q¥* to (f-po):

. 14 (4 - - * * 14 . * 14 —
{(lm 1mp)q*} (f po) (E1q) f po) + (E2q*) (f po)

which vyields

q* ' (f-p,) q*'E*;'(f—po) + q*'Eg'(f-po)

* ' - * ' =
q E1 (f po) + q E2 f po)
which is equation (7.24). Thus the approaches from the sample and contrast

spaces are equivalent.

We put

* = E¥g* = E 'g*

a3 E1q ;9

* = E¥g¥* = ‘a*

q; = E3q E,a

and have, finally,
a*t’ (f-py = a* " (B-py + a*’ (F-p) (7.25)
= ¥ " (f_ t X I

qj f po) + qa; f po) (7.26)

Now q*'(f—po) is the nonparametric estimate of the contrast

q¥* ’ (p-po), and we have decomposed it into the parametric estimate

a* " (p-py = a¥ " (F-py)
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and a second component

* ' - D) = * - .
q¥ " (f - p) q; f po)
whose expectation is zero if we can assume that the parametric specification

is correct.

2
7.7.3 Partitions of x In the same manner as we partitioned the contrast

q*’ (f—po), we can use the decomposition theorem to partition xz. For x2 is
the quadratic form in y = f—po of the information matrix

nk = n(P_1—1 10
mm

that is

ra—1 ~ 2

Using egquation (7.18) we can partition this into two components

n(f—po)'P“(f-po> = n(f-p L (F-p) + n(f-p)) L (F-p) (7.27)

1

where

I, P xoxp o xp!

)

LLEL) L

with evaluation being at @ = 90. We then have a partition of xfn_1 into two
components. The first part, on k degrees of freedom, is a test of the devi-
ations of the parameter values from the maximum likelihood estimates, and,

A -1
at 6. = 0, will be zero (since X'P f =0

0 are the maximum likelihood equa-

k
tions (7.05)). The second component, on m-k-1 degrees of freedom, is the

usual x2 goodness—-of-fit test statistic, testing deviations of the data from

the model. This partition of x2 was given by Fisher (1963).

However this goodness-of-fit test is for the overall fit of the model,
and is not specific to any contrast. By considering partitions of the variance

matrix, we can derive tests of goodness-of-fit which relate more to
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particular contrasts.

7.7.4 Partitions of wvariance The variances of the components of the

decomposition (7.22) of f—po are given by the decomposition of the variance

matrix L from equation (7.17), that is

V(f - po) = V(E1(f - po)) + V(Ez(f - po))
or
1 1 1
— = a— + —
n.z nz1 n£2
where
L, = xx’P~ 0 %!
L. = FLOL'EL) L'E

2

Thus the variances of the contrast q¥%’ (f—po) and its components are

Vig* " (f - po)) V(q*1‘ "(f - po)) + \/(q‘,2 " (f - po))

1 . 1 ’ 1 '
* ¥ = Lg% * 4 * * .
q*¥’' L q q £1q q tzq (7.28)

which some simple algebra shows is equal to

1 1
= — ag¥'vTa¥ — Ry ¥
= 2 qa) Lq} + a3 Lq3 (7.29)
1
. * 14 . * 4 _ . _~ *' * . A
The covariance of aj (f po) and q; (f po) is T a) £q2, which is zero

since q*{ and q"z* lie in E-orthogonal subspaces of contrast space.

The two forms (7.28) and (7.29) correspond to the two approaches
taken above to the partition of g*’ (f—po), namely via the sample and con-

trast spaces, and are likewise equivalent.

7.7.5 Example Let us illustrate the foregoing ideas using the Busselton
data. Suppose our interest lies in the true mean consumption, and in the

average consumption per head in excess of 60 g/day. Then if we are unwil-

ling to make any assumption about the form of the distribution of consump-~
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tion, our estimates are the nonparametric contrasts

mean consumption q} '"f = 156.415 g/day

and

excess consumption q: "f£ = 0.250 g/day

where q;‘ and q: are as defined in Table 7.2.

We may however assume a parametric specification of the distribution,
perhaps because our belief is that the distribution is essentially "smooth”. A

two parameter lognormal distribution fitted to the data resulis in

9 = (u, 0) = (2.2717, 0.8529), xg = 4.64, (P =0.20)

Then our estimates of the mean and excess consumption are respectively

a¥ *p = 15.447 g/day
and
q¥ ’p = 0.359 g/day.

The question arises as to what effect our assumption of the two
parameter lognormal distribution has had on the estimates of the true values.
Using the foregoing theory, we can examine this by looking at the variances

of the components of the contrasts.

The mathematical framework we have set up has been, for mathematical
convenience, couched in terms of f—po and B—po rather than f and 6
However since the subtraction of the constant vector Py from f and 6 leaves
the variances of gq* ' f and q*'a unchanged, we can partition the contrasts
and their variances in accordance with equations (7.26) and (7.28) respec—
tively. This will give us two components, one concerned with the difference

of the parameter values from the maximum likelihood estimates, and the other
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concerned with the difference between the data and the model.

Since our interest lies in parameter values at the maximum likelihood

estimate, we take the fixed parameter 90 to be at the maximum likelihood

A

estimate, and evaluate the partitions at p0 = p. Table 7.4 gives the results.

Table 7.4

Components of q*’(f—po), evaluated at Py = 6, for two contrasts

Busselton data, two parameter lognormal model
(values in parentheses are variances x 1001)

»* ®(F *(fo ®7(F—
q q¥*'(f po) a) (f po) a3 (f po)
(10 30 50 70 90 110)’ -0.032 0.0 -0.032
"mean consumption” (169.948) (169.690) (0.258)
(0 0 0 10 30 50)° -0.108 0.0 -0.108
"excess consumption” (11.8186) (8.8675) (3.141)

Naturally, the first component

* 7 (f -
a3 f po)
of both contrasts is zero, since our evaluation is at p0 = 6, while the

second component

q; " (f - py)
has zero expectation, assuming an adequate model. This represents the
discrepancy between the nonparametric and parametric estimates of the con-
trast; that is, the effect of the assumptions of the model. For mean con-
sumption, this estimator of zero has a value of -0.032, while for excess

consumption, its value is more than three times this.
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Let us now look at the variances of the components. For the estimate
of mean consumption, only 0.15% of the variance of the nonparametric esti—
mate is ascribable to deviations of the model from the data, but for the
estimate of excess consumption, more than 26% of the variance of

q* ’ (f—po) is associated with this component.

While the assumption of the two parameter lognormal distribution may be
adequate for the estimation of the mean consumption, we must conclude that

its use for the estimation of excess consumption is less reliable.

7.7.6 Discussion In this section, we have shown that the nonparametric
estimate of a contrast can be partitioned into the parametric estimate and a
second component whose expectation is zero if we can assume that the
parametric specification is correct. We have achieved this by decomposing the
linear functional q* into components lying respectively in the EI-orthogonal

subspaces RP™'X) and 92(P—1X)'L of contrast space.

Suppose that the specification can be assumed to be only partly
correct. For example, when we make inferences on the upper tail of the
distribution, as we did with the excess consumption contrast in the example
above, we may be prepared to assume that the distribution is "smooth"” and
has an upper tail which can be reasonably graduated by the lognormal distri-
bution, but we may not be prepared to rely on the assumption that the dis-

tribution is strictly symmetrical on the logarithmic scale.

Then a component of q2 ! (f—po) may have non-zero expectation, and
hence a component of qg should be transferred to the part q‘: of q¥*
corresponding to the parametric specification. That is, a component of q’2“

should be transferred from R(P—1X)‘L to 92(P—1X). We would then be more
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confident that for the new reduced q"z", the expectation of q"2“ ! (f-—po) would

be zero.

In the next section, we will show that this can be done either by intro-

ducing the third parameter to the two parameter lognormal distribution, or,

almost equivalently, censoring the lower tail.
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7.8 Modifications of the two parameter lognormal distribution. a comparison

of adding a third parameter and censoring the lower tail

7.8.1 Introduction In parametric inference based on the two parametric log-
norma! distribution the inferences about the upper tail are influenced by the
frequencies in the lower tail, but one may have good reason to think that
these are essentially irrelevant. One may look for a mode of inference which
releases inferences about the upper tail from evidence in the lower tail which

is irrelevant to them.

We have previously noted various possible modifications to the two
parameter lognormal distribution which might overcome this problem of spuri-
ous information in the lower tail influencing the fit in the upper tail. In this
section, we consider two of them, namely, adding a third, threshold, param-
eter to the specification, and censoring the lower tail. We demonstrate quan-

titatively that the spurious information is removed by these methods.

We have shown that maximum likelihood estimation is equivalent to
iterated weighted regression. Thus fitting the two parameter model is
equivalent to regressing X@ + f~-p on p# and pa with P_1 as weight matrix.

This uses two degrees of freedom out of the total of m-1 available.

Fitting the three parameter distribution adds a third independent variable
into the regression, namely pr orthogonalised to p# and pa. This is
equivalent to fitting p“ and po with covariance on pr. The covariate uses an

additional one degree of freedom.

We can regard fitting the censored distribution as again equivalent to

regressing X0+ f-p on p# and po with covariance, but this time, as the
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covariate, we define, in a heuristic way, a vector of contrast space for each

degree of freedom lost through censoring, and map it into the sample space.

Using this covariance approach we can approximate the three parameter
and censored two parameter distributions in such a way that all three fitted
models have the same fitted probabilities and variance matrices. We can then
compare quantitatively the covariates, and the variance, associated with each

fit.

This we do by partitioning the nonparametric estimator
* ' .
g* ' (f Py )

and the corresponding variance into relevant components.

7.8.2 Relationship of the three parameter and censored two parameter log-—

normal distributions to the two parameter lognormal distribution Suppose we
fit a two parameter lognormal distribution, parameters u and 0. As we
showed in Section 7.4.3, this is equivalent to iterating the regression of
X0+ f-p on X, with P—1 as weight matrix. In this case, the matrix X is the
mx 2 matrix
L p}u P, ]

where p# and po are the vectors of derivatives of the probabilities p with
respect to u and o respectively. The tangent subspace, R(X), to the estima-
tion locus is therefore the vector space spanned by p” and po, a two
dimensional subspace, 57'2, of the sample space. Shortly, it will be con-

venient to have an orthogonal basis of T this can be generated by Gram-

2’

Schmidt orthogonalisation:
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where <u,v> is the inner product on the sample space, and |lull = <u,u>”.

Suppose we now consider a three parameter distribution with parameters
i, o and t. The estimation is equivalent, as above, to iterated weighted
regression on p#, pa and pr. The tangent subspace, 9'3, is the three dimen-
sional subspace of sample space spanned by these three vectors, and an
orthogonal basis is given by x#, xo as above, together with the component

of p_orthogonal to x and x
T M c

<p_x > <p_,x >
x =p -—E0 , _ T,
L T A T
g M

From an inferential point of view, it is useful to consider the regression

on pﬂ, pU and pr as a regression on p” and po with covariance on pr, the

two being equivalent. As we have noted, heuristically we would expect the
threshold parameter to be determined mainly by the information in the smaller
observations which, for this study, are of minor interest. The analysis of
covariance implies an analysis conditional on the covariate. By fitting the
third parameter we are covariancing out this information which will be associ-

ated with pr.

Since for a given sample vector f, the fitted probabilities depend upon
the tangent subspace R(xﬂ, x xr), the modification of the fitted probabilities
in going from a two parameter fit with tangent subspace R(x#, xo) to a three
parameter fit, depends upon the orthogonalised vector xr. The likeness of
two specifications with alternative third parameters r1 and r2 could be meas-
ured by the angle ¢, given by

x_ X >
on Wl E el R
e Il

1 Y

(7.30)
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between their orthogonalised vectors.

We next consider fitting a censored two parameter lognormal distribu-
tion, where in this case, we censor data in the lower tail. For grouped data
this is equivalent to combining two or more of the lower tail class intervals
and fitting a distribution to the resulting coarser class frequencies. Thus for

each class censored, an additional one degree of freedom is lost.

Now we can approximate this procedure by retaining the original m
classes, and for each degree of freedom lost by censoring, covariancing the
regression on a vector ¢ = Ic¥ in the sample space. As we successively
censor classes from the lower tail of the distribution, a suitable seguence of
orthogonal vectors c¥, c¢¥, ... in contrast space will be given by (assuming

1 2

equal class interval lengths)

c;‘=(—11ooo...0)'

c§=(-%—%1oo...o)'
c;=(—1/3 -1/3 -1/3 10 ... 0 )

Suppose we combine the first two classes. Then we have c*=c*1*

above. c¥* is mapped intc the sample space by I giving Ic* = ¢, say. As

for pT above, we can calculate the component of ¢ orthogonal to p# and pa

as
<C.xo> {c,x >
X = C - x - x
g lix 2 1
g M

Equation 7.30 then provides a comparison of the two alternative specifi—
cations (three parameter lognormal and censored two parameter lognormal) via

consideration of the angle between the two vectors xr and xc:



226

{x_, % >
¢
cos ¢ =0 e 1 (7.31)
ENEEN]

This represents the partial correlation of pr and c eliminating p“ and po.

7.8.3 Approximations to the three parameter and censored two parameter

distributions In demonstrating these ideas with numerical examples it is
necessary to be able to make direct comparisons between the different fitted
distributions. We are interested in comparisons of variances and information
at fixed arbitrary values of the parameters, but for the sake of interest,

choose typical values which arise from specific examples in practice.

Calculations which we need to make will in general involve the matrices
P, £, X and L. To compare the three distributions we make approximations
to the maximum likelihood solutions for the three parameter and censored two
parameter cases, so that the fitted probabilities, p, are the same as for the

two parameter fit. Thus P and I remain the same for the three distributions.

Let y2 and 0. be the maximum likelihood estimates for the two parame-

2

ter lognormal distribution. Then as an approximation to the three parameter

distribution, we take the three parameter distribution given by ;12, 02 with T =

0. The censored two parameter distribution is approximated by the two

parameter distribution given by “2 and o retaining the original m classes,

2'

and covariancing on the vector ¢ as explained above.

Then the vectors of orthogonal derivatives which constitute the columns

of the X matrix for each case are as follows:

two parameter distribution x X

approx. three parameter distribution X X x
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approx. censored two parameter distribn X x x
Hp 92

Denoting the maximum likelihood estimates for the three parameter distribution

as ;13, 03, r3, and those for the censored two parameter distribution as pc,

Uc’ the equivalent X matrices for these distributions have columns as follows:
three parameter distribution x x X

censored two parameter distribution le x

A (non-unique) L matrix can be determined once the X matrix has been

calculated.

Calculations were carried out using Matlab (Moler, 1878) running under

the Unix operating system on a DEC Vax 11/750 computer.

Adequacy of the approximations. We can use equation (7.27) for the parti-

tion of x.z to demonstrate that the approximations to the two distributions are
2
adequate. Table 7.5 gives the subdivisions of x for both the approximate

and the exact models, using the Busselton data.

Table 7.5

2
Partitionas of x for exact and approximate models

Busselton data

2 2 2
Model m k X4 xk X k-1
two parameter 6 2 4.643 0 4,643
three parameter 6 3 1.120 0 1.120
approximation 6 3 4.643 3.326 1.318
censored two param. 5 2 0.404 0] 0.404
approximation 6 3 4.643 3.978 0.665
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No value in the table is significant at P = 0.05,

Since both approximate distributions have the same fitted values as the
two parameter distribution, the total x2 values for all three are the same

2 which is

(=4.643). The exact distributions all show the zero component of X,

the component dependent on deviations from the maximum likelihood estimates
of the parameters. It is the third component, on m-k-1 degrees of freedom,
which is of chief interest however. This component tests the deviations of
the data from the model. In both the three parameter and the censored two
parameter cases, the value of this component is similar for both the exact
and approximate distributions. The ratio of the two values will be distributed

as an F variable on 2 and 2 degrees of freedom:

for the three parameter lognormal: 1.18 ~ F2 2

for the censored two parameter lognormal: 1.685 ~ F2 >

Neither of these values approach significance, and we conclude that the

approximations are adequate representations of the exact distributions.

For the three parameter case, this conclusion can be further illustrated

by calculating the angle, ¢, or "correlation” between the two vectors x. and

3
X, using equation (7.30). We find that
0
cos ¢ = 0.965, using P from the three parameter distribution
cos ¢ = 0.969, using P from the approximate three parameter distribution
i.e.

¢ = 15.3% or 14.3%
so that the two vectors are very nearly parallel, which confirms our previous

conclusion.
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7.8.4 Comparison_ of the distributions via the covariates Given, then, these

approximations, we can compare the three parameter and censored two
parameter lognormal distributions fitted to the Busselton data by calculating

the angle, ¢, between the two covariates xr and x_ again using equation

0
(7.30). The result
cos ¢ = 0.9835
giving ¢ = 10.4° or 0.182 radians, demonstrates that the two covariates are

very nearly parallel, and so the two distributions are very similar.

7.8.5 The removal of spurious information, part 1 Equation (7.26) parti-

tioned the nonparametric estimate q¥*’ (f—po) into the parametric estimate of
the contrast q*’(p—po) plus a component whose expectation can be

assumed to be zero if the parametric specification is correct:

q* " (f- Py) = 9] ! (f—po) + q’z‘ ) (f - py) (7.32)
with a corresponding partition of variances (equation (7.29))

lq*’t g* = lq*'t q¥ + lq "L q¥ (7.33)

n n 1 n 2 2
We now use these decompositions for each of the two parameter, three
parameter and censored two parameter lognormal distributions. As in the
previous section, we use an approximation in the latter two cases, so that
the total variance is the same for all three cases. Table 7.6 gives, for each
model, the (scated) variances of the components of equation (7.32), using the
Busselton data and the linear functional for "excess consumption”. (As a
comparison, the corresponding variances for the exact (maximum likelihood)

three parameter distribution are 6.897, 6.797, 0.100; for the exact censored

two parameter distribution the variances are 6.970, 8.818, 0.152.)
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Table 7.6

Variances (x n) of components of q*’(f—po)

Busselton data, q¥ = (0 00 10 30 50)’

Model component
*r _ *r - * _
q*’(f po) Q) (f po) qa; (f po)

two parameter 11.816 8.675 3.1414
approx. three parameter 11.8186 11.648 0.168
approx. censored two param. 11.816 11.659 0.157

We see that for all three models, the variance, V[q*’(f—po)]), of the
nonparametric estimate is constant. This is the result of approximating the
three parameter and censored two parameter distributions. The information
for this non-parametric estimate is given by the reciprocal of the variance,

i.e. n/11.816 = 84.72. We take this as a "base level” of information.

Estimates derived from parametric specifications will have decreased
variance, or equivatently, increased information, induced by the assumptions
implied by the specification. For the three specifications, this information is
given by the reciprocal of the variance of the first component, q*{'(f—po).

namely

two parameter 115.39
three parameter 85.94
censored two parameter 85.86

The increase in information for the two parameter model is markedly greater
than that for either of the other two models, where the information is very
close to that for the nonparametric estimate. It is this increase in information

which we claim is "spurious” information induced by unwarranted assumptions
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in the specification, that is, the assumption of strict symmetry on the log
scale. Thus both the three parameter and censored two parameter models

appear to have substantially eliminated the spurious information.

1t is of interest to compare this with the estimation of a contrast, mean
consumption, which is not so dependent on the upper tail. The corresponding

figures for the information are

two parameter 5.899
three parameter 5.895
censored two parameter 5.894

nonparametric 5.890

In this case the information for all three specifications is very close to that
for the nonparametric estimate; the two parameter lognormal may then be

considered a valid specification for this particular inference.

We will return to the removal of spurious information later, but firstly

we require a further decomposition of linear functionals.

7.8.6 Further decompositions of linear functionals Recall that the decompo-

sition theorem proved earlier gives a means of partitioning contrast space into

the direct sum of E-orthogonal subspaces

e = 2P % & =P 0l (7.38)
with dimensions respectively k& and m-k-1. Equivalently, sample space is

partitioned into the direct sum ):——orthogonal subspaces

P =RX) @ 92(X)'L .

For the moment, we confine our attention to the contrast space.
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The score-functional subspace, Q(P_1X), is spanned by the score-

functionals

P pe‘ i=1,....,k
L
which are the columns of P_1X. Thus a basis of this subspace is given by

the Gram-Schmidt orthogonalised vectors
i=1,....,k

In the case of the three parameter and approximate censored two parameter
lognormal! models we gave formulae for x , x , x, and X , X , X _in Sec-
[T 4 T Ir fog c

tion 7.8.2 above.

Thus we can further decompose the score functional subspace into I-
orthogonal components, one associated with each parameter of the model:

1 -1 -1
xo)eﬁ(P xe)e...QSR(P xe)

1 2 k

*P ) = kP

In the case of the three parameter lognormal distribution:

-1
R(P

-1 -1 -1
X)=RIP x)®RP x)@ RP x_)
u o T
Since our interest does not lie in u or o individually, we write xpo = [x” xo],

and have

2P 0 = P 'x ) @ *P 'x)
Ho T

Then the contrast space decomposition (7.34) can now be written, in an obvi-

ous notation,

_ -1 -1 -1 1
€ = RP X ) O RP x) & RP X)) (7.35)

and the previous decomposition of the linear functional q*

-1 ’ * = * 4 *
a p)q a3 al
becomes
- ’ = * * #*
(lm 1mp ) gq* q”m + 9, + aj (7.36)
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where
*
q1 Ho 1uo

and

* = g% *
q1r E1rq

-1 -1 -1_ .
’ *
P xr(xr P xr) x. 9
We can use equation (7.38) to consider further partitions of the non-
parametric estimator q¥% " (f - po), giving

¢ -— = * ’ — * - [4 _
q* " (f po) 9 4o £ po) L f po) + q; (f po) (7.37)

with an equivalent partition of the variance

1 p 1 ’ 1 P 1 ,
- q¥* ¥ = —g* * 4+ —q* * + —qg* * )
nq Lq nq tumq nq th nq t2q (738
where
’ -1 =1 ’
L =X X P X ) X
1uc Ho MO Mo file]
’ _1 _1 ’
Ih, E xr(xr P xT) x.

7.8.7 The removal of spurious information, part 2 We are now in a posi-

tion to examine further the apparent removal of information by the three
parameter and censored two parameter lognormal distributions demonstrated
above using the estimation of "excess consumption” for the Busselton data.
We do so by considering the decomposition (7.37) of the contrast

q* " (f- po).

In fitting a three parameter modet, the fit will make the first two terms
of the right hand side of (7.37) equal to zero, and under reasonable
assumptions, the final term will have expectation zero. However, had we

postulated a two parameter model, then only the first term will be made
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zero by the fit, and the last two terms will be combined. If we accept the
implied assumptions of the two parameter model, we are then accepting that
the expectation of this combined term is zero. That is, we are also accepting

that

* ree_ =
E[q1r (f po)J 0.
We believe that this is a very strong and guestionable assumption for the

case of inferences about the upper tail of the distribution of alcohol con-

sumption.

As before, the components of variance given in (7.38) will show the

magnitude of the importance of the estimates in (7.37).

These decompositions are also applicable to the censored two parameter

distribution. If we use the matrix of derivatives,

X =[x x x ]
uoc u o
for the approximate censored two parameter distribution, then the parallel is

obvious.

Table 7.7 gives details of these variance partitions for both models,

again using the Busselton data and the "excess consumption” linear func-

tionat.
Table 7.7
Further partitions of variances (x n) of q*'(f—po)
Busselton data, q¥ = (000 10 3050)°
Model component

*l _ ¥* 14 _ ¥ _ * _

q*’(f po) A 4o (£ po) aj . f po) q; f po)
two parameter 11.818 8.675 - 3.141
approx. 3 param. (x=T1) 11.816 8.675 2.973 0.168

approx. cens. 2 param. (x=c) 11.816 8.875 2.984 0.157
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In the previous section, we saw that for both the three parameter and cen-
sored two parameter models, the variance associated with the parametric esti-
mate q¥* ' (B—po) was increased, or equivalently, the information reduced, in
comparison with the same contrast from the two parameter model. Table 7.7
shows clearly that this increase of variance is associated with the covariates
xt and xc introduced respectively by the third parameter r, and by censoring
the two parameter distribution. Since for both these distributions the variance
associated with the covariate is R2 = 25% of the total variance, we would be
unwilling to accept the expectation of this term as zero, as would be
demanded by a two parameter specification. This is despite the fact that
that a x2 goodness—-of-fit test for the two parameter distribution gives a

non-significant result (see Table 7.5).

This value of R2 contrasts markedly with that obtained using the func-
tional qr (see Table 7.2) to estimate "mean consumption”. In that case, the
variance associated with the covariate is, for both modified distributions, less
than 0.1% of the variance of the nonparametric estimate. The variance of the
estimate of mean consumption derived from the two parameter distribution
accounts for more than 98.8% of the variance of the nonparametric estimate,
and we would have little hesitation in concluding that, for estimating this

particular contrast, the two parameter distribution was valid.

Further information is provided by the elements, and the norm or length

-1
of the vector q'%"r (or q*{c). This vector is the projection of gq* on R(P xr)l

¥ = E¥ g*
q1r E1rq

Since E;“T is a projection matrix which depends only on the specification and

not on q*, for a given specification the projections of two different qg¥*



236

vectors will be parallel but have different norms. Suppose that, for a given

ification, * nd
specificatio aq1r a

bq’;r are the projections on R(P_1xr) of the two

linear functionals q; and q’b‘. Then since the two are parallel, their elements

will be proportional

* = *
b3t = ¥ g%
for some constant k. Thus in considering the elements of q*;r, scale is unim-

portant, and the relative sizes of the elements of q’;r will indicate the nature

of the information the vector highlights; this will be the same for all g% vec-

tors, given a particular specification.

The magnitude of the norm of q:"r, in retation to the norm of q*;“a, will
indicate the importance of the inclusion in the specification of the covariate x.

Cor xc), and this will be different for different g¥ wvectors.

Table 7.8 gives the vectors q]’l"r for the three parameter distribution and
the approximations to the three parameter and censored two parameter distri-

butions, fitted to the Busselton data, scaled for convenience so that the

largest element is unity.

Table 7.8
Scaled vectors q:‘r for three lognormal specifications

Busselton data

approx. approx. cens.
3 param. 3 param. 2 param.
-.002 -.002 -.003
.050 .071 .084
-.182 -.335 ~-.432
-.082 -.182 -.084
.2M1 .138 .276

1.000 1.000 1.000
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From these vectors it is clear that q:‘r is very heavily weighted to
those frequencies in the upper tail. While generalisations from examinations
of particular data sets in such detail must be seasoned with caution, a gen-
eral interpretation is that q’1"1_ contrasts the upper tail frequencies against
those in the middle regions and lower tail of the distribution. Random fluc-

tuations in the data disturb this pattern only to a minor extent.

Thus, irrespective of which g* linear functional we consider, the addition
of the extra parameter T, or the censoring of the lower tail, serves to
weight the upper tail frequencies, and the estimation no longer rests on the

symmetry assumption implicit in the two parameter lognormal.

It is in considering the estimation of a particular contrast, that is, using
a particular linear functional q¥*, that the norm or length of the projection is
important. The norms are given by

b
* - *x 7 *
af ol = (a3 40 T 9y o)

and
¥
%1l = (q* ‘T q*
ai Il = (af "E a3
Table 7.9 gives the norms of q¥* and q*1“1_ (or qf'"c) for the linear

1uoc

functionals q: (excess consumption) and q;" (mean consumption) for the three

lognormal distributions. Also given is the ratio of the two norms, which is

1

We may note several points from the table.

the length of q*r if the projections are normed so that q‘;"po has unit length,

Firstly it confirms that the approximation to the three parameter distri-
bution is a reasonable one, as results for the approximate distribution agree

closely with those for the true maximum likelihood distribution. This was
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Table 7.9
Norms of projections of q¥ on ﬂ(P_1X”a) and R(P—1xr)

Busselton data

* d * * i
q model llaj Wll lla} i ratio
q: 3 parameter 2.212  1.379 .62
approx 3 parameter 2.945 1.724 .58
approx censored 2 param 2.945 .728 .25
q? 3 parameter 12.650 .084 .01
approx 3 parameter 13.027 .330 .03
approx censored 2 param 13.027 .382 .03

also confirmed by the previous table.

Secondly, it again demonstrates the effect of the approximations in
facilitating comparisons between the distributions, as, for a given linear func-
tion g%, both approximated distributions have equal length projections on
R(P-1xua). This is atso the norm of the similar projection for the two

parameter lognormal.

Finally, and most importantly, is a consideration of the ratios

*
lad Il
*
lla} |
For the excess consumption functionat, q:, both the three parameter and

censored two parameter distributions have a substantial projection on

P~

xr), while for the mean consumption functional, q;“, the norms of the
projections, which are associated with the covariates ><r or xc, are close to
zero. Again this demonstrates that while the two parameter distribution is a
valid distribution for estimating qr’p, the extra parameter, or censoring the

lower tail, are necessary to ensure validity for estimation of contrasts such

as q: * p which are concerned with the upper tail.
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7.8.8 Discussion and summary Alcohol researchers since Ledermann’s first
attempt in 1956 have attempted to find a single specification to describe the
distribution of individual alcohol consumption, and for use in making infer—

ences about the distribution.

Such a specification must necessarily be as simple as possible. As we
have seen in Part I of this thesis, alcohol consumption data is rarely avail-
able with more than six frequency classes. This means that often there is
simply not enough data to attempt to fit more complex specifications, such
as the log-hypergeometric, which may otherwise have more desirable

features.

Thus one of the commonly used specifications for the distribution of
alcohol consumption has been the two parameter lognormal. If after fitting
this distribution, a three parameter lognormal was fitted, but it was found
that the third parameter was not significantly different from zero (suppose it
was less than its standard error) then it may appear at first sight that the

two parameter fit was preferable on the grounds of simplicity.

But in choosing a specification, there are important considerations
beyond the goodness-of-fit, namely the reliance on questionable assump-
tions. Some of the assumptions underlying a specification may be reason-
able, e.g. that the distribution is "smooth”. Others may have neither
inherently compelling reasons nor factual foundation, but involve mere
assumptions perhaps adopted for convenience. Inferences depending heavily
upon unjustified assumptions will be suspect, and in some cases even
mischievous. These ideas are embodied in the relevance principle, as given

by Wilkinson (1977) after Fisher (1973). This principle requires that inferences
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involving uncertainty should use all relevant information, both guantitative and

qualitative, and exclude irrelevant or spurious information.

The two parameter lognormal distribution provides an example of
assumptions which may be unjustified. The distribution assumes a strict sym-
metry on the log scale. In making inferences about the upper tail, we may
not wish to rely heavily upon this assumption, even though the data do not
give significant evidence of it being violated. In the alcohol case, information

about the light drinkers may be being spuriously used to make inferences

about the heavy drinkers.

In exploring this situation we showed that the nonparametric estimate of
a contrast could be partitioned as
X’ _ = ¥ » _ ’ _
q¥* " (f po) qj f po) + qa; «f po)
into the parametric estimate plus an estimator of =zero. In using the

parametric estimate, we are depending on the specification to assume that the

second component has zero expectation.

The symmetry assumption of the two parameter lognormal appears to
invalidate the zero expectation of the second component for inferences con-—
cerning the upper tail. We have shown that for the estimation of a contrast
concerned largely with the centre of the distribution (the mean consumption),
the two parameter specification was adequate, whereas for a contrast con-—
cerned largely with the upper tail (excess consumption), a substantial propor—-
tion of the variance of the nonparametric estimate q*'f was not accounted for
by the parametric estimate q*'B of the contrast. This is an example of the
noncoherence principle (Wilkinson, 1977), in that the specification is valid for

one inference, but invalid for another.
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We have suggested two possibte modifications of the two parameter
lognormal to improve the situation, namely, adding a third parameter, or cen-
soring the lower tail of the distribution. Using a covariance approach to fit-

ting these distributions, we demonstrated their similarity.

To see the effect of the assumption of symmetry we demonstrated the
guantitative effects of removing it. In the estimation of excess consumption,
a contrast concerned particularly with the upper tail, either adding the third
parameter or censoring the distribution gave variances of the resulting
parametric estimates which were much closer to the variance of the non-
parametric estimate than was the variance of the two parameter estimate.
This increase in variance for the estimates from the modified distributions
corresponds to a dzl ease in information, as compared to the two parameter
lognormal, and we claim that the information so lost is spurious, being based
on the unwarranted assumption of strict symmetry of the distribution on the

log scale.

The third parameter, T, when added to the two parameter lognormal,
produces a covariate vector, pr, which transfers a component from
q"2" '(f—po) to q':" (f—po). The covariate vector ¢ introduced by censoring
the two parameter distribution has a similar effect. The component so
transferred is heavily weighted to frequencies in the upper tail, freeing the
estimation from the symmetry assumption implicit in the two parameter tognor-
mal distribution. Thus using either of these modified specifications, we are

more confident that the expectation of the new reduced q2 ! (f—po) is zero.

Thus, for inferences concerning the upper tail of the distribution of

alcoho! consumption, we have greater confidence in the validity of either the

three parameter lognormal or the censored two parameter lognormal distribu-

tion than we do in the two parameter lognormal distribution.



7.9 Fitting a distribution subject to a constraint on a linear function of the

fitted probabilities.

7.9.1 Introduction This section is not directly associated with the previous
sections of this chapter, but gives a related method of estimation of con-
trasts. While the previous sections have been largely concerned with the
tognormal distribution, the theory given here does not depend on any particu-

tar distribution.

We have been concerned with partitions of contrasts, which we can write

as

q* ' (f-py) = q*'(ﬁ—po) + Q' (f-p) .
As we have said, this partitions the nonparametric estimate of q*'(p—po)
into two components, the parametric estimate g¥* ' (B—po), plus a component
q*'(f-a) whose expectation is zero on the assumption that the parametric

specification is correct.

This leads us to consider fitting the parametric distribution constraining

the component q¥* ’ (f-a) to be equal to zero.

Suppose from survey results we were interested in estimating the
amount of alcohol consumed in excess of 100 g. per day. It may be known
that greater effort has been expended on interviews with respondents who
reported alcohol consumption greater than 60 g. per day (the "safe" limit,
a_ccording to some medical authorities), so there is reason to believe that
data above 60 g./day is more accurate than that in the rest of the distribu-
tion. Since the required inference concerns the extreme upper tail of the dis-
tribution, it is reasonable that we may wish to place greater weight on the

data in that area than on the rest of the data.
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In such a situation, we suggest that it may be appropriate to base the
inference on a distribution which has been fitted subject to the constraint that

A

q*‘'p=qg*’f
where in this case, q¥ represents the excess consumption above 60 g. per

day, that is, the linear functional q"e“ of Table 7.2.

The mathematics to achieve this is straightforward, using the iterated
regression formulation of maximum likelihood estimation given in Section 7.4.3,
and imposing the linear constraint by Lagrange multipliers. We give this in

the following section.

7.9.2 Fitting the model Section 7.4.3 showed that maximum likelihood esti—

mation can be regarded as iterative weighted regression of y = X6+ f-p on
X, the matrix of derivatives of the class probabilities with respect to the
parameters, with P_1 as weight matrix. The residual sum of squares from

this regression is then

(y-x0'P 1 iy-xo

Our approach is to minimise this subject to the linear constraint

q* ' (f-p) = 0.
Suppose we start the iterative process at @ = Or. Then we have

y, =X96 +7f-p, (7.39)

and the residual sum of squares is
rea=]
(yr_xror) Pr (yr_xrer) (7.40)
and the constraint is
* ’ - E
g* " (f pr) 0 .

Substituting for f—pr from (7.39), the constraint becomes



244

* ’ - =
q (yr xror) o . (7.41)
We use a Lagrange multiplier, 2\, to achieve the minimisation, and from (7.40)

and (7.41) write the residual sum of squares and the constraint as

4 -1 ’
(yr—Xr 9,,) P, (yr-—Xr Or) + 2xqg* (yr—xror) (7.42)
Differentiating with respect to Or and equating to zero gives
-2do "X ’P_1(y -X60) - 2)\d9 ‘X 'q%¥ = 0
rr.r r rr ror
Equating coefficients of 2d9r':
X 'P 1y —X0) = AX'g*
rir Y XO =A% 4
Expanding and rearranging gives the basis of the iterative scheme

6 =P )y xply - ax P X)) x g* (7.43)
r+1 r r r r r °r r r r r

Now substituting this value for 8 into (7.41) gives, approximately

9

-1, -1 - = =i
* ’ . 14 ’ _ r ’ * =
q (yr Xr[ (Xr Pr Xr) Xr Pr Y, >\(Xr Pr Xr) Xr g*l) 0

Rearranging this equation gives

’ ’ _1 —1 ’ _1 ’
* - qg*
q xr (Xr Pr Xr) Xr Pr y, - a*’y,

’ ’ —1 "1 4
* *
q Xr (Xr Pr Xr) Xr q

=i say
2
Thus from (7.43)
1, -1 -1 *1 “1, -1
6 = (X'P X)) X'P 'y -—X'P X)) X'q*
r+1 r r r r r °r 32 r r r r

which on substituting for Yy, from (7.39) yields

—1_ &1 -1 °1 -1 -1
- + 14 14 - L — r r *
0,4 =6, + XP X) X'P (f-p) Sz(xr P_X) X 'gq¥  (7.44)
where

, bo-ty =1 o1
= ¥* . * '
S, q Xr (Xr Pr Xr) err y, q y,

which we see, using equations (7.39) and (7.11)
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—g* (f-p)

and

»
I}

-4 -1
* I4 ’ ’ *
q* "X (X'P_X) 'X'q

vIg*'pl

We can now iterate (7.44) until & is arbitrarily accurate.

7.9.3 Example Table 7.10 gives a comparison of the maximum likelihood
two parameter lognormal distribution fitted to the Busselton data, and the fit

subject to the constraint

q* ' (f-p) = 0

where q* = (0 0 0 10 30 50)", ("excess consumption™).

Table 7.10

Comparison of maximum likelihood and constrained fits

Busselton data, two parameter lognormal, g*=(00 0 10 30 50)’

class max. likelihaod cogstrained 2ﬁt
int. f P X P X q*
0-20 .8032 .8020 .002 .8054 .006 0]
20-40 .1419 .1497 .408 .1535 .878 0
40-60 .0420 .0320 3.105 .0289 5.859 0
60-80 .0080 .0098 .042 0077 .199 10
80-100 .0020 .0036 .689 .0026 .135 30
>100 .0020 .0031 .398 .0019 .008 50

4.643 7.083

Starting with the maximum likelihood estimates of the two parameter distribu-
tion, the fit converged to its final solution rapidly. Parameter estimates were
determined to 4 decimal places after § iterations, and to 10 decimal places

after 10 iterations. The parameter estimates and their standard errors for the

two distributions are as follows.
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two parameter M= 2.2717, s.e. = 0.847
o = 0.85629, s.e. = 0.587
constrained fit u = 2.3147, s.e. = 0.908
g = 0.7910, s.e. = 0.623

An examination of the fitted values for the two distributions shows the effect
of the constraint. The fitted probabilities for the unconstrained fit consider-
ably overestimate the relative frequencies in the upper tail, where the amount
of data available to determine the fit is small. This is despite the fact that

the x2 value (4.64 on 3 degrees of freedom) is non-significant.

The situation has been improved however for the constrained fit. The
agreement between the fitted values and the relative frequencies for the two
uppermost classes has been substantially improved. The fit for the 60-80
g/day class has worsened, but the overall fit for these three classes has
been improved, as shown by a reduction in the sum of the components of x2

for those classes from 1.129 to 0.340.

The fit in the lower tail and the middle regions of the distribution is not

as good as for the unconstrained model, but as we have stressed before, in
the present application we are not primarily interested in these regions of the

distribution, but need to retain them as they contain most of the data.
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