MAN-COMPUTER GRAPHICS: CURRENT AND NEW HARDWARE IMPLEMENTATIONS

BY V. C. SOBOLEWSKI, B. E. (Hons.)

VOLUME I
INTRODUCTION AND APPENDICES

A THESIS SUBMITTED TO THE UNIVERSITY OF ADELAIDE
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
PREFACE

Several years ago, Ivan Sutherland, originator of the "Sketchpad" program, a milestone in Graphical Communication and Man-computer Interaction, listed "ten unsolved problems" confronting workers in the field of Computer-Graphics, of which

"...the first and biggest unsolved problem...is to build a low-cost display device suitable for on-line graphical use" (1).

Among the requirements of such an on-line graphics unit, he stated, are:

- geometrical fidelity and display precision
- short or "instant" response to any user modification
- direct user-input capability via a "pen" or "stylus"

including "pointing ability", by which certain features of the graphic display may be indicated to the computer for further consideration, by using the "stylus" or "pen".

The project, of which this thesis is the result, originally had as its topic a novel approach to Computer-aided-circuit-design, specifically the possibility of
using graphical methods for solving circuits with linear and non-linear elements. Immediately the problem mentioned by Sutherland arose. Without a "display device" with the aforementioned features, the project would at most have been a paper and pencil exercise. The real dilemma was economics. Existing commercial units with some of the above features had a starting price of around $20,000 - $30,000. It is not surprising then that the topic of the project was changed, namely to develop a low-cost Interactive Graphic Unit with (hopefully) all of the above features. To use existing approaches and techniques would have been merely to duplicate existing efforts and to duplicate (if not increase) existing costs. A wholly new and radical approach had to be taken.

The philosophy of the approach was to use existing components and devices and interconnect them (electrically and optically), into a new system, rather than to attempt to develop a new system from fundamentals (again economics would preclude the latter approach).

The proposed Interactive Graphics console is called "VIDIOGRAPHIC" (Video Integrated Display and Input Optical Graphic Interactive Console), the keywords being "Video" and "Optical", as TV techniques along with optical techniques are used to implement Input, Display, and Display Refresh Storage.

The major portion of this study was, quite naturally, performing feasibility studies of the proposed system; and since new concepts using existing devices were used, fundamental work in widely varying areas was done. System requirements had to be verified for satisfactory perform-
ance. Consequently a completely finished usable Graphics System was out of the question for a project such as a Ph.D. Thesis.

What resulted was very encouraging and rewarding. That a low cost Graphics System, based on a wholly new principle is feasible, is clearly evident. What is more evident is that more work needs to be done to implement this feasibility study into a useful system, or even a commercial system. This work must be left to others.

The apparent great length of the thesis is unavoidable. Since the concepts on which VIDOGRAPHIC is based are on principles which by themselves may not be wholly new, but which when integrated to form the system, are new, a full description of these principles and their interrelation with each other, was necessary; often, since some principles or existing systems were used for which they were not originally designed for, some trivial and some not so obvious explanations and calculations had to be done to demonstrate the feasibility of that feature in "VIDOGRAPHIC". Thus rather than concentrate in some detail on some aspect of a hypothetical Interactive Graphics Console, the Graphics Console itself had to be examined in detail to show its feasibility. Consequently paper calculations, at the expense of experimental realization, form the main body of the thesis.

The experimental work supporting it are those parts of the feasibility study which could not be proved or "demonstrated" on paper, namely the very important requirement of being able to precisely measure the distortion of the Display and Graphics Input Subsystems of "VIDOGRAPHIC". Other experimental work describes certain
very linear hybrid circuits required for the implementation of "VIDIOGRAPHIC".

The results presented here, both on paper and with hardware, indicate that a truly economic (< $2000) Interactive Graphics Console is feasible.

The other major portion of this thesis is a short review of the development and capabilities of Man-Computer-Graphics (MCG), by which is meant the solution of diverse problems jointly by a user and a computer, with the mutual communication and interaction during the problem-solving phase being in some graphical form. An overview of the technology of implementing MCG is also given, by describing the requirements and implementation of the Interactive Graphics Console (IGC), which is the link between the user and the central processor where the problem is being solved.

The aim of these two chapters is to indicate where the thesis work fits into the state-of-the-art of MCG and why the realization of an economic IGC is necessary. The requirements and current technology of the IGC is given to indicate requirements for the IGC proposed here, and to avoid duplicating any previous work.

PLAN OF THESIS

The Thesis is divided into four parts:

(i) Part 1 (Chapters 1-2) introduces the field of Man-Computer Graphics (MCG) and indicates the main problem areas in this field.

(ii) Part 2 (Chapters 3-10), forming the main body of the Thesis, describes in detail the theory and
feasibility of the proposed Interactive Graphics Console "VIDIOGRAPHIC".

(iii) Part 3 (Chapter 11) describes some of the experimental work and circuits required to implement "VIDIOGRAPHIC".

(iv) A set of Appendices, in which expressions and concepts used in the above chapters are derived and explained, conclude the Thesis.

Specifically the contents of the chapters are as follows:

Chapter 1 introduces the topic of Man-Computer Graphics, indicates the area of applications and the main problem areas. Appendix 1 tabularly indicates the wide range of applications of Man-Computer Graphics.

Chapter 2 describes the unit by which a user interacts with the computer during Man-Computer Graphics operation; this is the "Interactive Graphics Console" (IGC). Its requirements and performance parameters are listed and compared with existing implementations (Appendices 3-5). Main Computer - IGC interaction, as well as the software required for IGC, are briefly touched upon.

Chapter 3 introduces the proposed IGC, "VIDIOGRAPHIC", based on the novel idea of display refresh storage and user-input of graphics being implemented by optical means. The operation of "VIDIOGRAPHIC", its development, the subsystems required and the requirements for its feasibility are given. Briefly the system consists of a Display Subsystem (a CRT), an Graphics Input Subsystem
(a Vidicon and Light-Emitting Pen), a Storage Refresh Subsystem (the interconnected CRT-Vidicon), and a Schmidt Optical System (from existing domestic TV-Projection receivers) to implement graphics input and display refresh storage.

Chapter 4 examines the first of the major requirements for VIDOGRAPHIC, which is that adequate luminous flux be generated within the system (at the CRT screen) to be visible by the user on a viewing screen, and to be incident on the Vidicon faceplate to generate adequate output signal for maintenance of display refresh.

Chapter 5 examines the readout process from the Vidicon, as it is usually considered that Vidicons give uneven and poor quality output signals.

Chapter 6 examines the required optical system (the Schmidt Optical System from TV-Projection receivers), which enables simultaneous CRT screen viewing, and the imaging of this onto the Vidicon faceplate, and also enables user-input of graphics with a light-emitting pen. The source for the pen is obtained from the CRT screen itself.

Chapter 7 examines the second main requirement for "VIDOGRAPHIC", which is the ensuring of a steady display (otherwise the display would move out of the user's view within seconds, leaving a blank viewing area). This requires display points being relocated or "position corrected" each refresh cycle. The correction information to perform this location"position-correction"is obtained from Moire Patterns measurements, and then is encoded graphically in certain areas of the CRT scanned area. This graphic information is thus available each display-scan interval.
Chapter 8 describes the graphic correction decoding circuits and the correction-implementation circuits required to result in a linear (better than 0.25%) CRT and Vidicon.

Chapter 9 examines the primary causes of CRT and Vidicon display distortion, namely pincushion and barrel distortion, derives expressions for these and the means of correcting them. The circuits in Chapter 8 corrected "remanent distortion", i.e. distortion after pincushion or barrel distortion have been minimized or eliminated.

Chapter 10 concludes the feasibility study of VIDOGRAPHIC with a general overview of the system, advantages and disadvantages and the expected cost of the system. A comparison is made between the expected performance parameters of VIDOGRAPHIC with those required of an ideal IGC as enumerated in Chapter 2.

Chapter 11 gives the results of experimental work done towards realizing "VIDOGRAPHIC" and the various circuits of high linearity required to implement the scanning and the distortion correction circuits.

Much of the above work is original.

The concept of "VIDOGRAPHIC" is new, as is obviously the means of implementing it, specifically the methods of display distortion measurements (Moire patterns), the encoding of this distortion graphically as distortion correction information, and the associated means of implementing the correction.

The derivation of expressions for pincushion and barrel distortion, and defocussing in both the CRT
and the Vidicon have not been seen anywhere (other than in the most approximate forms), although possibly they have been derived elsewhere, as, for example, "anti-pin-cushioning" circuits are currently available commercially.

The light emitting pen and its CRT illuminating source is new in concept.

Expressions for the photocurrent buildup and decay time constants in the Vidicon have been derived and are original.

Phosphor buildup effects requiring derivation cannot be found in the literature and are thus considered original.

The Vidicon beam discharge effects of Chapter 5, have been extended in parts, on existing work; that whole chapter (Chapter 5) forms a comprehensive resume of all possible Vidicon signal output defects.

Finally, Chapter 2, though not original in content, at least performs the function of a fairly comprehensive review of existing hardware implementation of requirements and techniques associated with Man-Computer Graphics, as a comprehensive review such as this is lacking in the literature.

A note about notation. Since the thesis ranges over a wide range of topics, consequently many quantities, units etc. are mentioned in short separate sections; the definitions and notation for these is kept within the relevant section, as it is felt that a lengthy table of notation at the beginning of the thesis is not warranted under these conditions.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>1x</td>
</tr>
<tr>
<td>PREFACE including PLAN OF THESIS</td>
<td>1</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>1x</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>xxii</td>
</tr>
<tr>
<td>DECLARATION OF ORIGINALITY</td>
<td>xxxiv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xxxv</td>
</tr>
<tr>
<td>PART 1 -- MAN-COMPUTER GRAPHICS : GENERAL CONCEPTS</td>
<td>1</td>
</tr>
</tbody>
</table>

CHAPTER 1. MAN-COMPUTER GRAPHICS

1.1 INTRODUCTION -- THE ROLE OF MAN-COMPUTER GRAPHICS | 1 |
1.2 SHORT RESUME OF DEVELOPMENT OF MAN-COMPUTER GRAPHICS | 6 |
1.2.1 Early History | 6 |
1.2.2 "The Applied Approach" Design Augmented by Computer: DAC-1 | 8 |
1.2.3 "The Fundamental Approach-Project MAC, SKETCHPAD etc." | 10 |
1.2.3.1 Introduction | 10 |
1.2.3.2 Generality | 11 |
1.2.3.3 Form and Language Describing Graphical Information | 12 |
1.2.3.4 Hardware | 13 |
1.2.3.5 Implementation - SKETCHPAD I | 14 |
1.2.3.6 Later Developments at MIT | 15 |
1.2.4 Other Approaches to Man-Computer Graphics | 15 |
1.2.5 Summary | 16 |
1.2.6 Development of MCG | 17 |
1.3 MAN-COMPUTER-CIRCUIT-DESIGN | 18 |
1.3.1 Introduction | 18 |
1.3.2 Available Computer-Aided-Circuit-Design Programs | 20 |
1.3.3 Man-Computer Graphics Circuit Design (MCCD) | 21 |
1.3.3.1 Introduction .. 21
1.3.3.2 Characteristics of GIMA 22
1.3.3.3 Advantages and Disadvantages of GIMA 23
1.3.3.4 Other MCGCD Programs 24

1.3.4 Graphical Solution of Circuits 25
1.3.4.1 Problems of MCGCD 25
1.3.4.2 Device Modelling .. 26
1.3.4.3 Graphic Solutions of Circuits 27

1.4. CONCLUSIONS AND COMMENTS 29

Subscript ... 30

CHAPTER 2. THE INTERACTIVE GRAPHICS CONSOLE (IGC):
REQUIREMENTS AND EXISTING IMPLEMENTATION 32

2.1 INTRODUCTION ... 32
2.1.1 General .. 32
2.1.2 Interactive Graphics Console Functions 35

2.2 USER-DISPLAY INTERFACE ... 36
2.2.1 Requirements ... 36
2.2.2 Display Parameters .. 37
 2.2.2.1 Resolution ... 38
 2.2.2.2 Brightness and Contrast 39
 2.2.2.3 Flicker and Display Refresh 40
 2.2.2.4 Display Response Time 42
 2.2.2.5 Display Area Size and Placement in Relation to User 44
 2.2.2.6 Display Addressability and Repeatability 46
 2.2.2.7 Geometrical Fidelity of Display - Distortion 48
 2.2.2.8 Readability .. 50
 2.2.2.9 Halftones and Colour 51
 2.2.2.10 Hard-Copy Capability 52
 2.2.2.11 Optional Display Device Features 53

2.3 DISPLAY GENERATION .. 56
2.3.1 Introduction ... 56
2.3.2 Data Positioning .. 56
2.3.2.1 Random Positioning
2.3.2.2 Raster-scan Positioning
2.3.2.3 Typewriter or Textual-scan Positioning

2.3.3 Display Generation

2.3.3.1 General
2.3.3.2 Point Plotting Mode
2.3.3.3 Stroke-Writing Mode
2.3.3.4 Ramp-Writing Mode
2.3.3.5 "Stencil" or "Shaped-beam" Writing Mode

2.3.4 Alphanumeric Generation

2.3.4.1 General
2.3.4.2 Raster scanning character generation
2.3.4.3 Function-generated Alphanumeric Generation
2.3.4.4 Comparisons

2.3.5 Vector or Line Generation

2.3.5.1 General
2.3.5.2 Stroke Vector Generation
2.3.5.3 Ramp-mode Vector Generation
2.3.5.4 Raster Scan Vector Generation
2.3.5.5 Storage Properties of Displays

2.3.6 Other Graphics Operations

2.3.6.1 General
2.3.6.2 Pointer or "Picking"
2.3.6.3 Display Deletion or Erasure
2.3.6.4 Rotation
2.3.6.5 Scaling
2.3.6.6 Translation
2.3.6.7 Replication
2.3.6.8 Comments

2.3.7 Forms and Types of Available Displays

2.3.7.1 General
2.3.7.2 Cathodoluminescent Displays - CRTs
2.3.7.3 Electroluminescent Displays - E-L Panel Displays
2.3.7.4 Gas Electroluminescence - Ionization-Plasma Display Panels
2.3.7.5 Injection Luminescence - Light-emitting Diodes (LED Arrays)
2.3.7.6 Other Forms of Displays
2.4. USER INPUT INTERFACE

2.4.1 General.

2.4.2 Requirements of a User-Input Interface.

2.4.3 Input Interface Parameters

2.4.3.1 General
2.4.3.2 Resolution
2.4.3.3 Geometrical Linearity and Accuracy
2.4.3.4 Repeatability or Positioning Precision
2.4.3.5 Input Area Size
2.4.3.6 Input Response Time
2.4.3.7 Hard-Copy Capability.

2.4.4 Forms and Types of Available Input Devices

2.4.4.1 Teletype Keyboards and Function Keyboards
2.4.4.2 Two-dimensional Graphic Input Pads or Tablets
2.4.4.3 Light Pens
2.4.4.4 Cursors, Caret or Tracking-cursor Input Devices
2.4.4.5 Electro-mechanical x-y Digitizers
2.4.4.6 Photo-tube Input Devices
2.4.4.7 Hard-Copy Scanners.

2.5 GRAPHIC INFORMATION AND DISPLAY STORAGE

2.5.1 General.

2.5.2 Random Access Memories (RAMs)

2.5.3 Serial Access Memories (SAMs) or Cyclic Memories

2.5.3.1 General
2.5.3.2 Simple SAMs
2.5.3.3 Shift Register SAMs
2.5.3.4 Semi-serial SAMs

2.5.4 Direct View Storage Tubes (DVSTs).

2.5.4.1 Storage Tubes
2.5.4.2 Other Analog Storage Tubes.

2.5.5 Miscellaneous Image Storage

2.6 IGC SYSTEM CONFIGURATION

2.6.1 General IGC Configuration.

2.6.2 IGC-CPU Configurations.
2.6.2.1 General .. 106
2.6.2.2 Stand-alone or Single IGC Configurations 108
2.6.2.3 Multi-station Configurations 108
2.6.2.4 Peripheral or Interface Computer Configurations 109
2.6.2.5 Multi-station Multi-CPU Configuration 110
2.6.3 Analog Graphics Systems: ANTRIX 110

2.7 HARDWARE-SOFTWARE TRADEOFFS 110
 2.7.1 General .. 111
 2.7.2 INTERGRAPHIC - Efficient Tradeoffs 112

2.8 GRAPHICS SOFTWARE 113
 2.8.1 General .. 113
 2.8.1.1 Software Organization 113
 2.8.1.2 Graphic Data Structure 116
 2.8.2 General Purpose Graphics Language 117
 2.8.2.1 General 117
 2.8.2.2 Requirements of a General Purpose Language 117

2.8.3 Display Interface Software 120
 2.8.3.1 General 120
 2.8.3.2 Control Commands 121
 2.8.3.3 Vector Generation Commands.................... 122
 2.8.3.4 Alphanumeric or Text Commands 123
 2.8.3.5 Instruction Commands 123

2.8.4 User-Interaction Software 123
 2.8.4.1 General 123
 2.8.4.2 Interactive Languages 125
 2.8.4.3 Existing Software Systems 127

2.9 OTHER GENERAL CONSIDERATIONS 129
2.10 GENERAL CONCLUSIONS 130
PART 11 - FEASIBILITY STUDY OF THE PROPOSED INTERACTIVE GRAPHICS CONSOLE: "VIDIOGRAPHIC" 132

CHAPTER 3. THE PROPOSED INTERACTIVE GRAPHICS CONSOLE: "VIDIOGRAPHIC" ... 132

3.1 INTRODUCTION ... 132

3.2 GENESIS OF "VIDIOGRAPHIC" 133
 3.2.1 The Display Subsystem 133
 3.2.2 The Graphic Input Subsystem 134
 3.2.3 The Display Refresh Storage Subsystem 135
 3.2.4 The Optics Subsystem 136
 3.2.5 The Storage Process 136
 3.2.6 Brief Description of System Operation 137
 3.2.6.1 Optical Signals 137
 3.2.6.2 Electrical Signals 138
 3.2.6.3 Signal Requirements 139
 3.2.7 Signal Level Requirements 141
 3.2.7.1 Introduction 141
 3.2.7.2 Classes of Electrical Signals 142
 3.2.8 System Features 143
 3.2.9 Basic Requirements for Feasibility 144

3.3 BRIEF DESCRIPTION OF SUBSYSTEMS 144
 3.3.1 The Cathode Ray Tube 144
 3.3.2 The Vidicon TV-Camera 146
 3.3.3 The Schmidt Optical System 149
 3.3.4 The Light Pen and Projection Screen 150

3.4 OUTLINE OF FEASIBILITY STUDY 150
 3.4.1 Light Energy Transfer and Requirements 151
 3.4.2 Complete Photoconductor Scanning 151
 3.4.3 Measurement and Correction of Display Distortion 151
 3.4.4 Efficient Optics System 151
CHAPTER 4. LIGHT ENERGY REQUIREMENTS IN "VIDIOPHASIC"

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 LUMINANCE OF THE CATHODE PHOSPHOR</td>
<td>153</td>
</tr>
<tr>
<td>4.1.1 Introduction</td>
<td>153</td>
</tr>
<tr>
<td>4.1.2 Phosphor Luminance in CATs</td>
<td>154</td>
</tr>
<tr>
<td>4.1.3 Buildup Characteristics of "M" Phosphor</td>
<td>157</td>
</tr>
<tr>
<td>4.1.4 Spectrum of "M" Phosphor</td>
<td>159</td>
</tr>
<tr>
<td>4.1.5 Summary</td>
<td>160</td>
</tr>
<tr>
<td>4.2 ILLUMINATION INCIDENT ON VIDICON PHOTOCONDUCTIVE TARGET</td>
<td>161</td>
</tr>
<tr>
<td>4.3 SIGNAL BUILDUP IN VIDICON AND RESPONSE TO "M" PHOSPHORA:</td>
<td>163</td>
</tr>
<tr>
<td>4.3.1 Introduction</td>
<td>163</td>
</tr>
<tr>
<td>4.3.2 Exponential Rise and Decay of Photo-currents</td>
<td>166</td>
</tr>
<tr>
<td>4.3.3 Photocurrent Time Constants</td>
<td>163</td>
</tr>
<tr>
<td>4.3.4 Photocurrent Buildup</td>
<td>170</td>
</tr>
<tr>
<td>4.3.5 Vidicon Output Signals</td>
<td>173</td>
</tr>
<tr>
<td>4.3.6 Response to User-Specified Inputs</td>
<td>176</td>
</tr>
<tr>
<td>4.3.7 Summary</td>
<td>178</td>
</tr>
</tbody>
</table>

CHAPTER 5. BEAM DISCHARGE OF VIDICON PHOTOCONDUCTOR

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 INTRODUCTION</td>
<td>180</td>
</tr>
<tr>
<td>5.2 BEAM DISCHARGE EFFECTS</td>
<td>182</td>
</tr>
<tr>
<td>5.2.1 Introduction</td>
<td>182</td>
</tr>
<tr>
<td>5.2.2 Beam Impedance</td>
<td>184</td>
</tr>
<tr>
<td>5.2.3 Beam Discharge</td>
<td>185</td>
</tr>
<tr>
<td>5.3 PHOTOCONDUCTOR POTENTIAL STABILIZATION</td>
<td>187</td>
</tr>
<tr>
<td>5.3.1 Introduction</td>
<td>187</td>
</tr>
<tr>
<td>5.3.2 Dark Current Stabilizing Potential</td>
<td>187</td>
</tr>
</tbody>
</table>
5.3.3 Signal Buildup of New Display Information
5.3.4 Signal Lag after Erasure of Display
 Information
5.3.5 Magnitude of "Beam Discharge" or "Capacitive" Latency

5.4 MODIFICATION OF PHOTOCONDUCTOR STABILIZATION POTENTIAL DUE TO DEFLECTION

5.5 MODIFICATION OF PHOTOCONDUCTOR STABILIZATION DUE TO RETARDING MESH FIELD

5.5.1 Introduction
5.5.2 Beam Deflection Due to Retarding Mesh Field
5.5.3 Dark Current Asymmetry
5.5.4 "Edge Ripple" and "Flicker"
5.5.5 Scanned Area Edge Effects
5.5.6 Non-linearities in Scanning Waveforms
5.5.7 Thickness Variations in Photoconductor Target

5.6 REMARKS

5.7 SIGNAL-TO-NOISE IN VIDIGRAPH

5.7.1 Introduction
5.7.2 Noise due to illumination
5.7.3 Nett S/N at Output
5.7.4 Fault-free operating Interval

5.8 SUMMARY

CHAPTER 6. THE OPTICAL SYSTEM IN "VIDIOGRAPHIC":
DISPLAY, USER-INPUT AND LIGHT PEN

6.1 INTRODUCTION

6.2 THE USER-DISPLAY INTERFACE (UDI)

6.2.1 Requirements of the UDI
6.2.2 Luminance Requirements for the UDI
6.2.3 Transmissive Lens Projection Optics

6.2.3.1 Lens Projection Optics System

6.2.3.2 Lens Projection Optical Efficiency

6.2.3.3 Lens Projection Disadvantages

6.2.4 Reflective Mirror TV Projection Optics

6.3 SCHMIDT TV PROJECTION OPTICS

6.3.1 Introduction

6.3.2 Schmidt Optics System Operation

6.3.3 Advantages of Schmidt Optics

6.3.4 Disadvantages of Schmidt Optics

6.3.5 Optical Efficiency of Schmidt Optical System

6.3.6 Illumination Incident on Vidicon with Schmidt Optics System

6.4 THE USER-VIEWING DISPLAY SCREEN

6.4.1 Introduction

6.4.2 Requirement of Display Screen

6.4.3 Screen Performance and Transmission Gain

6.4.3.1 Introduction

6.4.3.2 Transmission Gain Coefficient

6.4.3.3 Actual Screen Transmission Gain

6.4.4 RCA Projection Unit Screen

6.4.5 Quality of Projection Screen Image due to Schmidt Optics

6.5 THE USER-GRAPHICS INPUT SYSTEM

6.5.1 Screen Requirements for User Light-Pen Input

6.5.2 Optical Image Superposition

6.5.3 The CRT Screen as a Reflecting Surface

6.5.4 CRT Screen Illumination due to Light Pen

6.5.5 Screen Reflections

6.5.5.1 Internal Screen Reflections and Loss of Contrast

6.5.5.2 Schmidt Optics Dimensions and Contrast Improvement
CHAPTER 7. DISPLAY DISTORTION: EFFECTS IN "VIDIOGRAPHIC", MEASUREMENT AND DISTORTION INFORMATION STORAGE.

7.1 INTRODUCTION

7.1.1 Scope of Problem

7.1.2 Display Distortion Effects

7.1.3 Permissible Distortion

7.1.4 Causes of Distortion

7.1.5 "Feed-Forward" Distortion Correction

7.2 DISPLAY DISTORTION AND EFFECTS

7.2.1 Introduction

7.2.2 "Display Location Transfer Curves" of VIDIOGRAPHIC

7.2.3 Modified "Display Location" Transfer Curve

7.3 MEASUREMENT OF DISPLAY DISTORTION

7.3.1 Display Distortion Measurement Requirements

7.3.2 Current Methods of Display Distortion Measurement

7.3.3 Distortion Measurement using Moire Patterns

7.3.4 CRT & Vidicon Distortion Contour Maps

7.4 THEORY OF DISTORTION CORRECTION in VIDIOGRAPHIC

7.4.1 Requirements of Display Distortion Correction

7.4.2 Methods of Distortion Correction

7.4.3 Vidicon and CRT Distortion Correction

7.4.3.1 CRT Distortion Correction

7.4.3.2 Vidicon Distortion Correction

7.5 STORAGE AND FORM OF DISTORTION CORRECTION INFORMATION

7.5.1 Distortion Correction Information Requirements

7.5.2 Standard Methods of Distortion Information Storage
7.5.3 Display Distortion Storage by Graphical Means. ..
7.5.4 Requirements of Graphical Information Storage.
7.5.5 Horizontal Correction Graphical Storage. ..
7.5.6 Dimensions of Graphics Storage Area. ..
7.5.7 Vertical Correction Graphical Storage. ...
7.5.8 Physical Implementation of Graphical Storage.
7.5.9 Graphic Storage for Larger Capacity Displays ..

7.6 SUMMARY ..

CHAPTER 8. DISPLAY DISTORTION: CORRECTION IN "VIDIOGRAPHIC".

8.1 VERTICAL SCANNING WAVEFORM GENERATION, STORAGE & CORRECTION.
8.1.1 Requirements ...
8.1.2 Implementation ...
 8.1.2.1 Vidicon Implementation ..
 8.1.2.2 CRT Implementation ...

8.2 HORIZONTAL SCANNING WAVEFORM GENERATION, STORAGE & CORRECTION - GENERAL ...
8.2.1 Introduction ...
 8.2.1.1 General ..
 8.2.1.2 CRT-Horizontal Coordinate Generation ...
 8.2.1.3 Vidicon-Horizontal Coordinate Generation
 8.2.1.4 Differences between H- and V-Correction

8.3 H- SCANNING WAVEFORM GENERATION and CORRECTION for VIDICON. ...
8.3.1 Interpretation of Graphic H-Distortion Correction Information
8.3.2 Variable Delay Shift Registers ..
8.3.3 H- Correction Implementation ...
8.3.3.1 Generation of H-Correction Control Signals
8.3.3.2 Variable Delay Shift Registers
8.3.3.3 Accuracy of Correction System

8.4 H-SCANNING LAVESROW GENERATION AND CORRECTION FOR CRT

8.4.1 Introduction
8.4.2 Interpretation of Graphic H-Distortion Correction Information
8.4.2.1 General Interpretation
8.4.2.2 Approximations

8.4.3 H-Correction Implementation
8.4.3.1 Introduction
8.4.3.2 Correction by Voltage controlled Astable Multivibrators (VCA)
8.4.3.3 Requirements of Correction Voltages for the VCA
8.4.3.4 Generation of Correction Voltages for the VCA
8.4.3.5 Distortion Correction within "Central" Distortion Region
8.4.3.5.1 Change of sign in Distortion
8.4.3.5.2 Change of Distortion slope in Central Distortion Region
8.4.3.6 "Unsymmetrical" Distortion Correction
8.4.3.7 Variable Delay Shift Registers
8.4.3.8 Synchronizing VCA pulses with H-System Timing
8.4.3.9 Summary of CRT - H-correction System

8.5 JOINT REQUIREMENTS FOR CRT AND VIDICON DISTORTION CORRECTION
8.5.1 Actual Form of H-coordinate Input for Correction
8.5.2 CRT - Vidicon Alignment
8.5.3 Finite vs Zero Distortion at Centres of Active Display Areas

8.6 GENERAL COMMENTS ON V AND H-COORDINATE CORRECTION

8.7 SUMMARY
CHAPTER 9. DISPLAY DISTORTION: CAUSES AND CORRECTION OF PRIMARY SOURCES OF DISTORTION

9.1 INTRODUCTION

9.1.1 General Requirements

9.1.2 Electron Optics

9.2 GENERAL CONSIDERATION

9.2.1 "Distortion" and "Pincushion" or "Barrel" Distortion

9.2.2 General Concepts of Beam Generation, Focusing and Deflection

9.2.3 Electron Beam Emission

9.2.3.1 The Electron Beam Emission System

9.2.3.2 Emission System Aberrations

9.2.4 Comparison between Electric and Magnetic Deflection and Focusing

9.3 FOCUSING DEFLECTION AND FOCUSING

9.3.1 Introduction

9.3.2 Requirements of CRT and Vidicon Focusing

9.3.2.1 CRT Requirements

9.3.2.2 Vidicon Requirements

9.3.3 Methods of Focusing

9.3.4 CRT Focusing and Correction

9.3.4.1 Defocusing due to Beam Length Variation

9.3.4.2 Defocusing due to Non-normal Landing of Beam

9.3.4.3 Conclusions

9.3.5 Vidicon Focusing Corrections

9.3.5.1 Vidicon Focusing

9.3.5.2 Defocusing due to Beam Length Variations

9.3.6 Vidicon Beam Landing Correction

9.3.7 Focusing Aberrations
9.3.7.1 3rd Order Aberrations.................. 437
9.3.7.2 Other Focussing Aberrations........... 438
9.3.8 Summary.................................. 440

9.4 DEVIATION OF ELECTRON BEAMS AND PUNCTUATION & BARREL
DISTORTION CORRECTION
9.4.1 Introduction............................. 441
9.4.2 CRT Distortion and Correction........... 447
 9.4.2.1 CRT Distortion...................... 447
 9.4.2.2 Distortion Correction............. 447
9.4.3 Vidicon Distortion and Correction...... 450

9.5 COMMENTS.................................. 458
9.6 SUMMARY.................................. 458

CHAPTER 10 "VIDIOGRAPHIC": SYSTEM OVERVIEW AND CONCLUSIONS 461

10.1 INTRODUCTION.................................. 461
 10.1.1 General Remarks......................... 461
 10.1.2 "VIDIOGRAPHIC" Subsystems Not Treated in
 Feasability Study....................... 462

10.2 "VIDIOGRAPHIC" AS AN ITC........................ 464
 10.2.1 "VIDIOGRAPHIC" Objectives................ 464
 10.2.2 "VIDIOGRAPHIC" Implementations of Objectives 464
 10.2.3 Additional Advantages of VIDOGRAPHIC...... 467
 10.2.4 The Realization of "VIDIOGRAPHIC"........ 468
 10.2.5 Physical Implementation of "VIDIOGRAPHIC" 472
 10.2.5.1 Required Subsystems............. 472
 10.2.5.2 Operating characteristics........ 472

10.3 "VIDIOGRAPHIC" PERFORMANCE.................. 475
 10.3.1 Introduction........................... 475
 10.3.2 Display Parameters...................... 475
 10.3.2.1 Resolution...................... 475
 10.3.2.2 Addressability................. 475
10.3.2.2 Addressability
10.3.2.3 Brightness
10.3.2.4 Contrast
10.3.2.5 Geometrical Linearity
10.3.2.6 Repeatability
10.3.2.7 Display Response Time
10.3.2.8 Size and Layout of Display Screen
10.3.2.9 Readability
10.3.2.10 Half-tones and Colour
10.3.2.11 Hard-copy Capability
10.3.2.12 Optional Features

10.3.3 System User-Input and User-Display Interaction

10.3.3.1 Introduction
10.3.3.2 Resolution
10.3.3.3 Addressability
10.3.3.4 Geometrical Linearity
10.3.3.5 Repeatability
10.3.3.6 Input Response Time
10.3.3.7 Input Area Size
10.3.3.8 Hard-copy Capability
10.3.3.9 General Input Subsystem Considerations

10.3.4 The Display Refresh Storage

10.3.4.1 Display Refresh Storage
10.3.4.2 Distortion Correction Information Storage

10.4 COSTING OF "VIDIOGRAPHIC"

10.5 POSSIBLE FUTURE DEVELOPMENT OF "VIDIOGRAPHIC"

10.6 GENERAL COMMENTS AND CONCLUSIONS

PART 3 EXPERIMENTAL WORK

CHAPTER 11 EXPERIMENTAL WORK AND SELECTED CIRCUITS

11.1 INTRODUCTION

11.1.1 General Remarks
11.1.2 Available Hardware and Test Equipment
11.1.3 Policy of Experimental Work

11.2 EXPERIMENTAL VALIDATION OF PHOTOMETRIC QUANTITIES

11.2.1 CRT Luminance

11.2.2 Vidicon Photocurrent and Electron Beam Landing Validation

11.2.3 Schmidt Projection Optics and Light Pen

11.3 EXPERIMENTAL WORK ON DISPLAY LINEARITY MEASUREMENT

11.3.1 General Remarks

11.3.2 Experimental Setup for "VIDOGRAPHIC"

11.3.3 Vertical Bar Generator

11.4 HORIZONTAL AND VERTICAL SCANNING CIRCUITS

11.4.1 General

11.4.2 Scanning Circuit Requirements and Design

11.4.3 Vidicon V-scanning Waveform Generator

11.4.4 Vidicon H-scanning Waveform Generator

11.5 FUNCTION CIRCUIT BLOCKS

11.5.1 General Remarks

11.5.2 Constant Stabilized Level Output Circuit (CEL)

11.5.3 Pulse Integrator (P.I.)

11.5.4 Discharge Circuit (D)

11.5.5 Voltage Controlled Monostable (VCM)

11.5.6 Voltage Controlled Astable (VCA)

11.5.7 Leading and Lagging Pulse Edge Indicator (LEI)
11.5.3 Schmitt Trigger .. 547
11.5.9 Current Amplifier 547
11.5.10 Voltage Supplies .. 547

11.6 TIMING AND CONTROL 547

11.6.1 Requirements and Design 547

11.6.1.1 Fundamental Timing Signals 547
11.6.1.2 Other Timing Signals 547
11.6.1.3 Display Location Coordinate Generation 547
11.6.1.4 CPU I/O ... 547
11.6.1.5 General Remarks 547

11.6.2 Implementation ... 547

11.6.2.1 The H- and V- counters 547
11.6.2.2 The Timing System Crystal Oscillator 547

11.6.3 Temperature Compensation 547

11.7 CONCLUDING REMARKS 571

PART 4 — APPENDICES .. 571

APPENDIX 1. APPLICATIONS OF MAN—COMPUTER GRAPHICS 571

TABLES: APPLICATIONS OF MAN—COMPUTER GRAPHICS 572

APPENDIX 2. AVAILABLE CIRCUIT ANALYSIS COMPUTER PROGRAMS A.5

AVAILABLE COMPUTER AIDED—CIRCUIT ANALYSIS PROGRAMS A.6

TABLE 1. COMPARISON OF SOME AVAILABLE CIRCUIT ANALYSIS PROGRAMS A.9

TABLE 2. SOME PRESENT MCC CIRCUIT DESIGN PROGRAMS A.11

APPENDIX 3. COMPARISON OF MAJOR CLASSES OF DISPLAYS 573

TABLE — COMPARISON OF MAJOR CLASSES OF DISPLAYS 574
APPENDIX 4. COMPARISON OF COMMERCIALLY AVAILABLE CRT DISPLAYS AND IGCS. A.14

TABLE 1. REPRESENTATIVE SELECTION OF "LOW-COST" CRT GRAPHICS TERMINALS. A.15

TABLE 2. REPRESENTATIVE SELECTION OF COMMERCIALY AVAILABLE IGCS A.16

APPENDIX 5. GRAPHICS INPUT AND POINTING DEVICES A.17

A.5.1 GENERAL A.18

A.5.2 BRIEF DESCRIPTION OF GRAPHIC INPUT DEVICES. A.18

A.5.2.1 GRAFACON A.18
A.5.2.2 SYLVANIA Data Tablet A.18
A.5.2.3 GRAF-PEN Graphic Tablet A.19
A.5.2.4 SORICON Graphic Tablet A.19
A.5.2.5 Voltage Pen (Rose) A.19
A.5.2.6 Voltage Pen 2 (Resistive Input Tablet) A.20
A.5.2.7 Magnetically-coupled Pen and Tablet A.20
A.5.2.8 "Touch Sensitive" x - y Positioner A.20
A.5.2.9 Surface-Wave Detection Pen A.21
A.5.2.10 "Pressure Paper" Device - Analog A.21
A.5.2.11 "Pressure Paper" Device - Digital A.21
A.5.2.12 "Touch-wire" Device A.21
A.5.2.13 Light-Pen or Light-Gun A.22
A.5.2.14 Light Pen for Plasma Display Panel A.22
A.5.2.15 Beam Pen A.22
A.5.2.16 Lincoln Wand A.23
A.5.2.17 S.R.I. "Mouse" A.23
A.5.2.18 "Joystick" or "Trackball" A.23
A.5.2.19 MIT "Crystal Ball" A.23
A.5.2.20 "Data-coders", x - y Digitizers A.24
A.5.2.21 "Rho-Theta" Transducer A.24

TABLES - GRAPHICS INPUT AND POINTING DEVICES A.25
APPENDIX 6 CRT AND VIDICON BEAM DEFLECTION

A.6.1 DERIVATION OF "&l" THE ELECTRON BEAM LENGTH INCREASE DUE TO BEAM DEFLECTION
A.6.2 FEASIBILITY OF USING VOLTAGE DRIVER VERTICAL DEFLECTION COILS IN CRT'S
A.6.3 DERIVATION OF CRT BEAM DEFLECTION AND DISPLAY DISTORTION - SUBMITTED PAPER
A.6.4 DERIVATION OF VIDICON BEAM DEFLECTION AND DISPLAY DISTORTION

APPENDIX 7. BEAM DISCHARGE IN VIDICONS

A.7.1 NATURE OF ELECTRON SCANNING BEAM
A.7.2 BEAM IMPEDANCE AND BEAM DISCHARGE TIME CONSTANT
A.7.3 VALIDITY OF USING A STATIONARY BEAM WITH Dwell TIME "d" WITH THE SCANNING BEAM
A.7.4 EVALUATION OF BEAM DISCHARGE EXPRESSIONS
A.7.5 BEAM BENDING DUE TO BEAM RETARDING FIELD
A.7.6 PREDICTION OF EDGE-FLICKER FROM STABILIZATION CURVES
A.7.7 DERIVATION OF TIME INTERVAL BETWEEN ERROR SIGNALS

APPENDIX 8. PHOTOMETRY AND OPTICS

A.8.1 PHOTOGRAPHY
A.8.1.1 Photometric Quantities - An Introduction
A.8.1.2 Luminous Flux
A.8.1.3 Luminous Intensity
A.8.1.4 Luminance, Brightness
A.8.1.5 Luminosity
A.8.1.6 Illumination

A.8.2 VIDICON SENSITIVITY
A.8.2.1 Introduction
A.3.2.2. Sensitivity of Vidicon Photocathode to "w" Phosphor Spectral Illumination.
A.3.2.3. Number of Photons per Foot-Candle of Illumination.

A.3.3. OPTICAL RELATIONSHIPS.
A.3.3.1. On-Axis Illumination from Source, .
A.3.3.2. Off-Axis Illumination from Source.
A.3.3.3. Lens Image Illumination.
A.3.3.4. Vidicon Lens Depth of Field.

APPENDIX 9. PHOSPHORS AND CATHODOLUMINESCENCE
A.9.1. PHOSPHORS AND CATHODOLUMINESCENCE:
A.9.1.1. Introduction.
A.9.1.2. Phosphors.
A.9.1.3. Phosphorescence.
A.9.1.4. Phosphorescence Decay.
A.9.1.5. CRT Phosphors.

A.9.2. PRACTICAL CRT LUMINANCE RELATIONSHIPS
A.9.2.1. CRT Output Luminance.
A.9.2.2. CRT Input Output Transfer Curve.

A.9.3. CRT LUMINANCE DECAY.
A.9.3.1. General Form of Luminance Decay.
A.9.3.2. Light Pen Illuminating Peak Luminance.

A.9.4. PHOSPHOR LUMINANCE BUILDUP.

APPENDIX 10. PHOTOCONDUCTIVITY
A.10.1. PHOTOCONDUCTORS AND PHOTOCONDUCTIVITY
A.10.1.1. Introduction.
A.10.1.2. Photoconductivity.
A.10.1.3. Photoconductor Properties.
A.10.1.3.1. Dark Current.
A.10.1.3.2. Spectral response.
A.10.1.3.3. Speed of response.
A.10.1.3.4. Photonsensitivity.
A.10.2 VIDICON MATERIALS FOR PHOTOCOUPONERS
 A.10.2.1 Introduction .. A.11
 A.10.2.2 Signal Current Considerations A.12
 A.10.2.3 Photostat Capactance A.13
 A.10.2.4 Photostat Thickeus A.13
 A.10.2.5 Maximum Reability of Photo-
 A.10.2.6 Photostat Resistance A.14
 A.10.2.7 PhotostatContacts A.14

A.10.3 EXPRESSIONS FOR PHOTOCURRENTS, DARK
 CURRENT, GAIN, Etc .. A.15
 A.10.3.1 Dark Current A.15
 A.10.3.2 Electron Mobility A.15
 A.10.3.3 Photoconductor Gain, "G" A.15

A.10.4 DERIVATION OF PHOTOCURRENTS (BUILDPAD AND
 DECAY TIME CONSTANTS) A.17

A.10.5 EVALUATION OF PHOTOCURRENT BUILDPAD AND
 DECAY ... A.17

APPENDIX 11. MEASUREMENT OF DISPLAY DISTORTION AND VIDICON
SCANNED AREA DISTORTION: MOIRE FRINGES A.17

A.11.1 INTRODUCTION .. A.17

A.11.2 DISTORTION CONCEPTS A.17
 A.11.2.1 "Location-to-Location" Distortion A.17
 A.11.2.2 "Relative" or "Cumulative" Distortion A.18

A.11.3 MOIRE PATTERN METHODS OF MEASURING DISTOR-
APPENDIX 12 TYPICAL TV-CRT AND VIDICON CAMERA SYSTEMS

A.12.1	INTRODUCTION AND REQUIREMENTS	A.175
A.12.2	TV-CRT SYSTEM	A.180
	A.12.2.1 VIDEO Amplifier Subsystem	A.181
	A.12.2.2 deflection Subsystem	A.181
A.12.3	VIDICON CAMERA SYSTEM	A.183
	A.12.3.1 VIDEO Amplifier Subsystem	A.184
	A.12.3.2 deflection Subsystem	A.184

APPENDIX 13 REPRINTS OF PAPERS AND MISCELLANEOUS

A.13.1	REPRINT OF PAPER, "COMPUTER PRACTICE - SIMPLI-	
	FICATIONS ON CRT, X.6942, X.786, & CORRECTION.	A.187
A.13.2	REPRINT OF PAPER IN "COMPUTER PRACTICE"	
	PINTER, 1962 - 73.	A.199
A.13.3	INVITATION TO PARTICIPATE AS A PANEL	
	MEMBER, CYBERMATIC "CONTRIBUTED PAPERS" AT	
	THE 1967 COMTRAN, NEW YORK.	A.202
A.13.4	COPIES OF DESIGN NOTES ACCEPTED FOR	
	PUBLICATION.	A.204
	A.13.4.1 "Linear Voltage Controlled	
	Astable and Monostable Using the	
	UL 914".	A.206
	A.13.4.2 "Pulse Leading and Lagging-edge	
	Indicator".	A.218
A.13.5	COPY OF SHORT DESIGN NOTE ACCEPTED FOR	
	PUBLICATION.	A.220
	"Low Voltage-Rail Voltage Controlled	
	Monostable".	A.222
A.13.6	MISCELLANEOUS LETTERS.	A.226

REFERENCES

- General Bibliography. R.2
- References. R
SUMMARY

"Man-Computer Graphics" may be defined as the solution of problems by a computer where, during some stage of data input, processing or output of results, data is manipulated or presented in graphic form; in addition, the user interacts with the computer on-line during one or more stages of data input, processing, or data output. The Man-Computer Interface enabling this is an "Interactive Graphics Console" or IGC.

One of the major current problems in Man-Computer Graphics is the absence of an economical and highly interactive IGC. By "economical" is meant low capital outlay for the IGC and low CPU tie-up time during use; and by "highly interactive" is meant the ability by the user to input graphic data easily, as say with a "pen" or "stylus", with very short response time, and the ability to interact with displayed graphics information.

A wholly new means of implementing such an IGC is described and its feasibility explored.

The name of the proposed system, "VIDIOGRAPHIC", (for Video Integrated Display and Input Optical GRAPHic Interactive Console) indicates the means used to implement this. TV techniques and commercially available equipment are used; optical methods are used to achieve user-graphics input, user-display interaction, and display refresh storage.

Basically the system consists of a TV Vidicon
camera looking back at its own output displayed on a CRT. Under certain conditions of CRT and Vidicons linearity and CRT luminance, a CRT display is self-maintaining. Graphics input and user-display interaction is achieved with a simple light-emitting "pen."

Calculations and feasibility studies indicate the practical feasibility of "VIDIOGRAPHIC." Means of implementing the proposed system and new circuit designs to achieve this are given.

A general overview of the Man-Computer Graphics field along with comprehensive hardware review of existing techniques are also given; in the poorly documented Man-Computer Graphics field these in themselves form a useful function. In this case they are also useful in comparing how "VIDIOGRAPHIC" meets the requirements of an economical and highly interactive IGC.