THE STRUCTURE AND FUNCTION OF THE RAT RETINA WITH
PARTICULAR REFERENCE TO THE ACETYLCHOLINESTERASE
SYSTEM IN THE INNER PLEXIFORM LAYER.
VOLUME I.

LEO SOSULA B.M.Sc. (Hons.)

Psychology Department
University of Adelaide
November, 1969.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary.</td>
<td>(viii)</td>
</tr>
<tr>
<td>Statement.</td>
<td>(xi)</td>
</tr>
<tr>
<td>Acknowledgements.</td>
<td>(xii)</td>
</tr>
<tr>
<td>1.10. Introduction.</td>
<td>1.</td>
</tr>
<tr>
<td>1.20. Optic Nerve and Ganglion Cell Layers.</td>
<td>2.</td>
</tr>
<tr>
<td>1.30. Inner Plexiform and Bipolar Layers.</td>
<td>6.</td>
</tr>
<tr>
<td>1.40. Outer Plexiform and Bipolar Layers.</td>
<td>22.</td>
</tr>
<tr>
<td>1.50. Photoreceptor Inner Segments and Somata.</td>
<td>37.</td>
</tr>
<tr>
<td>1.60. Photoreceptor Outer Segments.</td>
<td>47.</td>
</tr>
<tr>
<td>1.70. Reasons for studying the Ultrastructure of the Inner Plexiform Layer.</td>
<td>52.</td>
</tr>
<tr>
<td>2. Routine and Quantitative Ultrastructural Techniques</td>
<td></td>
</tr>
<tr>
<td>2.10. Routine Ultrastructural Techniques.</td>
<td>56.</td>
</tr>
<tr>
<td>2.11. Preparation of the Tissue.</td>
<td>56.</td>
</tr>
<tr>
<td>2.13. Dehydration.</td>
<td>57.</td>
</tr>
<tr>
<td>2.15. Section-cutting.</td>
<td>60.</td>
</tr>
<tr>
<td>2.16. Uranyl acetate staining.</td>
<td>61.</td>
</tr>
<tr>
<td>2.17. Lead citrate staining.</td>
<td>62.</td>
</tr>
</tbody>
</table>
2.18. Chronic DFP Treatment. 63.
2.19. Chronic Occlusion. 64.
2.110. Aldehyde Fixation. 65.
2.20. Quantitative Ultrastructural Techniques. 66.
2.21. Preparation of Retinal montages. 66.
2.22. Incidence of Synapses in the Inner Plexiform Layer. 68.
2.23. Synaptic Vesicle Diameters in processes at bipolar dyads and in receptor terminals. 69.
2.24. Synaptic vesicle concentrations in processes at bipolar dyads and in receptor terminals. 73.
2.25. Relative Vesicular Volumes in Processes at Bipolar Dyads and in receptor terminals. 74.

3.10. Introduction. 77.
3.20. Ultrastructure of the Bipolar Layer of the Rat Retina. 81.
3.21. Amacrine Somata. 82.
3.22. Bipolar Somata. 84.
3.23. Müller Somata. 86.
3.32. Amacrine Processes. 96.
3.34. Müller Processes. 100.
3.36. Synapses in the Outer Third of the Inner Plexiform Layer of the Rat Retina. 102.
3.310. Dyad Synapses. 110.
3.40. Ultrastructure of the Middle Third of the Inner Plexiform Layer. 117.
3.41. Amacrine Processes. 118.
3.42. Bipolar Processes. 120.
3.43. Presumed Ganglion Cell Dendrites. 122.
3.44. Presumed Amacrine-ganglionic Axo-dendritic Synapses. 123.
3.45. Serial Synapses. 125.
3.46. Summary. 126.
3.51. Bipolar Terminals. 128.
3.52. Amacrine Processes. 130.
3.53. Presumed Ganglion Cell Dendrites. 132.
3.54. Müller Processes. 135.
3.56. Neural Contacts on Ganglion Somata. 138.
3.57. Amacrine Synapses. 141.
3.60. Fine Structure of Ganglion Cell Layer. 143.
3.63. Intercellular Relations of Ganglion Cell Somata. 149.
3.70. Ultrastructure of Optic Nerve Fibres in the Retina. 151.
3.81. The Neuropil Stratum. 155.
3.82. The receptor terminal stratum. 158.
3.84. Receptor Somata. 161.
3.90. Discussion. 162.

4.10. Introduction. 172.

4.23. Comparisons on the Number of Probable Synapses in the Inner, Middle, and Outer Thirds of the Inner Plexiform Layer. 183.

4.30. A Quantitative Study on Vesicle Diameters in Neural Processes of the Rat Retina. 186.

4.31. Variation of Vesicle Diameters among Processes of the same morphological type. 188.

4.33. Variation in Mean Vesicular Diameters amongst different Retinae. 193.

4.50. Volumes of Vesicles per Unit Volume in Amacrine, Bipolar, Presumed Dendritic, and Receptor Processes. 196.

4.60. Discussion. 198.

5. Effect of Chronic Diisopropylfluorophosphate Administration on the Ultrastructure of the Retina.

5.10. General Effects. 208.

5.30. Effect of Chronic DFP Administration on Vesicular Diameters of Neural Processes in the Rat Retina. 215.

5.40. Effect of Chronic DFP Administration on the Vesicular Concentration of Neural Processes in the Rat Retina. 216.

5.41. Effect of Dosage of DFP on the Vesicular Concentration of Neural Processes in the Inner Plexiform Layer. 218.

5.42. Effect of Duration of DFP Administration on Vesicular Concentrations of Neural Processes in the Rat Retina. 219.

5.50. Effect of Chronic DFP Administration on the Relative Volume of Vesicles in Neural Processes of the Rat Retina. 220.

5.60. Discussion. 221.

6.10. General Effects of Chronic Occlusion on Retinal Ultrastructure. 224.

6.40. Effect of Chronic Occlusion on the Vesicular Concentration of Neural Processes in the Rat Retina. 231.
6.41. Effect of Duration of Chronic Occlusion on the Vesicular Concentration. 232.

6.50. Effect of Chronic Occlusion on the Relative Volumes of Neural Processes in the Rat Retina. 234.

6.60. Discussion. 235.

7.10. Introduction. 240.

7.20. Materials and Methods. 245.

7.21. Dissection. 245.

7.22. Karnovsky Technique for Ultrastructural Demonstration of Cholinesterase Activity. 245.

7.23. Lewis & Shute's Technique for Ultrastructural Demonstration of Cholinesterase Activity. 248.

7.30. Some considerations of the Rationale for Demonstrating Ultrastructural Cholinesterase Activity. 251.

7.40. Results. 256.

7.41. Interpretation of cholinesterase activity in Control Preparations. 256.

7.42. Ultrastructure of Control Retinae. 258.

7.43. Ultrastructure of Retinae incubated in a medium containing Butyrylthiocholine. 262.

7.44. Ultrastructure of the Acetylcholinesterase Reaction. 264.

7.50. Discussion. 270.

References. 279.
Summary

The ultrastructure of the rat retina, with particular reference to the inner plexiform layer (IPL), was studied with osmium and aldehyde-osmium fixation, and with methods for cytochemical localisation of acetylcholinesterase. Investigations were undertaken on effects of chronic administration of the anti-cholinesterase diisopropylfluorophosphate (DFP), and chronic occlusion of the eye on retinal ultrastructure.

The IPL contains neural processes of amacrine, bipolar, and ganglion cells, and glial (Müller) processes. Processes were traced to somata in fortuitous montage sections.

Type 1 amacrine processes were up to 3μ in diameter, and resembled structurally amacrine perikarya. Type 2 amacrine processes were 0.3 - 0.7μ in diameter, radially oriented, forming synaptic expansions en passant, giving origin to collaterals, also with expansions. Type 2 amacrines formed conventional synapses onto bipolar, ganglionic and other amacrine processes, onto amacrine and ganglion somata, and formed spine and serial synapses.

Bipolar processes traversed the IPL, forming terminal expansions 1 - 5μ in diameter near the ganglion somata.
which they occasionally contacted. These contacts were characterised by tight-like junctions without synaptic vesicle clustering. Bipolar processes formed synapses chiefly at synaptic ribbons onto pairs of postsynaptic processes called dyads. In 73% of dyads, both processes were vesiculated. One process of the dyad pair could be identified as an amacrine by its reciprocal synapse back onto the presynaptic bipolar process. The other dyad process, when vesiculated, contained vesicles which were significantly larger and less concentrated than in the adjacent amacrine, and was presumably a ganglion cell dendrite. Occasionally "classical" dyads were also seen. The incidence of amacrine and bipolar synapses in the IPL was $0.062 - 0.114/\mu^2$ and $0.008 - 0.015/\mu^2$, respectively. A subdivision of the IPL into thirds showed a significantly higher incidence of amacrine synapses in the middle third than in either outer or inner thirds. However, incidence of amacrine-bipolar synapses was highest in the inner third. Results are discussed in terms of comparative ultrastructure and retinal lateral interaction.

Chronic DFP administration caused significant increases in the incidence of amacrine synapses in the IPL, and in the vesicle concentrations of amacrine,
bipolar, and receptor processes. Evidence suggests effects were dependent on dosage rather than duration of DFP treatment. Findings are discussed in terms of the cholinergic vesicle hypothesis.

Chronic occlusion resulted in a significant increase in incidence of amacrine synapses and in vesicular diameters of processes in the IPL.

Acetylcholinesterase enzyme product was highly concentrated in intercellular spaces of the IPL. Intracellular enzyme product was seen in the nuclear envelope and endoplasmic reticulum of ganglion, amacrine, and bipolar somata, and in neural processes of the IPL. Small amounts of product were seen in the outer plexiform layer, presumably associated with the dendrites of bipolar cells. These findings confirm and extend previous light histochemical studies. The rationale underlying recent techniques for localising acetylcholinesterase activity with the electron microscope was evaluated.