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SUMMARY

This thesis presents the solution to the diffraction off the
edge of a partition by using the theory of geometrical diffraction.
The partition is placed along the medial’ plane of symmetry of a dis-
tributed radiating system in ordef to produce navigational patterns
free of false courses. The solution has been obtained for the general
case of two line sources and two apertures with a propagation normal

to or at an oblique angle with the edge of the partition.

Three experimental models haQe been used to verify the diffrac-
tion solution. They are: two slot dipoles, two travelling wave slot
lines and two parabolic cylinders having each a slot line at its focal
line. The slot line is a new type of leaky wave slot antenna whose
characteristics have been analysed by solving its transverse resonance
equation. The new slot line has been shown to possess some interest-
ing properties viz. low characteristic impedance, beam shaping and

sidelobe suppression.

The theoretical and experimental results have been found to
agree reasonably well. Navigational patterns free of false courses

can be produced when the partition is sufficiently high.
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INTRODUCTION

The work presented in this thesis consists of three major parts:

(a) The sclution for the diffraction off the edge of an E plane
or H plane partition in the plane of symmetry of two identical

source distributions.

{(b) The analysis for a new type of a slot antenna which can be
used as a ground based antenna or a feed for a parabolic’

cylinder.

{(c} The experimental verification of the diffraction soluticn
using the slot antenna as a suitable line source and a parabolic

cylinder as a suitable aperture.

The idea of using a partition in a system of two identical
source distributions has been investigated in an effort to produce
navigational patterns free of false courses. The basic idea under-
lying the principle of navigation Without false courses i1s to arrange
for the nullsand sidelobes of the sum and difference patterns to line
up one by.one. In such an arrangement the product of the sum and
difference patterns will have the same sign everywhere on either
sides of the main null of the difference pattern, thus the instructio

for an aircraft to gc right or to go left according to the sign of th



product is not ambiguous and no possible false courses could result.
Since any horizontally polarized source will have a positive image
in an H plane partition, such a partition has no éffect on the sum
pattern but could create a sharp null in the difference pattern with

the sidelobes exactly the same as those of the sum pattern.

Diffraction off the edge of the partition has no effect on the
sum pattern but is a deciding factor in the difference pattern since i
has been found that an electromagnetic wave polarized at right angles
to the partition'bends round the corner' much more than a wave polar-
ized parallel to the partition. The solution for this diffraction
problem has been obtained using the extended cylindrical wave fcormu-
lation of the geometrical theory of diffraction. The two dimensional
and three dimensional cases of two line sources and two apertures hav
been treated in detail for normal as well as oblique incidence to an
H plane partition. The advantages of the geometrical theory of dif-
fraction are the fact that rays are easier to visualize and the
expressions for the diffracted field are given in terms of well
tabulated functions which could be programmed on a digital computer.
The diffracted field is _found to consist of the incident and reflecte
components. These components are dominant aleng the corresponding
shadow boundaries and .thus help removing the discontinuities left by

the incident and reflected field.



A suitable line scouxrce which could be used to verify the above
solution is a new type of slot antenna. It is virtually a strip line
backed by a cavity. This .slot antenna has a velocity of propagation
very close to.that of light. Its characteristics have been analysed
using the technique of .transverse resonance. Sidelcobe suppression,
beam shaping, low characteristics impedance, wide bandwidth if used
as a travelling .wave antenna.and multimode operation.are among its
interesting potentialities. The .problem of a .parabolic cylinder
using such.a slot line as a feed at its focal length has also been
carefully studied. The conical wavefront arcund the slot line can
be assumed at a distance as close as 0.34 from the source without any
serious errors.. The behavicur of a parabolic cylinder has been
shown experimentally not to differ much from an approximate cornexr
reflector. Tﬁis is a.very useful property in the construction of such

an antenna system.

The diffraction.solution has been put .to test by using tws slact
dipoles, two slot lines.and two apertures. The experimental results
tend to show'reasonably good agreement in all three cases. It appears
from the theoretical and experimental results that the partiticn will
be prohibitively high for present aircraft navigational systems how-

ever the study may have some useful application in future microwave



systems. Scme efforts have also been made to suppress the edge
diffraction in the difference pattern and the idea of using a sict
in the partition seems to give some suppression in the difference

pattern and at the same time leaving the sum pattern unchanged.
The presentation of the thesis is as follows:

The diffraction problem which arises out of the study of navi-
gational patterns free of false courses is presented and its
physical implication is described in chapter one. The possible

methods of solution are alsc discussed here.

The solution to the diffraction problem using the geometrical
theory of diffraction is given in chapter two with a special emphasis
on the H plane partition because of its pctential applicaticn in

aircraft navigational systems.

The line source and aperture have been studied in chapter three
as materials for verifying the sclution for the diffraction problem.
Extensive studies have been made to the new slot antenna as well as

the parabolic cyiinderc

The experimental verification is given in chapter four. The
three models are described and the technique of measurement is dis-

cussed. The theoretical results are plotted against the experimental



ones to verify the solution for the diffraction problem.

The conclusion includes a brief discussion on the diffraction
solution, the slct antenna, and its broadband feeding, the suppres-
sion of the edge diffraction and the potential application of this

work .



CHAPTER ONE

THE PROBLEM

The prcblem of diffraction coff the edge of a partition separa-
ting two identical antenna systems arises out of the study of a
navigational system free of false courses. In this chapter, the
principle of navigation free of false courses [1l] is briefly ex~-
plained tecgether with some of its areas of application. The dif-
fraction problem and its methods of solution are presented in
general terms here to act as a prelude to the detailed solution

later.

1. NAVIGATION FREE OF FALSE COURSES

To provide successful lateral guidance for a flying aircraft,
a localizer should have an antenna system with a hybrid feed arrange-
.ment the basic unit of which is shown in Fig. 1. The LHS antennas
are fed by the carrier plus the difference of the two sidebands and
the RHS antennas are fed by the carrier minus the difference of the
two sidebands., The sum pattern is the sum of the LHS and RHS
antennas, i.e. the radiation pattern of the carxier frequency. The
difference pattexrn is the difference of the LHS.and RHS antennas i.e.

the radiation pattern of the difference of the two sidebands. A
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localizer should have the following major characteristics:

(a) A sharp null in the difference pattern.

(b) Very low sidelobe levels in beoth of the sum and differ-
ence patterns.

(c) The nulls of the sum and difference patterns should

coincide.

Information on whether to go left or to go right on board an
aircraft is obtained by using an AVC receiver to detect the sign of
the product of the carrier and sideband signals from a localizer.
Requirement (a) is necessary to clearly define the localizer plane
and when associated with a strong carrier signal, to minimize the
effect of tall structures such as buildings, towers or mountain sides
etc. Requirement (b) is to reduce stray reflection from sidelobes
which could interfere with the true course. When the requirement
(¢} is not met, the aircraft may be steered further away instead of
towards the null plane, by the combined effect of AVC, the sum
carrier signal and the corresponding difference signal. Considering
the situation illustrated in Fig. 2{a), apart from the true course
in the middle, there are two other ccurses, cne on each side, these
are false courses. Any one of these false courses could lead an

aircraft astray and the consequence could be disastrous!

The above stated requirements of a sharp null and very low
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sidelobe levels could be realised in practice at great expense by
employing arrays of antennas consisting of many elements with wide
spacing and elaborate field strength distribution. These are far
too complicated and expensive for many a small airport and moreover
require very large clear areas. It is in an effort to look for
simpler antenna systems for use as a localizer on small aercdromes
that the idea of using a plane partition to control the polar dia-
grams of a distributed antenna system has been closely studied.
There are two types of partition which need be considered here: the
electric plane partition made of a perfect conducting material and
the magnetic plane partition made of a perfect magnetic material.
From practical consideration and also from the symmetry in Maxwell's
equations, only the former type of partition needs be considered.
An electric plane partition when placed aleng the plane of symmetiry
of two dipoles will have no effect on the resulting field if the
dipoles are at right angles to the partition and fed in phase or
parallel to the partition and fed in cpposite phase. The partition
in the former set up is in fact in the H plane of symmetry and in
the latter set up in the E plane of symmetry of the two dipoles.
Thus by using a symmetrical H plane partition in a distributed rad-
iating system, the sum pattern is not gocing to be affected by the
partition but the difference pattern will have a sharp null in the
regions where the two sides 'see’ each other znd sidelckes more or

less in the same positions as those of the sum pattern in the regions

=



where the two sides do not lgee! each other. This is the basis fox

the principle of navigation free of false courses.

To clarify the above point, considering a specific example of
a system of two colinear dipoles or two parallel slot dipoles which
when fed in phase will have a radiation pattern in the E plane as
shown in Fig. 2(b). Such a radiation pattern will not be affected
by introducing an electric partition of infinite height along the H
plane of symmetry with the electric field being at right angles toc it.
Ssince the dipoles are fed in phase, the above radiation pattern is
the sum pattern. Now with the same infinite electric partition but
the dipoles are fed in phase opposition, the resulting radiation
pattern instead of resembling its counterpart in Fig. 2(a), remains
the same as the sum pattern but each half has a different sign due
to the opposite phase feeding of the two dipoles. No cancellation
from the two dipoles occurs because they never 'see' each other.
The difference pattern dces have a very sharp null in the middle
and its sidelobes line up beautifully with those of the sum pattern.
This is the situation in which, even with high sidelobe levels as
seen in Fig. 2(b}, no false courses exist. Thus by using an infinite
electric partition, the requirement (b} above of very low sidelcbe

]

levels could be relaxed while the requirement (a) could be easily

met very successfully.



N

Unfortunately, in practice the idea of using an infinite part-
ition is not realizable. The electric plane partition has to be
finite in height, which poses the question of diffraction off the
edge of the partition by the electromagnetic waves from the sources
on either sides of the partition. The solution for this diffraction
problem and its experimental verification will constitute the major
part of this thesis. It should be noted that as far as the sum
pattern is concerned, a symmetrical H plane partition of any height
will not affect it at all. It will be seen later that the diffrac-
tion in the sum pattern cancels each other <:>uvi:,’° However, for a
difference pattern, a finite partition will prevent the two sides
from 'seeing' each other, This addition will take place because of
the positive image up toc the height of the partition then cancella-
tion will begin because of the opposite rhase feeding giving rise
to a sharp null. The diffraction off the edge of the partition from
the two sides will add because the radiating system is no longex
balanced and resulting field is affected throughout. As the parti-
tion height tends to infinity, the diffraction contribution tends
tc zero due to spatial attenuation of the electromagnetic waves and

the difference pattern will become coincident with the sum pattexn.

The areas of application of an electric partition in many

distributed radiating systems are along the symmetrical E plane or



H plane depending on whether it is the difference or the sum pat-
tern which needs be preserved. For localizer application, the sum
pattern could remain the same whereas the difference pattern has to
have a sharp null and the same sidelobe positions as the sum pat-
tern. This is the case for using an electric partition along the
H plane of symmetry. Some of the arrays of antennas which could be
used to generate the sum and difference patterns for a localizing

system are:

- An array of two or a multiple of two colinear antennas
(such as dipoles, yagis....)

- An array of two or a multiple of two slot dipoles or slot
lines

- An array of two or a multiple of two apertures (such as
corner reflectors, horns, paralecidal ;eflectors, parabolic
cylinders...).

-

25 POSSIBLE METHODS OF SOLUTION

There are at least three ways of obtaining a solution for the

above problem of diffraction off the edge of the partition:

(a) The boundary value solution
{b)” The induced current approximation

{c) The geometrical theory of diffraction.



In many antenna problems of this type, only a principal polsriza-
tion is involved therefore the vector formulation for the diffract_on
theory could be approximated by using the scalar diffraction thecry.
This sort of approximation does not cause much error as far as far
field patterns are concerned and will be adopted here to solve the
diffraction problem presented above. The following is a brief out-

line of the above-mentioned three methods of solutions.

{a} The boundary value method of soclution.

Using the famous solution of the diffraction of a plane wave
by a half plane by Sommerfeld as the starting point, in
principle, the solution of the diffraction problem for any
source distribution can be built up from the solutions foxr
the individual plane waves because a field radiated by any
source distribution can be represented by a spectrum of plans
waves. Based on this approach Born and Wolf [2] give the
solutions for the diffractiocn of an infinite line source and
a point source by an edge. From these soluticns and by using
the principle of supposition, the solution for the present
diffraction problem could be obtained at least for the infinite
line source and point source cases. These cases are involved
but nevertheless quite tractable. Things begin to get diffi-

cult when the diffraction of an aperture or a finite line



source is needed as is often the case in practice. The
expressions for the plane wave spectrum are just simply toc
formidable to tackle. It is a method of solution which could

not be adopted here.

(b) The induced current method of solution.

The current induced on the partition by a source could be
approximated by using the geometrical optics current for
points away from the edge. There is a narrow strip along the
edge where the geometrical optics current approximation breaks
down. The discontinuity at the edge can be taken into account
by assuming the existence of an equivalent line source whose
far field is not uniform all round and can be assumed to have
the distribution of the far field pattern of the Sommerfeld's
solution for a half plane. Since the diffraction of a point
source by a half plane is known, the solution for the diffrac-
tion of a distributed source can be obtained by integrating
the contributions of all points over the source and using the
principle of superposition to cbtain the sclution for the
diffraction off the edge of a partition separating two such
sources. Most distributed systems tend to have a principal
polarization in such a way that the systems could be treated

as an aggregation of either electric or magnetic line sources.



In such cases the formulation of the solution of the present
problem of diffraction using the solution for the diffraction
of a line source by a half plane is attractive. Plonsey [3]
and Moullin [4] are the champions in the study of diffraction
by an edge using the induced current method. This method is
suited to the needs of the engineer since it tells him the
area where there is a large current so that he can take the
appropriate measure to improve the conductivity at that area
in order to reduce the loss,and the area where there is very
small current,so that he can either ignore it or does not
bother much about good conductivity. It 1s conceptually more
or less the same as that of the geometrical theory of diffrac-

tion.

{c}) The geometrical theory of diffraction method of

solution.

The geometrical theory of diffraction was developed by Keller
[5] and extended by Rudduck [6] tc the antenna theory. It is
an asymptotic approximation of the exact theory. When the
partition is plane, the expression for Sommerfeld's diffrac-
tion function can be written in terms of the Fresnel integrals
and is exact so the solution to the present problem of dif-

fraction inclines more towards the exact method of solution.



The geometrical theory of diffraction method of solution offers twe
main advantages: (a) it is much easier to visualize physically in
terms of rays and (b) it contains expressions of well tabulated
functions which can be easily programmed on a digital computer. The
solutions for the normal as well as oblique incidence of the dif-
fraction of a plane wave and cylindrical wave by a wedge of (2-n)T
included angle have been cobtained. But again they are the solutions
for the two dimensional case and therefore cannot be readily applied
to any three dimensional cases of finite length. For such cases,
the diffraction in the direction at right anglesto the edge is taken
to be the same as that of the two dimensional case above and the
diffraction in the dimension in which the rays are parallel is
assumed to be the same as the radiation pattern of a line scurce of
finite length. The results obtained so far do confirm the above
assumption. This method of solution using the geometrical theory

of diffraction will be adopted to obtain the sclution for the present

problem.

In the next chapter, the solutions for the problem of diffrac-
tion off the edge of the partition will be given in details for the

following two cases:

(a) The case of a partition separating two lines and two

apertures infinite in length.



(b} The case of a partition separating to lines and two

apertures finite in length.

The solutions will be given for both of the normal and

oblique incidence.

11,



CHAPTER TWO

THE SOLUTION

In this chapter, the solution to the problem of diffraction off
the edge of a partition described in the previous chapter is presented
The generél case of two lines and two apertures of finite and infinits
lengths will be considered. The incidence to the partition can be
normal or oblique. In all cases, the partiticn is assumed to have a
finite height and an infinite length. The case of a finite partition
thickness can be extended and the case of a wedge partition of arbi-
trary included angle {2-n)T, where n is an integer is implicitly

covered as seen in the survey of the wedge diffraction theory.

The problem of the diffraction c¢f an electromagnetic wave by a
wedge is a difficult boundary value problem. ITs solution hegan with
the well known Scmmerfeld's solution for a plane wave., When applied
to a half plane, Sommerfeld's solution leads t5 the familiax Fresnel
diffraction by an edge. However for a general wedge, the solution
cannot be expressed in closed form using Fresnel integrals. Some
thirty yvears later, Pauli [7] developed a rapidly converging series
representation for the sclution of a general wedge. Pauli's series
is applicable to a situation where the distance from the source to

the wedge is large and for pocints of cbservation well away from the



shadow boundaries only. When the distance is not large enough, highzs
order terms have to be included and these are unwieldy and not very
well formulated. When a point of observation is on a shadew boundary,
Pauli's series breaks down due to a singularity there except the half
plane case. The plane wave solution is a big step forward but it has
limited areas of application in the antenna theory. Russo et al. [7a]
has pointed out some of the shortcomings of Sommerfeld's plane wave
solution when it is applied to the calculation of the E~plane patterns
of a horn. Rudduck [6] makes use of the reciprocity theorem

together with Pauli's series representation to obtain the far field

of a line source placc: at a finite distance from a wedge. This is

the cylindrirail wave formulation.

Due to the finite distance between the sources and the edge =f
a partition, Rudduck's cylindrical wave formulation has been used here
to obtain the solution for the diffraction problem described in
Chapter one. Before presenting it in details, a survey of the wsdge

diffraction is given first.,

L. A SURVEY COF WEDGE DIFFRACTION THEORY

There are three formulations for the problem of wedge diffraction,

viz:



- The plane wave formulation
- The cylindrical wave function formulation

— The cylindrical wave formulation

The material presented in this survey is based on an interesting
report on 'the application of wedge diffraction to antenna' by

Rudduck [6] and a paper by Pauli [7].

{a) Plane Wave Diffraction Formulation

It was Sommerfeld whc gave the sclution to the problem of
diffraction of a plane electromagnetic wave incident normally to a

wedge of included angle (2-n)}7 as shown in Fig. 1.
PR ; s TG
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When the wedge coincides‘with the z-axis of the cylindrical
coordinates (x,y,z), the diffraction problem becomes independent of
z and thus scalar in nature. The field u{r,y) is a solution of the
two dimensional scalar wave equation 72u + k%u = 0 satisfying the
boundary conditions u = 0 cr %ﬁ-= 0 depending on whether the zlsctric

polarization is parallel or normal to the wedge. The total £izlid

u{r,y) can be separated into the incident and reflected wave by putting
u{r,¥) = vir,v-vg) + vir,y +Pg) aos (1)

where v(r,¢} is the Sommerfeld's function, a sclution of the wave

equation. The minus sign applies to the boundary condition u = 0 i.e.
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Fig. 1. Diffraction of a plane wave by a
conducting wedge



when the electric field is parallel to the wedge and the plus sign
. I 3 . . ;
applies to the boundary condition §E-= 0 i.e. when the electric field

is normal to the wedge.

The function v(r,¢) has the period 2wn in ¢ and is a one valued

function of the variable cos¢/n i.e.

viz, + 2mn) = vir,¢) eoo(2)

viz,d) vir,=-¢) e (3)

v(r,¢$) can be separated into components:
v(x,$) = v*(r,$) + vB(r,¢) oo (4)

where v* is the geometrical optics field and Vs is the diffracted

field. wv* is given by

{ exp(jkrcos(¢+2mnN}) - 7 < ¢ + 2TnN < 7
( and N=0, + 1, + 2

V*(r’¢) = ( i r= ! e(5)
(0 otherwise

v*(r,¢) represents the incident field when ¢ = ¢ — Yo and the reflec-
ted field when ¢ = ¥ + Yp. From (5), it is clear that the incident
field consists of the incident plane wave in the illuminated region

(0 < ¢ <7+ Pg) and zero in the shadow region (7 +Yg < ¥ < mn);

|

the two regions are separated by the incident ghadow boundary at ¥

T + Pp as shown in Fig. 1. similarly, the reflected f£ield consists



of the reflected plane wave in the illuminated region (0<y<m - Y}
and zero in the shadow region (m - Yy < ¥ < 7n); the twec regicas are

separated by the reflected shadow boundary at § = T - Yg.

vB is given by:

1 j exp {jkrcosB)
: e

vy lr,p) = dg o0 (6)

27n  l-exp(-j (B+¢)/n)
where C is the appropriate path in the plane of the complex variable.
The associated diffracted fields combime with the incident and
reflected field to eliminate the discontinuity at the appropriate
shadow boundary. Using the method of steepest descent, Sommerfeld

cbtained an asymptotic expression for equation (6) as:

,i«' sin w/n
volr,9) & Vorkr lexp (-] (kr+n/4)) A

n{cosm/n-ces¢/n)

]

)

This leads to the interpretation that the diffracted field can be
thought of as a cylindrical wave radiating from the wedge and having

a Y dependent amplitude. (7) is valid only when

kr (cost/n - cos¢/n)2 >> 1

and becomes infinitely large in the neighbourhood of the shadow bound-
aries, where cos m/n = cos ¢/n. Sommerfeld tried, without much

success, to obtain an asymptotic representation of (5) which weuld



also be valid in the vicinity of the shadow boundaries.

It should be pcinted out here that in the special case of n = 2
i.e. the half plane problem, the diffracted field can be expressed

in terms of the Fresnel integral as:

-]

2 172
[ exp-3etras

volr,¢) = —exp (jn/4) (—=|  exp(jkrcosé) -
s

cosd/2

200 (8)

where 2z = (kr(l + cosé))/?

and the total field becomes:

ej(ﬂ/4)

dt

jk z —j12
oJkTCost 2 =31 e (9)

VB(rl¢)
iy -0

, /2 . .
where Z can be simplified to (2kx) 4 cos¢/2. The expression (9} is

regular at ¢ = T.

Pauli took the hint from the above special case to develop a
series asymptotic representation for (6). He transformed the inte-
grand of (5) without changing the path of integraticn to develop a

rapidly coverging series for Vo which is also valid near the shadow

boundaries ¢ = 7 but infinite at other shadow boundaries ¢ = w+2wnN,

(N#0) . Pauli expressed vy as:

263™% sint/n|cosé/2]

z

dr + [Higher order
e n{cost/n-coséd/n} terms]
esa (10}

jkr ? -3t
vy lr,6) = . QIKEeosty 7
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where Z2 = (kr(l + cosqb))l/2

and all the higher order terms may be
neglected for large kr. It is worth noting that when n = 2, all the

higher order terms become zero and (10) becomes (8).

The value of the diffracted field on the shadow boundaries can be

approximated by:

1
Hh
(0]
]

-
it
=

. (
VB(r,n) =+ —e 31 E aas (11}
(

+
H
@]
a3
©-
li
=

and the value of the total field on the boundaries is

-jkr " [o(r—l/z)]

1
vi{r,T) = v¥{x,T) + vB(r,w) =5e

which will converge to one half the incident field on the illuminated

side of the shadow boundary for large r.

v(r,¢) is periodic in ¢ with a period 2mn but VB(r,¢) is aot.
Since vB(r,¢) is only regular in the vicinity of ¢ = 7, if VB(I;¢) is
to be evaluated near 2wn - T, a substitution of VB(r,¢) for vB(r,¢—2ﬂn
will give a rapidly converging answer for vB(r,¢—2wn) near the shadow

boundaries 27tn — 7.

Keller [5] used the asymptotic expression given in (10) for large
values of kr(l + cos¢) to develop his geometrical theory of diffractio

by plane waves:



[

e_j(kr+ﬁ/4) 1/n sinn/n

VB(rl¢> =
V2mkr cosT/n-cos¢/n
e-jkr
= D($) . e (12)
Ve

Due to its approximate nature, the theory can only be applied success-
fully to those problems of waves which are either plane or approxi-
mately so. Russo et al. [7al has pointed out the shortcomings of the
plane wave diffraction formulation when it is applied to the calcula-
tion of the E-plane radiation patterns of a horn. It was demonstrated
clearly in the article that a cylindrical wave diffraction formulaticn
gives a better agreement than the plane wave diffraction formulatic:.
To summarize, the total field of a plane wave incident on a perfectly

conducting wedge is given (1):

( exp(jkrcos(yp -yc)) ) ( exp{jkrcos (Y+¥n)) )

( ) ({ )

u(r,p) = ( )+ )

( Yo }

(o )y (o )
vl —Po) kv (r,YHpe) ee o (13)

where the proper choice of terms in the brackets has been dissussed
in (5) and the choice of sign (+) is determined by the polarisation

as mentioned in (1).
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For grazing incidence (Yg = 0), (13) reduces to

(exp (jkrcos (Y-Pg)) )
( )
( )
(o )

ulr,$) = + vB(r,w-wo) eeo (14)

thus only the incident field is involved.

{b) Cylindrical Wave Functions Formulation

As mentioned earlier, when n = 2, all the higher order terms in
the series representation of vB(r,¢) are zero and so (10} can be
used to obtain the field for any point at any distance away from the
edge. However, when n # 2, the higher order terms are not zero and
cannot usually be neglected for distance which is small compared to
the wavelength. One way of obtaining the field at such a distance is
to use the cylindrical wave function formulation given by Wait [8]

and Harrington [9]:

©

VB(r,¢) = 1/n m=§,1 em/n j Jm/n(kr)cosm/n¢—v*(r,¢) ooo {15}

where v*(r,¢) is the geometrical optics incident or reflected field.

€ 1l for m/n = 0O

m/n

2 form/n > 0O

(V]
Il

m/n



VB(r,¢) is pretty accurately represented for r < A when m/n < 15,
accurate values for VB(r,¢) can also be achieved for r 2 A by

including more terms.

(¢) Cylindrical Wave Formulation

The solution for a cylindrical wave diffraction can be deter-
mined in several ways. The usual way is to represent the cylindrical
wave by a spectrum of plane waves. In fact, in principle, the proble
of diffraction of any source distribution can be built up from the
individual plane wave in the spectrum. However when far field pat-
terns only are of interest, there is a simpler way of determining the
diffracted wave by using the principle of reciprocity together with

the solution for plane wave diffraction by Pauli [7].

When a wedge is illuminated by a plane wave, the total field
ua(ro,w@) in Fig. 2a is given by (13). If the wedge is now illumina-
ted by a cylindrical wave Uy with its source at P{rg,¥s) in Fig. 2b,
the field at infinity is a plane wave. Thus this is a situation wher
the point of observation and the source are interchanged i.e. the

principle of reciprocity applies. Since:

u_(ro,¥o) = vire,yg-y)  viro,bo+y) .- (16)



(2-n)7

(a)

(2-n)m

(b)

Incident plane
wave

Plane wave at
infinity

Fig. 2. Reciprocity and cylindrical wave formulation



upon using v{x,¢) = vir,-¢), ub(ro,w) becomes:

u (xo,9) = viro,v-vo) * viro,v+io) eoo(17)

(17) is the solution for the diffraction of a cylindrical wave by &
wedge. The radial distribution of the lirne source must be included,

thus:

e IKE | Texp (jkrocos (¥=vg)) exp (Jkrocos (Y+30)) |

ulr,y) = +
/r 0 0 !
+ vglre,-¥p) + vp(ro,Y+vp) oo (18)

where (rg,Vg) is the coordinates of the source and (r,y) is that of a
point of observation. The exponential terms arise because the phase
centre is assumed to be at the wedge. Plane wave diffraction is a
special case of {(18) when the line source recedes to infinity. The
diffraction for a cylindrical wave incidence in regions sufficiently
removed from any shadow boundary is virtually the same as that of a
plane wave incidence. The region about the shadew boundary where the
two are significantly different depends on the distance rg to the

line source.

A general line source has a pattern F(y) # 1, thus (18) should

be written as:



oIk exp (Fkrgcos (Y-Ug) exp (jkrocos (Y+¥g) )
u = F () * F(2r-)
€3 0 0
+ F(m+yg) \ v (roy-vo) * vB(ro,d)ﬂPo)\l oo (19)

(19) is wvalid for r >> xyg.

For distance r from the wedge comparable to that of the source,
some modification to (19) should be carried out along the line

suggested by Ohba [10] and Rudduck [6].

The cylindrical wave formulation of edge diffraction together
with the principle of superposition have been used successfully in the
treatment of quite a number of two dimensional antennas and scatter-—
ing bodies such as parallel plate waveguides, walls of finite thickness
principal plane cross sections of pyramid horn antennas and poly-

gonal cylinders etc...[6].

It can be seen clearly that the diffraction problem arising out
of the study of navigational system free of false courses involves
the use of line sources or an aggregation of line sources at finite
distances from the edge of a partition, the cylindrical wave diffrac-
tion formulation seems the most appropriate choice. Before discussing
the solution by the cylindrical wave formulaticn, it is worth men-—

tioning the interesting properties of the diffracted field function.
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2. PROPERTIES OF THE DIFFRACTED FIELD FUNCTION

To illustrate the properties of the diffracted field functica
only the plane partition case is considered here. Other cases such
as a thick partition or a wedge partition could be extended by

making use of (10) and its line source characteristics.

When the partition is plane i.e. n = 2, the diffracted field

function given by (8) can be re-written as

e e_Jt
v (r,6) = + (1+j)/2exp(jkrcosd) |, at oo s (20)
vamt
where ¢ = ¢ -yo,
Z = kr(l+cos¢d) and vB(r,¢) takes the + sign when ¢ < ¥ and -

sign when ¢ > T i.e. VB(r,¢) changes sign everytime a shadow boundary

is passed.

The integral in (20) can be written in terms 2f the standard

Fresnel integrals:

1
VB(r,¢) =+ (1+3)/2 exp(jkrcos¢)[{(C(Z)- Ev—j(s(z)— %3J°g0(2l}

where
. cos(t) .7 sin(t)
c({z) =|? ———dt and 5(z) =), —— dt .eo(22)
Y2re v Yare

The total diffracted field by the partition due to one of the two

scurces 1is:



VB(r,lP) = VB(rﬂP—\Po) + VB(rﬂP""‘Po) eoo (23}

When the partition lies in the H plane (23) takes the + sign and when
it lies in the E plane. the - sign. It is more convenient to use

the coordinates (r’,¢) instead of {(r,y) as shown in Fig. 3a, thus:

Valr,$) = volr,m=¢=Yg) & v (r,m—¢+po) .o (24)

By using (24) and the fact that every time a shadow boundary is
passed vB(r,¢) changes sign as mentioned in (20), VB(r,¢) can be

shown to have the following characteristics:

VB(r,¢) - V_{r,-¢) for H plane partition cos (25)

B

and VB(r,¢) VB(r,-¢) for E plane partition, ooe (26)

It is obvious that:
(a) From (25} total diffraction due to z H plane partition of
two identical sources having syvmmetrical field patterns
F{¢) fed in phase is zero, i.e. the partition has nc effect
on the resulting sum pattern of the two sources. Cn the
other hand, the total diffraction contribution when the
sources are fed 180° out of phase is nct zerc but sgual to

twice VB(r,¢) in {25).
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(b) Similarly, from (26) the total diffraction due to an E
plane partition of two identical sources having symmetri-
cal field patterns F{¢} fed 180° out of phase is also zero
i.e. the partition has no effect on the resulting difference
pattern of the two sources. But when the sources are fed
in phase, the total diffraction is different from zero and

equal to twice VB(r,¢) in (26).

It has been mentioned earlier on that the associated diffracted
fields combine with the incident and reflected field to eliminate the
discontinuity at the appropriate shadow boundary. This is clearly so
when VB(r,¢) given by (21) is computed, each diffracted field compo-
nent, i.e. incident or reflected, takes the dominance over its own
shadow boundary. The amplitude of total diffracted field VB(r,¢) is
plotted for a typical case of r = 3V/2\ and Yy = /4 in Fig. 3(b) and
3{c). When phase is taken into account VB(r,¢) is antisymmetrical for
the H plane diffraction and symmetrical for the E plane diffraction

with respect to ¢ =.0.

In the following sections, the total diffracted field contribu-
tion given by (23) will be used together with (25}, (26), (21) and
(22) and the principle of superposition to obtain a solution for the
diffraction off the edge of a finite height partition separating two

identical sources. Only the case of a H plane partition is presented



Fig. 3. Variation of the diffracted field function
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in detail here because of its immediate potential application tc the
design of a localizer without false courses and alsc because of the
fact that the case of an E plane partition is implicit in the former
case and can be readily extended with only a few changes in sign.

The diffraction contribution will be added to that of the geometrical
optics to give the resulting radiation pattern of the whole antenna

system.

3. RADIATION PATTERNS FCOR TWO SOURCES SEPARATED BY A PARTITION

Expressions for the radiation patterns of two line socurces and
two apertures of infinite and finite length will be derived. The
partition will have a finite height but an infinite length and will
lie along the H plane of symmetry of the two identical socurces having
symmetrical field patterns F(¢)., When the field patterns F({¢) are not
symmetrical, the total diffracted contribution will not be zero in
the sum pattern involving an H plane partition and in the difference
pattern involving an E plane partition. The case of a partition of a

finite length will be briefly discussed.

A. TWO DIMENSIONAL CASE

Using a cylindrical coordinates system (r,¢,z), when a line

source or an aperture source is infinite in length in the z direction



say, its radiation pattern will be two dimensional if there is no
variation along z or a variation of the form exp(—jkzz), where kz is
the propagation constant. The formérv;ase corresponds to a ﬁérmal
incidence whereas the latter corresponds to an oblique incidence.

Normal incidence will be considered first.

a. Normal Incidence

(1) Two Line Scurces.
The first case to be considered here is that of two infinite

Pr-=*Jine sources separated by a half plane placed in the H plane of
symmetry of the sources. As shown on Fig. 4(a), Y, is the distance

from 0 to a source and xo is the distance from 0 to the edge of the

partition. Let O be the phase centre of the whole system.

Since the partition lies in the H plane of symmetry cof the two
sources having symmetrical field patterns F (¢}, the resulting dif-
fracted field is zero for the sum pattern. The sum pattern is given

by:

" (§) = 2 cos(ky_sind) F(9) vl (27)

with e_jkr//;'being suppressed throughout. Where k = 21/A and F(¢)

is the ¢ variation.

When the line sources are fed 180° out of phase, the diffracted
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field is not zero but equal to:

EV($) = 2[vy (r, ,m=0-0_) + v, (r_,m=b+¢_)1.F (-0 ) .exp(jkx_cosd)

o0o (28]

s

where vB(r,¢) is given by (21} and the exponential term arises
because the phase of VB(r,¢) is referred to the edge. Proper sign
must be used for VB(r,¢) on each side of a shadow boundary as men-

tioned in (20). Thus the difference pattern is given by:

For ¢ < ¢:

E (4) = 2jsin(ky_sin)F(¢) + E°(9) - {298)
For ¢ > ¢:

E (¢) = 2c0s (ky_sind)F(¢) + E (9) .. (29b)

There is no second order diffraction in this case.

When the line sources and the H plane partition are placed akove
an infinite ground plane as seen in Fig. 4(b), the image fislds shoul

be added and ¢ varies in the region -m/2 < ¢ < 7/2,
For the sum pattern:
+
E (¢) = [F($) + F(r-¢) exp(—j2kx1c05¢)].2.cos(kyosin¢) ... (30)

For the diffracted field
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E°(9) = B2 () + EF(4) oo (31)
where
ED(4) = 2[vy (x_,T=0=Y ) v, (r_,m=¢+y_) IF (~¢ ) exp (jkx_cosd) ... (31a)
E?(¢) = 2[VB(r1,W'¢’¢L)+VB(r1'ﬂ‘¢+¢1)]F(-ﬂ+¢1)exp(jkxocos¢) eos(31b)

The diffracted field is also reflected by the infinite ground

pléne, thus one has:

D D D
ER(¢) = EoR(¢) + ElR(¢) .os (31R8)
where
EgR(¢) = Eg(¢) exp(—j2k(xo+2xl)cos¢) cos (31c)
. = £ xp (-32k (x_+2 (314
ElR(¢) = Eo(¢) exp (-3 (xo+_xl)cos¢) .o )

For the difference pattern:
when ¢ < ¢3 :

E {(¢) = [F(¢)+F(ﬂ-¢)exp(—j2kxlcos¢ﬂe2jsin(kyosin¢)+ED(¢)+E§(¢)
.0 {32a)

when ¢1 < ¢ < ¢g =

E (¢) = F(¢),2jsin(kyosin¢)+F(n-¢)exp(-j2kxlcos¢).2cos(kyosin¢)+ED(¢)

+ Eg (6) .e.{32b)



and when ¢ > ¢g
E (¢) = [F(¢)+F(n—¢)exp(—j2kxlcos¢ﬂ2005(kyosin¢)+ED(¢)+E2(¢) eos (3229
Once again there is no second order diffraction.

The most important case is when the ground plane is finite. Thisz
is a situation which is often encountered in practice. The diffrac-
tion due to the edge of the finite ground plane should be taken irto
account. Source (1) and its image at source (2) will have rays
diffracted by edge R and similarly source (2) and its image at scurce
(1) will have rays diffracted by edge L. The diffraction at R and L
will present two more 'line' sources and the sum and difference
patterns will be affected. Second corder diffraction does exist in
this case. Rays from the 'line' sources at R and L will be diffracted
by edge C and rays from the 'line' source at C will be diffracted by
edges R and L. Higher crder diffraction terms can be includad if
necessary but in general all higher crder terms could be ignored for
large distance from an edge and for angular direction well away fxom

a shadow boundary.

Diffracted fields due to edge R by source (1) and its image at
{2) are:

ED(8) = Fn/2+0,) [vg (£, m/2+9=0,) v, (£, /24440 )]

S

exp(jkylsin¢) exp(-jkxlcos¢) eoo (33a]
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Eg(¢) =F('(W/2+¢3)) [VB(r3;“/2+¢‘¢3) + VB(r3,“/2+¢+¢3)]
exp(jkylsin¢) exp(-jkxlcos¢) oo (33bj

Similarly, diffracted fields due to edge L by source (2) and its

image at (1) are

B, (0) = F(=(n/200))) [vg(r,,7/2-0=by) + vy (r,,m/2-4+1,)].
eXP(-jkylsin¢) exp(—jkxlces¢) .o (34a)
E];((b) = F(n/2+y,) [vp(r,,m/2=¢=y,) + v (r_,7/2-¢+} )] .
exp(-jkylsin¢) exp(-jkxlcos¢) .o (34b)
D D D D . .
It should be noted that E2 and E4, E3 and E5 are not equal as indi-

cated by the expression for the diffracted field function VB(r,¢)s

The sum pattern in this case is the sum pattern of 4 line sources
at (1), (2), R and L .which can be cbtained for the various regions as
follows, assuming yY; < Y3 < P3 < Yp and considering -the first Juadrant

only:

when ¢ < m/2 - Y3:

E+(¢) = [F($)+F (1-¢) exp(-j2kx;coss)] 2cos (ky_sing).

D D D
+ E2 + E3 + E4 + Eg oo (35a)



when /2 - Y2 < ¢ < /2= Y3:

E+(¢) = F(¢)2003(ky°sin¢)+F(w—¢) exp[—j(2kxlcos¢ +

. D D D D
kyosm¢)] + E2 + E3 + E4 + E5 soo (35b)

when 7/2 - Y3 < ¢ < W/2:

+ ED oo o (35C)

E+(¢) = F(¢)2005(kyosin¢) + Eg + 0 4 Ez :

3

Expressions for the difference pattern is more involved than the sum
pattern because of the existence of higher order diffraction terms.
. “
S

Before attempting to present expressions for second order dif-
fraction terms, the folloﬁing convention should be adopted to design-
ate the doubly diffracted field: if a first order diffracted ray comes
from a 'line' source, at C say, and is diffracted again by an edge,
R say, then the resulting doubly diffracted field will be dencted by
D . . .
ECR(¢). Thus the first subscript designates the source and the
second subscript designates the edge. A similar convention will be

adopted for higher order diffracticn terms if they need be taken

into account.

All the second order diffraction terms can now be given as

follows:



Eop(9) = [vp(r, ,m/244=0,) + vy (r,,m/2+4+0 1.

EP (1/2+%,) exp(jky;sing). exp(-jkx,cosd) ... (33a)
E?:L(q;) = [vy (£ ,m/2-0-0,) + vy (£, 1/2-+9 )],

ot (n/2+y ) exp (3ky, sing) .exp (~jkx, cos) ... (33b)
oo (9) = [vglr, m=o=p) + vy (r,m—¢+b)].

(£ (4,) 485 (b,) exp(Ikx cos¢) ee0 (332)
EDL(¢) = -Ep.($) from (25) “ ... (33d)

It is quite obvious that there is no second order diffraction
contribution to the sum pattern because the contribution given by
(33a) and (33b) is zero due to ED(¢) = 0, and that given by (33c)
and (33d) cancel each other out. This situation is only true when
the field patterns F(¢) of the sources are symmetrical with respect

to the plane partition.

Assuming Y3 < Y3 < Y2 < Yg < Y5 < Yy, expressions for the
difference pattern can be obtained for the various regions in the

first quadrant, bearing in mind that two corresponding terms from



N

either side of.the partition will subtract if they 'see' each otha:

and will add if they do not.

For ¢ < wl:
E (§) = [F()+F (1-¢) exp(-j2kx,cos¢)] 2jsin(ky_sing)
) D D D D D D D
ED + Eg + E2 + E3 - (E4 + ES) + ZERC + ECR L ECL

coo (34}

For Y1 < ¢ < Yp:

E (¢) = [F(¢)2jsin(kyosin¢)+F(ﬂ—¢)exp(—j2kxlcos¢)2cos(kyosin¢)}
D D D D D D D D D
E° + Ep + E) + E; -(E+E) + 2B, * Egp + Eqp . (35)

For yg < ¢ < ys:

E (¢) [F(¢)+F(n_¢)exp(—j2kxlcos¢)] 2cos(kyosin¢)

D
ED + E_ + ED + ED -(ED

D D D D
R 5 3 4t E5) + 2ERC + E + E ce0{36)

CR CL

For Ys < ¢ < m/2 - Ya:

E (¢)

[F($)+F (1-¢) exp(-j2kx,cos$)] 2cos(ky_sing)

D D D D
ED + E2 + E3 + E4 + E5

4

+ ED + ED csa(37)

D
* 2ER.C CR CL
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For w/2 - Yo < ¢ < /2 - Y3:

E—(¢) = [F(¢)2cos(kyosin¢)+F(w—¢)exp(-j2kxlcos¢),exp(jkyosin¢)]

D D D D D D D D
+
E E2 + E3 + E4 + E5 + 2ERC + ECR o+ ECL oo o (38)

For /2 - Y3 < ¢ < m/2:

D D
N + 22+ B +

E"($) = F(9)2cos (ky_sing)+ EP + EZ + Eg + E, + Eq Do * Eom
D
ECL eos (39)

The procedure can be readily extended to the back region i.e.
/2 < ¢ < m of the ground plane. It is omitted here to preserve the

clarity of the presentation.

When the line sources lie in the finite ground plane the above
expressions have to be modified for grazing incidence along the line

suggested by (14).

(ii) Two Apertures.

Assuming there exigts the same arrangement as above but now the
two line sources are replaced by two infinite apertures whose cross
section is given in Fig. 5(a). Let a uniform plane wave travel in

the x direction.
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The field variation across each aperture in general is given by
E(y) = A(y) exp (JE(y)) where A(y) is the amplitude distributicn aid
f(y) is the phase variaticn, the corresponding radiation pattern in

the x-y plane, Fig. 5(b), is:

EA(¢) = £: E(y)exp(jkysind)dy ooo (40

where exp(—jkr)//E-will be suppressed throughout. Since an aperture
is supposed to be bounded by an infinite ground plane, if the field
variation E(y) is symmetrical with respect to the H plane partiticn,
the sum pattern is not affected by the presence of the partition.
Thus the sum pattern is given by the radiation pattern of the twe

apertures separated by a distance 2s i.e.

EN(4) = [OE(y)exp (3kysing)ay vo . (41)
-d

where d is defined as in Fig. 5(a).

The integration can be brcken down into:

Jﬂd = (—s Wd oeo i4la)

L4 4

-d -d S

For a plane wave, £(y) 0 i.e. E{y) = A(y), (4) can be further simpli

fied to:

E (4) f25<y)2cos(kysin¢>dy .o (42)
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The difference pattern of the two apertures when there is no parti-

ticn is given by:

E ($) = f‘:my)zjsin(kysinwdy oeo (43)

Since the image of an aperture in the H plane partition is positive,
which is the same for a line source the incident and reflected fields
will add. The geometrical optics difference pattern of the twe

apertures separated by a partition can be divided into three regicns:

- The region where the two apertures can 'see' each cther

completely, the difference pattern is given by ({43).

- The region where the two apertures do not ‘see' each cther
at all i.e. they are completely separated by the partiticn,

the difference pattern is actually the sum pattern given by

{42;.

- The region where the two apertures can partially 'sse' sach
other, the difference psttern is given by the combination of
{43) and {42), i.e.

x, tan¢

h ‘
E_(¢) = ISE(y)Zcos(kysin¢)dy + de(y)zjsin(kysin¢)dy .o (44)

x. tand

The diffracted field contribution should be added to the abcve
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geometrical optics terms to give the resulting difference pattern
for the two apertures separated by an H plane partition in their

plane of symmetry.

The diffracted field contribution can be approximated by assum-
ing that each element dy acts as a line source. The diffraction off
the edge of a partition by two line sources has been presented abcve
in Section a({i) and can be put into use here. By integrating the
diffracted field contribution of all elemental line sources dy across
each aperture in a particular direction the total diffracted field

contribution due to the partition in that direction will be obtainsd.

1£ ' (y) is the diffracted field in the direction ¢ due to an

element dy of unit amplitude, it can be written as:
D . )
E (y) = [vglelyl, m-¢=¢_{y)) + vplriy), m-¢+¢_(y]]

exp(jkxhsin¢) ooo (45)
where VB(r,¢) is given by (20) and the phase centre is at 0.
The total diffracted field is:

D (o) = JS By 2Dy ay .. (46}

The sign of VB(r,¢) should be correctly observed when each shadow



boundary is crossed as mentioned in (20).

Referring to Fig. 5(c), the difference pattern for two apertures

separated by a partition can now be given as:

For ¢ < ¢s i.e. the apertures 'see' each other:
= ed .. . D -
E (¢) = fsE(y)2351n(ky31n¢)dy + Et(¢) ooo (47)

For ¢s < ¢ < ¢d i.e. the apertures 'see' each other only partially:

%, tang¢

h
[ E(y)2cos (kysind)ay + [© E(y)2jsin(kysing)dy + | (¢)

xhtan¢

E (¢)

oos (48)

For ¢d < ¢ i.e. the apertures do not ‘'see' each other:

E () jz E(y)2cos (kysing)dy + E2(¢) oo o (49)
Where E2(¢) is given by ({45}).
3kr

It should be noted that e //E has been suppressed throughout.

b. Oblique Incidence

The above results ocbtained for normal incidence can be extended

to oblique incidence. For an obliquely incident plane wave:

e-jks = e—jk(rsine + zcosB) oo (50}
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where 6 is the angle of incidence i.e. the angle each ray makes wi-r

the z axis. The wave equation V2V + k2V = 0 reduces to:

2 2 - \
\Y Vr + krVr =0 eoo{5L}

by making the substitution V = Vre—]kcosez where kr = ksinb, the

transverse wave number and Vr is the transverse scalar field.

From (51), it is quite clear that the expressions for the two
dimensional oblique incidence can be deduced from those of the normal
incidence by simply replacing k for its transverse component kr =
ksin® and multiplying throughout by exp(-jkcecsfz). ¥ in VB(r,¢) is

still the distance frcm the source to the edge.

B. THREE DIMENSIONAL CASE

This is the most useful soluticn since it is a soluticn for a
practical situation. The partition is again assumed to be irnfinite
in length first and a discussion on a partition of finite lengfth will

be given later.

When a line source or an aperture has a finite length, it is
considered as a peint source for points beyond the Fraunhoffer's
boundary. Thus spherical coordinates should be employed to describe

the far field radiation patterns. However cylindrical wave formulzoic



can still be used for the treatment of diffraction off the edge 2f =

partition since it is normally placed in the vicinity of a source.

It has been pointed out in chapter one that the basic assumption
in a three dimensional case is that the diffraction in the directicn
normal to the partition is given by the appropriate two dimensional
case whereas the diffraction in the direction parallel to the parti-
tion is given by the radiation pattern of a finite line source [é].
Again two cases of incidence will be considered here and the normal

incidence treatment will be given first,

a. Normal Incidence

(i} Two Line Sources
Assuming the line sources have a length L the radiation
patterns can be daduced from the twe dimensional expressicns for two

line sources with some slight modification.

;Jkr//; is replaced by je_Ekr/zkr which will be suppressed

(1)

thrcoughout.

(2) k is replaced by ksinf for the phase terms in the y and

x directions.

{(3) All expressions for the radiation patterns should be

multiplied by:
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jkcos@z

z2
sinb f21 E(z)e dz

where zy =2z - L/2 and z, = 2z, + L/2,E(z) is the field variation

along z and the line source centres are (O,yo,zo) and (0,—yo,z°)o

The sum pattern in the direction (¢,6) is now given by:

B (9,0) = 2cos(kyosinesin¢)gF(¢)asinef:fE(z)ejkcosezdz .o (52)
The diffracted field is:
E(9,0) = 2[vy(r,,m=0=0_) + vy (r,,m-0+b )1 .F (=6 )
exp(jkxosinecos¢)sinef:jE(z)ejkcosezdz . (53)
The difference pattern is:
For ¢ < ¢°:
E ($,6) = 2jsin(ky_ sinfsing}. F(¢)*
sind fzi E(2)e 599592 4, 4 gP4,9) ... {53a)

For ¢ » ¢p:



E (¢,0) = 2cos (ky_sin8sing). F(¢).

E(z)ejkcosez

zZ32 D
sind f21 dz + E (,8) oss (53b)

(ii) Two Apertures.
From Appendix D, the radiation pattern for an aperture

with normal incidence is given by D({33):

3 . a/2 L/2
E($,8) = — E_e I (sinb+ cos¢)
2Ar -d/2 -L/2
exp[jk (ysinBsin¢+zcosb)] dydz 0os (54}

The modification of the expressions for the radiation patterns of the

two dimensional case involves:

(1) e_Jkr//; is replaced by je‘Jkr/2lr which will be suppressed

throughout.

(2) k is replaced by ksin® for the phase terxrms in the y and z

directions.
(3) All expressions for the radiation patterns should be
multiplied by:

zy i
(sine+cos¢)IZIE(z)echosez dz
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Because of normal incidence, k in the expression for vB(r,¢) in ths

line source as well as aperture case remains the same.

b. Oblique Incidence

In a three dimensional case of oblique incidence, the radiation
pattern of interest is no longer the azimuth pattern as in the normal
incidence case but an azimuth on elevation pattern especially when the
angle of elevation is that of maximum radiation. Such a radiation
form a cone of revolution of half angle 7/2 -~ 8§ where 0 is the ansle
of elevation. The line sources and apertures will be assumed to have
a length L. Let kr = ksineo and kz = kcosGo where eo is the angle
an incident ray makes with the edge. Expressions for the radiation
patterns can be derived by modifying those of the three dimensional

normal incidence.

(i} Two Line Sources.
Referring to Fig. 7, the following modification need: be

carried out.

(1) je-Jkr/ZAr will be suppressed throughout as in the normal

incidence.

(2) k is replaced by ksinfé for the phase terms in the y and

z directions.
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(3) From the azimuth on elevation radiation pattern given in
Appendix D on the radiation pattern of an aperture with
oblique incidence, all expressions for the normal incidencs
radiation patterns should be multiplied by:

Zo . B
cosficosw f E(z)e](kcose kz)Z

z]

dz

to give the far fields in direction (w,6)-

For a line source and its image:

Zy =2, - L/2 and zZ, = 2z + L/2

For an edge diffraction 'line' and its image:

zy = z4 + z, - L/2 and z, = 24 + z + L/2

because of the obligue incidence, the diffracted 'line’
source has been shifted in the z direction a distance Zge

For each edge, there will be a different Z3-

(4) k in vB(r,¢) is replaced by krc It should be pcinted cut
that the sum and difference patterns are now E+(w,i1) and
E_(w,el) where the spherical coordinates (r,w,083i) are
shown in Fig. 7(b) together with {(r,¢$,8). The relaticnship

between the two coordinate systems is as follows:



( sinby .
¢ = arc cos f
(l-coszelcoszw)l/2

8 = arc cos (cosf] cosw)

{(ii) Two Apertures.

Expressions for the azimuth on elevation radiation patterns
can be obtained from those of the three dimensional normal incidence
of two apertures. The modification is basically the same as that of
two line sources above. Appropriate z shift due tc the oblique inci-
dence for each elemental line source dy should be carefully inccrpor-
ated into the expression for the total diffracted field Ei(wpel>
modified from {45). As seen in Appendix D on oblique incidence, the

multiplying factor for a two line scurce case should now be:

z2p . ,
8-k
Zcoselcoswj E(z)ej(kcos z))Z dz
z1
where z; =z - L/2 and z, =z, + L/2, the centre of the aperture is

at z in the z direction.

It can be seen frem the above presentation that starting from the

diffraction of a line source by a wedge and by using the principle of
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superposition, the solution for the diffraction problem describec o
Chapter One involving the wedge of a partition has been constructec.
When the partition is plane, the sclution is exact as far as the
diffraction expressions are concerned. It is only approximate in
the finite line source case as well as the finite length aperture
case due to the approximation to the diffraction in the direction
parallel to the partiticn by the radiation pattern of a finite line
source or finite length aperture. Expressions for a thick partitioan
or a general wedge will be approximate and will give a good agresmant
only when the conditions for the asymptotic approximation are met.
The above analysis is expected to give a fairly good agresment in
the direction of incidence. The partition height must be lass then
the length of the iine source or aperture in the finite length case
i.e. three dimensicnal case toc ensure that the cylindrical wave
assumption is still vzlid. The treatment for an E plane partition
can be simply extended by using the megative sign in the tcrtzl

diffracted field and the refle.ted field functions. The lix

b

U)
O
C,
[a]
e
0]

case has been given a great emphasis because it will prove tc ke a
most useful building bleck for the analysi= of all apertures -aving
a principal polarization. An aperture can be arbitrary and needs not

be restricted to a rectangular shape as having been assumed.

When radiation patterns away from the direction of incidence



7

Partition

~__ Plane

corner

<— E edge

\

/
Yl
~

Line source

\

!

Ground plane

(a) Finite length line source and finite length partition.

H edge AL -
v [ Ll
: /
~~~-..::_.->
<% E edge

(b) Diffraction by a plane
corner (spherical .waves)

—— — -

< H or E edge

(c) Diffraction by normal

H or E edge

incidence (circular cylindri-
cal waves)

(d) Diffraction by obliquehincidence (conical waves)

Fig. 8.
partition.

Effects of finite length line source and finite length



(3
3™

are required in the finite length case, correction has to be taken

for the spreading of the wavefront at either end of the line source.
The wavefront in these regions can never be truly cylindrical. To

take such an effect into account, the existence of a point source

of an appropriate field distribution (i.e. proportional to sinf, say)
could be assumed and the resulting diffracted field should be added

to the above solution for the diffraction by the partition. When

the partition is infinite in length, the problem is the diffraction

of a point source by a horizontal edge. When the partition is finite
in length, the problem is the diffraction of a point source by a plane
angular sector consisting of a horizontal edge section, a vertical

edge section and a right angle corner. The plane corner diffraction
gives rays which emanate from the corner in all directions. This

could be gerious because the radiation pattern in the region of
interest could be adversely affected. An approximate corner diffracted
contribution could be included by assuming a spherical wave originating
at the plane corner. The exact solution has not been obtained how-
ever because the problem of the plane corner diffraction is a very

difficult boundary value problem [5].

To verify the above solution for the diffraction off the edge of

an H plane partition, the following cases will be considered;:
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(1) Two slot dipoles in a finite ground plane. The radiation
patterns in the principal plane of such an arrangement
will be the same as those of two infinite line sources

having a normal incidence to the partition.

(2) Two travelling wave slot lines on a ground plane. The
azimuth on elevation radiation patterns of such.a system
have been given in the three dimensional case of two line

sources having an oblique incidence.

(3) Two travelling wave apertures. This is the three dimen-

sional case of two apertures having an oblique incidence.

The theory and design for a slot dipole is quite well known. A
suitable line source and a suitable aperture will be studied in the

next chapter.
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CHAPTER THREE

LINE SOURCES AND APERTURES

A suitable line source for use in conjunction with an H plane
partition is a new type of long slot leaky wave antenna consisting of
a parallel strip transmission line backed by a cavity as shown in
Fig. 1. It has been investigated by Willoughby [11] and the author

[12] . The properties and characteristics of the antenna will be given

in this chapter.

1. A LINE SOURCE

(a) Physical Background

It has been found that when the characteristic impedance of the
strip line is designed to be much smaller than that presented by the
cavity, the velocity of preopagation will be very close to that of
light. The antenna when radiating into the whole space, can be con-
sidered as the dual of a long wire antenna. By duality, the far field
of a magnetic éurrent line source may be ckbtained from that of an

electric current line source by the substitutions:

Electric Magnetic
E - H
u 5
m
18 I
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If it is properly terminated at one end by a graphite impregnated
bakelite wedge (Appendix C)}, the slot antenna will support a travel-
ling wave and have a wide bandwidth of at least 2:1. The character-
istic impedance could be made small by making the strip line
impedance small. The directivity of such a line source is comparable
to that of a terminated long wire antenna. For instance a slct line
of length 11X, of width .0lA and of depth .083) has a directivity of
4 dB over the dipole. As the cavity cross sectional area decreases,
the velocity ratio, c/v, where c¢ is the velocity of light and v is
the velocity of propagation, appears to decrease quite slowly. The
field distribution aleng the slot is given in Fig. 2. The field
distributions inside the cavity and along the depth of the slot {i.e.
the width of the strip line) have also been studied. The field dis-
tribution, in the former case, Fig. 3(b), is measured by inserting

a small E probe into holes along the wide side of the cavity. The
slot is mounted in a large ground plane. The polarity of the field
inside the cavity is established tc be as shown in Fig. 3{(c)}. The
field distribution in the latter case, Fig. 4(b) is obtained in a
similar manner by introducing the E prcbe into holes in the plane MM'
as seen in Fig. 4(a), MM' is the plane of symmetry perpendicular to
the electric field. All the holes are tapped so that they can be
plugged up when not being used to avoid discontinuity. The plane

of symmetry and the ground plane are useful in preventing the active
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field from entering the measuring equipment. The field strength is
strongest at the slot and remains fairly constant along the depth

of the slot but falls off rapidly to zero towards the bottom side.
When the cavity depth is increased, the field strength in the cavity
beyond the slot depth appears to take on the shape of a half sine wave.
This suggests the existence of a higher order mode, i.e. the TEOl moda
in this case. Multimode operation for this type of antenna is still

being investigated.

(b) Analysis for the New Slot Antenna
The above physical ground work serves as a very useful guide

for the analysis of the new slot antenna.

For a travelling wave antenna of this type, the attenuation con-
stant and the velocity ratio, ¢/v, are some of the most useful
information for the designer. There are several analytical methods
which could be used here: the differential equation method using
Maxwell's equations, the variational method usingintegral equations
or the method of transverse resonance. The last method due to
Marcuvitz [13] is favoured since it deals with impedance and admit-
tance which are more in line with many electrical engineering studies.
Assuming that the antenna is infinitely long and has a uniform cross

section. When the z variation of the antenna is in the form of



-jk =z . .
e 1%2% where kz is the wave number along z, the wave equation hecomss

separable in z and the remaining transverse wave equation is:

2 2
[Vt + k] gz =0 eoe (1)
2
where k = k2- kg, k = 2r/A eoo (2)

Thus there is a wave propagation in the transverse direction with a
wave number k. From (2) if x is known then kz will be known. «k can
be obtained by solving the complex transverse resonance equation
derived from the transmission line network representing the cross

section of the antenna.

Fig. 5 shows a cross section of the slct antenna together with
its transverse equivalent network. The transverse resonance equation
can be set up b;‘equating the sum of the admittance loocking into the
cavity and that loocking out intc the whole space or half space to
zero. The inwards admittance normalized to Yo’ the admittance of
the section of rectangular waveguide of narrow width b, can be shown
to be

Y b{s- (btanka+2b;tankd; ) tand)

B ]
B 3 .o (3)
Yo s {btanka+2bj tankd;+by tanxd)

The outwards admittance is given by Marcuvitz [13]:
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Kb Kb Te
=—+3j—1ln — oo s {4)
2 T YsK

<

for a slot radiating into a half space and:

e

Kb kb dte
—=—+3j — ln — eoo (BY
Yo 4 27, Ysk

S

for a.slot-radiating into the whole space. &k is the transverse
propagation constant, e = 2.718, y=1.781 and other constants are
shown in Fig. 5. The transverse resonance equation is given by (3)

and (4) or (3) and (5), i.e.

b (s- (btanka+2bj tankd; ) tankd)

F (k)

-3
s (btanca+2bjtankd+tankd)

kb Kb e
— + j — ln —
2 T YSK
+ = 0 000(6)
Kb Kb 47e
oxr — + j — ln —
4 2m YsK
In practice,. the antenna finite thickness should be taken into
account. For large .wavelength, the thickness can normally be assumed

to be zero,.thus d; = d in (6), where d is equal tc the width of the

parallel strip line plus the fringing effect §:



b 2by b s b
§ & — (—1ln —+ —1n — ) N
2 b 2by b s
When  the thickness is not zero, apart from d; # d, a further fringing

effect A¢ comes from the thickness t of the strip line, this is given

by Rotman [1l6]

2 | 2-2t/b 2t | 2t/b(2-2t/b) |
Aeé—lnl——- —-——ln|—— L ...(8)
T 2(1-2t/b) Th 1-2&/by% !

F{k) = 0 is a complex transcendental equatiocn which can be solved by
numerical analysis using Miiller's method [14]. On a CDC 6400 computer
the programming is straight forward [15). Due tc the many variables
involved, solutions for (6) cannot be expressed in a general form.
However a study of a few specific cases will give an insight into

the characteristics of the solutions and therefore of behaviour of
the slot antenmna. A parametric study of the ideal slot line is pre-
sented in Appendix A. The only commercially available guides for the
frequency of 2 GHz are the aluminium rectangulaxr cylinders of cross
sections 3 x 1" and 4 x 1" respectively. Fig. 6 shows the resul.ts fou
the ideal and practical case of a slot having a width .01k and backed
by a 3 x 1" guide, the finite thickness has practically no effect on
the velocity ratio, ¢/v, and only a small effect on the attenuation

constant. Fig. 7{a; shows the results for the ideal and the practical
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case of a slot having a width .0l and backed by a 4 x 1" guide.

F(k) .= 0 in fact has two sets of solutions. The first set corres-
ponds to the strip line mode and the second set corresponds to the
TEOl mode. The results from the second set are shown in Fig. 7 (b).

The antenna with a 4 x 1" cross section when excited will radiate

on a multimode basis.

A model at 2 GHz was set up to measure the voltage standing wave
ratio along the slot at a short distance frem it. The model was a
bisected realization of the original structure with a conducting plan
through the plane of symmetry MM' as seen in Fig. 4(a). The space
between the single strip line and the conducting plane was set at
exactly one half of the actual slot width s. The VSWR was plotted
by using a small E probe introduced into small holes in the plane MM'
The unused holes were plugged up to avoid discontinuity. The wave-
length and attenuation were deduced from the VSWR curve. The results
shown in Fig. 8 were for the practical slot backed by the 3 x 1"
guide. .The velocity ratioc aéreed well with the theoretical values
whereas the attenuation constant was too small to be measured accur-
ately. It should be pointed out here that the ohmic loss for alumin-
ium at 2 GHz is‘quite large compared to the'éadiation loss and this
had complicated the measurement. The results given in Fig. 7 had

»
also been tested. The elevation radiation pattern when such a slot
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antenna(ll)l long) was used as the feed for a parabolic cylinder is
given in Fig. 9. The existence of the TEOl is clearly shown on the
graph., The first maximum at 17° corresponds to the strip line mode
and the second maximum at 55° corresponds to the TE01 mode. The
theoretical angles are expected to be = 17° for a line source having
¢/v = .985 and % 56° for a line source having ¢/v = .56. The fact
that the strip line mode is more dominant than the TEOl mode does not

contradict the theoretical results shown in Fig. 7. The guide sup-

porting the TE . mode is not matched to the generator.

0l

Even though it was not possible to measure the attenuation con-
stant, its variation with the slot depth suggests that sidelobe
suppression and beam shaping can be realised in such a slot antenna.
The theory for sidelobe suppression and beam shaping has been given bs
Dunbar [17]. For sidelobe suppression, the field distribution along
the slot must be gaussian and for beam shaping, it must be tapered.
Two sets .of strip lines were designed to give such distributions and
the plots of the near field along the slot are given in Fig. 10(a)
and (b). The gaussian distribution was obtained when the slot depth
d was shaped approximately proportional to exp(—l/2(z/2L)2), where L,
the slot.length and z, the length from the slot centre, whereas the
tapered distribution was produced by a linear depth taper along the
slot length. It can be seen in Fig. 19 and Fig. 22 that the amount

of sidelobe suppression for the above gaussian distribution is as
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much as 10 dB compared to the uniform case.

An.interesting limiting case is when the strip line thickness
extends .to.the wall of the cavity as shown in Fig. 11. The trans-

verse resonance equation for such a cross section is written as:

-jb s(Bi-cot(Ka)+btan(Kd))

o+
s (—b+s(Bi—cot(Ka)tan(Kd))
kb kb me
_+j_ln-—=o ene(g)
2 m YKS

where Bi is the internal susceptance given by Marcuvitz [13]. The
contribution to the slot susceptance due to the interior region can
be ignored when d >> s. When d is comparable to s or smaller (9)
becomes [l6a]:

Kb kb TS Te

-jecot(ka) + — + j — (ln(csc —f + 1ln ———J =0 o0 (10)
2 U 2b YKS

The results from (9) are shown in Fig. 12. The velocity ratio and
the attenuation constant still have the same characteristic variation
as before. When the depth of the cavity becomes large enough, the

TE01 mode will be excited.

The near field azimuth pattern of the slot antenna. is given in
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Fig. 13 for the 3 x 1" guide. Since the slot antenna is intended to
be used.as a feed for a parabolic cylinder, there are at least two
ways to.avoid.the back radiation from affecting the reflected radia-

tion from the aperture adversely:

(i) . To select a focal length such that the back radiation and
the reflected radiation will add in phase in the desired direction.

This will give a narrow bandwidth, or

(ii) To suppress the back radiation.

One way of suppressing the back radiation is to use a pair of small
plates on either side of the slct. The plates should not be too
large otherwise aperture blocking will become excessive. The azimuth
patterns for quite a number of plate arrangements are given in Appen-
dix B. It only needs mention here that some quite interesting pat-

terns have been produced.

It can now be said that the properties of the new slot antenna
have been pretty well covered. It could well be justified to say .
that this.slot antenna has as useful a scope of application as its
counterpart, the long wire antenna. When a travelling slot is
placed. at a small distance over a conducting surface, the field
from its underside will more or less augment to that of its upperside

because of a small phase difference in a similar manner to a long
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wire over a magnetic surface or a pure dielectric at grazing incidence.

2. AN APERTURE

The above line source could be used to produce an aperture by
placing it along the focal line of a cylindrical parabolic reflector.
Ssuch an. aperture will be predominantly horizontally polarized, have a
higher directivity and lower sidelobe levels. Because of the polarity
of the electric field around the slot antenna and the phase reversal
after.reflection, it can be used much more effectively in conjunction
with a reflecting surface at a closer distance than a long wire

antenna.

(a) Aperture Field Distribution
The aperture field distribution can be approximated by using ray

optics.

It is apparent from treatments of physical optics that a field can
be described in terms of rays and wavefronts whenever the phase varia-
tion with.distance from the source becomes linear. From the cylindri-
cal wave.equation, the expression for the potential function of the

most general cylindrical wave is given by:

b (psesz) = e I H B o) eIHRR (11
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and the expression for the electric field is:

i ’Wn(p 1$r2)
Eb = X A~ :
: n
—00 ap

eoo (12)

For an azimuth field pattern as shown in Fig. 13, the dominant con-

(2)

1
tribution will be seen later to be the Ho {(kp) component. It is

(2)'

interesting to note that the phase variation with distance of Ho

(kp)
can be assumed to be linear for a distance to the source as close as
.3\ as seen in Fig. 14. Based on this result it can be said that the
field around. a typical travelling wave slot line can be described in
terms of conical wavefronts whenever the phase variations in both ¢
and z directions are linear. For distance very close to the line

source the wavefronts. become blunted because there is very little

phase variation in the transverse direction, Fig. 14(i).

Rays from. a travelling. wave line source are oblique but beam
collimation can. still be achieved with oblique incidence by using a
parabolic cylinder.. The analysis for oblique beam collimation is

presented in Appendix E.

To obtain the aperture field distribution by using ray optics,
the expression for the. electric field around the slot must be known.
However it is almost. impossible to determine the constants An in (12)

for a rectangular cross section. Some approximation has to be used.
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One method of approximation which has proved to be quite useful is

to express the measured.azimuth electric field pattern as a Fourier
series. The leading:terms in the Fourier series give a good indica-
tion of the.dominant.terms in the general expression for the electric
field given by (12)...For instance the Fourier series representation
of the.azimuth field. distribution in Fig. 13 shows that there are
only two.significant terms. and. the first term is the most dominant
one. Therefore the most dominant contribution to the electric field
given by (12) is that due to n = o. The field distribution in Fig. 13
can be approximated by two semi-circles as shown in Fig. 13 and the
expression for the electric field in (12) can be reduced to an
expression involving only the derivative of the Hankel function of
zero order with.an appropriate constant of proportionality for the

front and back lobe, i.e.

g = g2

s * 53 Ho (<) expl-3k z) cen(13)

It will be seen later that this simple approximation causes very

little error.

Using the  coordinates indicated in Fig. 15, the emerging rays
from the.reflector.are parallel and the field is assumed to remain
constant along the reflected ray. The electric field Ey(y,z) in the

aperture plane is given by the value of E (p,9,z) at the correspond-

¢
ing point (p,$,z), so that the amplitude is:
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(

02)(Kp)| eoo (14)

|Ey(y,Z)|“|f(Z) %5 H

where f(z) is the field variation along z.

2f y2+4£2
o = = .o (15)
l+cosy Af

and the phase is exp(—jksinecos¢(xo+2f) since ¢ = 0 and ksin® = h

I8

|K| for small attenuation, thus the phase term becomes exp(—jh(xo+
2f)). It should be noted that in the above phase expression, the

1
phase of Héz)

{(kp) has been taken into account.

(b) Aperture Radiation Patterns

The.aperture radiation patterns of interest for this type of
aperture are.the.elevation.pattern in 6 when w = 0 and the azimuth
on elevation pattern.in.w when 03 is fixed. Such radiation patterns
can be obtained from the analysis given in Appendix D for obligue
incidence. Let E(y} be the field distribution in y, the general
expression for the radiation pattern of the aperture in direction

(w,81) is given by:
Ea(w,el) = Ea2coswcoselfff(z)exp(j(kcose—Kz)z)dz.

exp(—jh(xo+2f))E(y)exp(jkysinesin¢)dy 0o (16)
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If the centre of the aperture is at (xo,yo,zo) instead of (XO,O,O)
as being assumed in (16), an extra phase term has to be included
i.e. exp(jk(ybsinesin¢+zocosel). The term 5%; exp (jkr) has

been suppressed.from:(1l6}. For a rectangular aperture as seen in

Fig. 16, equaticn (16) becomes:

L/2
Ea(w,el) = Ea2coswcoself f(z)exp(j(kcosb-kz)z)dz-
-L/2
as/2
exp(—jh(xo+zf))f E(y)exp (jkysinfsin¢)dy ...(17)
-d/2

where f(z) can be uniform, tapered, binominal or gaussian. For the
3 x 1" guide with uniform field distributlon along the slot, i.e.
f(z) = 1, E(y) given by (14) is plotted in Fig. 17. The distribu-
tion implies a certain amount of sidelobe suppression. In (16) and
(17), E(w,01) .is expressed in two coordinate systems i.e. (r,w,83)
and (r,$,6) for clarity and convenience and in actual computation
only the (r,w,031) system is used. The relationship between (r,¢,0)

and (r,w,031) is given by:

cos8 = cosfj cosw .00 (18a)
sinfj .

cos¢p = ——————— .0 (18b)
vV (1-cosZ0)

When w = o, Ea(O,el) gives the elevation pattern in ©6; and when 8; =



Fig. 16. Spherical ccordinates used to evaluate aperture
radiation patterns.
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a constant,afEa(w,u) gives the azimuth on elevation pattern with

the elevation angle 90° - a.

In practice, the back.radiation and aperture blocking have to

be taken into account. The back radiation is given by

L/2 . A |
E>(0,81) = E cosucosty| £(z)exp (] (kcosb-kz)z)dz ... (18)
“1/2

Due to a 180° phase change in the azimuth pattern, (18) has the same

sign as (17). The aperture blocking is given by:

ab L/2 6/2
E (w,01) = —Eacoswccse;; (.c.)dzj (...)ay ses (19)
-L/2 -8/2

where the.terms in the brackets (...) are the same as in {17) and §
is the effective.blocking.width.taken to be 50% more than the actual

width as suggested by Cumming et al. [31].

The diffraction off.the edge of the parabolic cylinder also play:
a dominant  role in.affecting the sidelobe levels. The first order
diffracted field.contxibution can be obtained by using the analysis
presented in Chapter ‘tws.assuming that the edge is replaced by a
tangential half plane. . This is a three dimensional case with oblique

incidence. For the right hand side edge:

B (w,01) = [vy(r,40) + vy ir, b +20+8)] Fy)-

(cont'd next page)
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Zexp(jk(y051n651n¢+x051necos¢)) ... (20}

[Zl(...,)d
where (...) is as in (18) and zj = z, - L/2, z1 = z, + L/2 and z
is the z shift due to oblique incidence. vB(r,¢) is given in
Chapter two, equation (20). The expression for the left hand side
edge is obtained from (20) by.using wE - a - ¢ and wE + 0 - ¢ instea

of the existing angles and F(-wE) instead of F(wE).

The final radiation pattern is the sum of all the above

expressions.

The above expressions for the: radiation pattern have been
tested by using a slot.antenna 1lA long, having a cross section
3 x 1" for the backing cavity. The slot width is .0l1X and slot
depth is .083A. Such a slot antenna has a measured velocity ratio
equal to .985 and since the attenuation is very small it can be

taken to be zero, h is k(lv(,985)2)1/2

where k = 2w/)A. The para-
bolic cylinder has a focal length .54 and a length 18)A. The fre-
quency used is 2° GHz. " The elevation and azimuth on elevation patter
of the antenna system are shown on Fig. 19(a) and Fig. 20 together
with the' theoretical results. .It can be seen that the agreement
between theory and experiment is very good in the vicinity of the

main beam. The disagreement in the sidelobe levels in the eleva-

tion and azimuth on elevation patterns is due to phase errors and
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the nature of the approximation given in Fig. 13.

n

With the line source having a gaussian distribution of Fig.
10{(a), the elevation pattern is shown in Fig. 19{(b). The experiment-
al results are given in continuous line and the theoretical results
are given in dotted-line. -The agreement is quite good and the side-
lobe suppression is as much as 10 dB when compared to the uniform

line.

Fig. 20 is the azimuth .on elevation radiation pattern for an
angle of‘elevationzequal:to_lSQO. The results for the angles of
elevation equal to 5° and 2.5° are shown on Fig. 21. Here again the
agreement  is quite . good.. The .diffraction off the end and the

corners of the reflector tends to bring the sidelobe levels up.

The parabolic cylinder can be replaced by a corner cylinder
having an angle of 120° without serious deterioration in both the
elevation and azimuth con elevation patterns. The beam widths in
both patterns are a bit narrower. The measured direcgivity for the
corner reflector is 11.7 4B over a dipole at 2 GHz and that for the
parabolic reflector is 12.4 dB. The elevation pattern for the
corner reflector is given in Fig. 22. A corner reflector has an
advantage over a parabolic cylinder in that it is much easier to

construct.
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The method of measuring the radiation patterns has been

omitted here and will be discussed fully in Chapter four.

The finite length of the parabolic cylinder could be taken
into account by solving for the diffraction by a parabolic edge and
two plane corners due to the postulated existence of a pecint source
at the end of the line source. A brief discussion on the correction
for the finite length partition has already been given in Chapter

two. Such an analysis is beyond the scope of this thesis.

In conclusion, it must be said that the above interesting new
travelling wave slot antenna can be used as a ground based antenna
at close distance to the ground by virtue of the opposite polarity
of the electric field on the upper side and lower side of the slot.
It can be used in conjunction with a corner reflector or a parabolic
reflector to produce azimuth on elevation patterns with very low
sidelobe levels. Sidelobe suppression in the elevation pattern
together with its capability of beam shaping make the antenna quite

versatile and attractive in aircraft navigational systems.

In the following chapter, the antenna will be used as a line
source and as a feed for a parabolic cylinder to produce_an aperture.
A line source and an aperture together with a slot dipole will put
the solution for the diffraction off the edge of a partition pre-

sented in Chapter two to a good test.
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CHAPTER FOUR

EXPERIMENTAL VERIFICATION

The experimental verification of the solution for the
diffraction off the edge of a partition is presented in this chapter.

Three models have been built for the frequency of 2 GHz.

(i) Two slot dipoles in a finite ground plane.
The equatorial plane radiation pattern of this model is the same
as the radiation pattern of two infinite lines having a propagation

normal to the partition.

(ii) Two travelling wave slot lines on a large ground plane.

The radiation patterns in azimuth on elevation of such a model
are those of two line sources having finite length and a propagation
with an oblique incidence Eo the partition. Since the lines are

finite in length, this is a three dimensional case.

(iii} Two travelling wave apertures.
Two parabolic cylinders having each a travelling wave line
source feed along its focal line have been used to simulate two aper-

tures. This model does not represent the two ideal apertures in its

proper sense in that the direct radiation from the feeds and-.edge

diffraction from the parabolic reflectors are not zero. However
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these effects can be easily taken into account. If only the apertur
field distribution of the parabolic cylinders is considered, its
radiation patterns in azimuth on elevation are those of two aperture
having a finite length and a propagation with an oblique incidence

to the partition. This is another practical three dimensional case.

The expressions for the radiation patterns of the above three
models have been derived and presented in Chapter Two. The theoreti
cal results for the three models will be compared with the experimen

al ones. Reasonably good agreement has been obtained in all cases.

1. BRIEF DESCRIPTION OF EXPERIMENTAL MODELS

(2) Two Slot Dipoles:

The first model consisted of two parallel slots cut in a groun
plate and backed by a rectangular cavity as seen in Fig., 1. Each
slot was 0.4A long, .005\A wide. The two slots were separated by a
distance A/2. The ground plate was 6\ x 3X. The backing cavity was
a guide section 2A deep and had a cross section .67A x .17A. This
cross section supported the TEOl mode at 2 GHz which in turn excited
the slot. The ground plate was bolted onto the backing cavities by

a number of screws less than .05) apart to ensure good electrical

contact. Two partitions were used:
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(a) 3X wide and 6X high

(b) 3A wide and 16X high

(b) Two Line Sources:

The second model consisted of two travelling wave slot lines
which have been discussed in Chapter Three. The slot was .01\ wide,
.083X1 deep and 12\ long. When the effective length of the tapered
termination was taken into account, the effective slot length was
only 11A. Each slot line was excited at about Ag/4 from a short cir-
cuited end by a coaxial slit balun inserted through the backing
guide as seen in Fig. 2(a). Silver plating was used to enable solder-
ing which would improve the electrical contact. The strip line form-
ing the slot was bolted to the backing guide by a number of screws
less than A/4 apart. The slot lines were mounted parallel to each
other at a distance A/2 apart on a rectangular ground plate 18\ x 16X
(i.e. 9' x 6' at 2 GHz). The ground plate was reinforced by a sheet
of 7 ply marine wood to ensure flatness. A partition 18\ long and 34

high was used.

(c) Two Apertures:

The third model consisted of two parabolic cylinders each havinc
a line source described above as its feed. Each parabolic cylinder
had a focal length 0.5, a width of 2A and a length of 18X. Due to

the field distribution around the slot, each was mounted upside down
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so that most of the radiation from the slot was intercepted by the
parabolic cylinder. The feed cables coming out on top were kept at
right angles to the electric field and made as short as possible to
reduce loss and also to make tuning less sensitive. Each parabolic
cylinder was made of thin aluminium sheets bent according to the
parabolic shape of a wooden frame. The parabolic cylinders were
mounted on a 7 ply marine board having their foci 2.5) apart. A

partition 18A long and 3) high was used.

Two corner reflectors of included angle 120° were also built
to approximate the parabolic cylinders. Each had the same width as

a parabolic cylinder but a somewhat shorter length of 16A.

All the above three models despite the strong supports presente

many difficult situations in windy conditions.

2. PREPARATORY TUNING AND MATCHING FOR EXPERIMENTS

To obtain the sum and difference patterns from the above models
the two aerials need to be fed in phase and 180° out of phase. This
could be achieved by using a ring hybrid. The principle of a ring
hybrid is quite well known and it can be constructed in the form of
a strip line using rexoclite, a dielectric material having uniform

dielectric constant in all directions. The design and construction
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of a ring hybrid are discussed in Appendix C. To maintain good
isolation between the first and third ports, every port must be
well matched. This leads to the problem of tuning the above models

to a 50 ohms source to obtain a good match.

Tuning for each model was done by using two identical double
stub tuners at a conveniently short distance from the antennas.
Prior to fine tuning, one antenna was tuned roughly to a VSWR of
about 1.2 then the source was disconnected and replaced by a 50 ohms
load. This was necessary to eliminate any mismatch reradiation due
to coupling when the untuned antenna was being excited for tuning.
The source was then connected to the untuned antenna which was
properly tuned to a VSWR of better than 1.03. The source was again
disconnected from this antenna and a 50 ohms load was put in its
place. Proper tuning was carried out on the roughly tuned antenna
to obtain a match with a VSWR better than 1.03. The whole process
was quite tedious when there was two double stub tuners to tune. In
the models involving the two terminated line sources a match of a
VSWR of 1.03 or even better was easily achieved. However for the two
slot dipole case, the best match achievable had a VSWR somewhat less

than 1l.1.

Every time a parameter of any one of the models was altered,
retuning was carried out to ensure a good match. It was found that

the slot dipcles and the slot lines were pretty well isolated when
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the partition was about a wavelength high since a further increase
in partition height did not alter the VSWR significantly. Each
tuned antenna was then connected to an appropriate port on a ring
hybrid to generate either a sum or a difference pattern. The VSWR
of the model together with the ring hybrid was measured and found to
be better than 1.05 for the models involving the slot lines and

better than 1.2 for the two slot dipoles model.

The bandwidth of each model was obtained by measuring the 3dB
points of the radiated signals as the frequency was altered and was

found to be better than 2%.

3. METHOD OF RADIATION PATTERN MEASUREMENTS

(a) Ground Reflection Technique

With an experimental model of dimensions 9 x 6 x 3', it is not
practical to make the simulated free space measurement by the usual
tall towers technique. Hence the ground reflection technique whereby
the ground reflection is combined with the direct signal should be
used. The Weapons Research Establishment, Salisbury, S.A. has such
a test range together with a turntable and good automatic plotting
facilities. This allows convenient and accurate measurements of
radiation patterns to be made. Since the ground reflection technique

is quite well known, only a brief summary needs be given here.
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The technique was studied and reported by Cohen et al. [25]

and has been used gquite extensively ever since.

Normally to measure the radiation patterns of an antenna in a
simulated free space condition involves the use of two tall towers.

There are two conditions to be met:
(i) The distance between the antennas, R must be such that

R > 2D°/)

where A is the wavelength and D is the largest dimension

of the antenna.

(ii) The tower heights must be such that the image of the trans-
mitting antenna with respect to ground does not 'see' the
receiving antenna. Under such a condition, no ground
reflection will enter the receiving antenna and the
radiation pattern is said to be equivalent to that of free

space.

The ground reflection technique makes use of the ground reflecte
ray and so tall towers are no longer needed. For a grazing incidence
of the order of 2° or smaller, the reflection coefficient is ¥££§91
for both vertical and horizontal polarization, the transmitting antenr

and its image can be treated as an array of two oppositely phased
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antennas in free space (provided that the ground is flat) and the
phase centre of the transmitting signal is situated at the foot of

the transmitting antenna on the ground.
The field strength of the array in direction 6 is given by:

E(B) a F(0) [exp(jkhtsine)—exp(—jkhtsine)] eos (1)

o, F(G)sin(khtsine) oo (2)

where F(8) is the radiation pattern of the transmitting antenna.

Since

6 = arctan (hr/R) = hr/R = sinf ceoe(3)

Thus

E(0) a F(S)sin(khthr/R) oo (4)

The variation of F(6) is so slow that it can be considered uniform,
therefore (4) implies that the receiving antenna is illuminated by a
source placed on the ground at the foot of the transmitting antenna
with an elevation beamwidth approximately equal to that of the first
lobe of the array and a horizontal beamwidth equal to that of the
transmitting antenna. For the condition that the antenna under test

be positioned at the peak of the first lobe of the array:

2o (5)

I
[

51n(khthr/R)

/2 ce0(6)

i.e. khthr/R
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AR
— coo (7}
4

or hthr =

So the two conditions the ground reflection technique should meet
are:

(i) R > 2D2/A as above
(ii) hthr = AR/4

To obtain good results, the profile of the field variation at
the receiving antenna needs to be probed to establish if there is a
uniform plane wave arriving at the receiving antenna at the correct

height setting hr corresponding to ht given by (7).

The technique does away with tall towers and results in many

advantages.

(b) Electrical Equipment and Characteristics

The experimental arrangement is as shown in Fig. 7. Each model
was used as a transmitting antemna. The receiving antenna was a para-
bolic dish having a diameter 4A and a focal length 1.2)A. The feed was
a A/2 slit balun dipole with a small circular reflector to reduce the
back radiation [26]. The slit balun was selected because it had a
broader bandwidth than the choke type, presented no blockage and gave
virtually no squint in the radiation patterns of the parabolic dish.

The <receiving antenna has a gain 12 dB over a dipole and the
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bandwidth was much better than 2%. Such a transmitting gain was
ample for a test range of 200 ft. and an RF oscillator having O dBm

output.

(i) The Electrical Characteristics:

RF power output: O dBm, CW with internal ALC at 2 GHz.

Bolometer current: 4 mA for square law operation.

Crystal mixer bias: -2mA for square law operation.

Microwave receiver: Gain control with linear range; AFC on
lower; bandwidth 0.5 MHz; IF Sweep Width
wide; Local oscillator power within linear
range and its frequency peaked for maximum
response.

Crystal amplifier: gain set at zero for linearity.

The receiving equipment was calibrated before use and the error

was found to be about + .5 dB.

(ii) The Equipment:

On the transmitting side, there were:

* A turntable with provision for azimuth on elevation rotation.
* Two double stub tuners (Weinschel Engineering Model DS109

and DS 1098).
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* A ring hybrid (balanced strip line type, characteristics in
Appendix C, made at the University of Adelaide} with better
than 30 dB isolation at 2 GHz.

* A 3 dB fixed attenuator (874-G3L General Electric) + 0.4 dB
up to 2 GHz. Signal generator, model 8614A Hewlett-
Packard (0.8 - 2.4 GHz) with provision for variable cali-

brated power output, internal ALC and square wave modulation.

On the receiving side, there were:

* A crystal mixer, Model 14-3 Scientific Atlanta, a broadband
coaxial mixer (1.0 - 15. GHz) with a series diode requiring
minimum local oscillator power, giving good isolation between
local oscillator and signal input.

* A microwave receiver, series 1710 Scientific Atlanta,
extremely wide frequency range, high sensitivity, exceptional
linearity and good stability. Fast acting electronic AFC
circuit and continuous tracking motor AFC correct the 55 MHz
local oscillator frequency in the I.F. amplifier unit for
changes in the incoming 45 MHz lst I.F. signal caused by RF
signal frequency changes. The end result is a constant 10 MHz
2nd I.,F. Dynamic range 40 dB with deviation from linearity
less than + 0.25 dB. I.F. step attenuator. Signal level

display permits accurate calibration of R.F. attenuation.
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Overall receiver R.F. - I.F. bandwidth selectable at 5 MHz,
0.5 MHz, or 0.1 MHz.

A crystal-Bolometer Amplifier, model 1554-2 Scientific
Atlanta, a sensitive amplifier with wide band (+ 1.5% centre
frequency) or narrow band (+ 3Hz) operations.

A Rectangular Recorder, Series 1520 Scientific Atlanta for
rectangular plot in the three ranges 360°, 180° or 60°.

A slotted line for tuning, model 874-LV with residual VSWR

< 1,035 from 300 MHz to 9 GHz (General Electric) and a

415E SWR meter, tuned amplifier at 1 kHz (Hewlett Packard).

4. THEORETICAL VS EXPERIMENTAL RESULTS

In what follows, the theoretical vs experimental results are

presented. Reasonably good agreement has been obtained for all three

models.

(a) Two slot Dipoles:

The theoretical expressions for the radiation patterns of two

infinitely .long line sources separated by a finite height partition

of infinite length are also those in the equatorial plane of two slot

dipoles in an infinite ground plane separated by the same partition.

In practice, the situation is different because the ground plane has
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to be finite and the partition can't be infinitely long. Diffraction
from the edges of the ground plane can be treated reasonably accur-

ately but that due to various plane corners is still untractable. To
reduce such a contribution, the ground plane has been made large and

the partition long.

(i) The Case of no Partition

To appreciate the effect of the partition, it is necessary to
examine first the sum and difference patterns of an array of two slot
dipoles placed at a distance A/2 apart and having no partition
between them. ;f the interaction between the two dipoles are elimin-
ated, the sum and difference patterns are as shown in Fig. 9. It can
be seen that the maximum of the difference pattern occurs at the same
position as the minimum of the sum pattern and the null of the differ-

ence pattern is far from being sharp.

(ii) The Case of a Partition of Various Heights

When an H plane partition of a certain height is introduced
between the dipoles, the theoretical results show that the sum pattern
remains unaltered whereas the difference pattern undergoes three basic

changes:

(i) The central null becomes deepened and concentrated near

the central plane.
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(ii) The region outside the central null tends to assume the
same shape as the sum pattern.

(iii) Ripples appear on either side of the central null.

The first two characteristics are the desirable characteristics
for a navigational system free of false courses but the last one is

undesirable and should be reduced or suppressed.

As the partition height increases, the central null gets deeper,
the region outside the central null assumes more and more the same
shape as the sum pattern and the ripples become more numerous but less
pronounced. As the partition height tends to infinity, the sum and
difference patterns become coincident with the exception that the

latter has opposite polarity on either sides of the central null plane

Two special cases will illustrate the above results more

clearly.

() For a Partition Height X, = 6

The theoretical sum pattern is shown in Fig. 10{a) in dotted
lines. This is exactly the same as the sum pattern plotted in
Fig. 9. The experimental results for the sum pattern are also
plotted in continuous lines in Fig. 10{a). The theoretical
difference pattern is shown in Fig. 10(b) in dotted lines. The
difference between the difference pattern in Fig. 9, and Fig.

10(b) is quite considerable. The experimental results for the
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difference pattern are also plotted in continuous lines in

Fig. 10(b).

(B) For a Partition Height %, = 16\

The sum pattern remains the same as seen in Fig. 1l0(a), this
confirms the characteristics of the diffracted field function
discussed in Chapter Two and verifies the physical reasoning
that a conducting sheet at right angles to the electric field
in a balanced distributed system will have no effect on the
radiation patterns of that system. Both the experimental and
theoretical results for the difference pattern are shown in
Fig. 11 in continuous lines and dotted lines respectively. By
comparing this figure with Fig. 9 and Fig. 10(b), the effects

of the height of a partition can be readily seen.

It can be seen in Fig. 10{a), Fig. 1l0(b) and Fig. 1l that the
agreement between the theoretical and experimental results is good.
The deviation from the symmetrical patterns in the azimuth plane is
due mainly to.the wind effect on the model, which very often cannot
be avoided in an open space test. The theoretical results only
include the first and second order effects. To obtain a better
agreement higher order terms have to be included together with the
contribution due to the diffraction off the plane corners of the
partition and the finite ground plane. The effect of a plane corner

is to produce spherical diffracted waves having components in the
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equatorial H plane. The effect of the finite length partition
should also be added. When the partition length is finite, it
presents another edge to the incident glancing rays which are then
diffracted into a conical wavefront. Rays from this wavefront have
components which lie in the equatorial H plane and thus effect the

radiation patterns.

No experimental measurement of the phase variation of the sum
and didfference patterns was carried out. The theoretical phase
variation is shown in Fig. 12 where it can be seen that the sum and
difference patterns do not differ much in phase in the immediate
regions outside the central null plane. The large phase variation
at large ¢ will not cause any concern since the signals in these

regions are insignificantly small.

(b) Two Slot Lines:

The theoretical expressions for the radiation patterns of two
finite length slot lines separated by a partition and placed above a
ground plane are derived and presented in Chapter Two. Each slot
line is a travelling wave antenna with a uniform amplitude distribu-
tion along the slot. The direction of maximum radiation is dictated
by the velocity ratio c/vg = .985 and the slot length. The slot lines

are mounted with their feeds towards one side of the ground plane.
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This arrangement will enable the ground plane to capture most of the
radiated waves. Because the ground plane has been made quite large,
it can be assumed to be infinite. The contribution due to the dif-
fraction off the edge of the finite ground plane has been ignored in
the theoretical computation. This is justified because the angle of
incidence of the rays from the line source to the edge is almost
grazing. The diffracted contribution will have very small effect in
the region of the main beam and immediate sidelobes. As seen in Fig.
13, the model is unfortunately large. Probably a smaller model at a
higher frequency to be used in an anechoic chamber will be more
suitable. Due to continuous windy conditions, many tests had to be
abandoned half way through. However the modest results obtained are
considered quite sufficient to illustrate the effect of the partition

and to give a better physical insight intc its behaviour.

Fig. l4(a) and Fig. 14(b) show the theoretical sum and differ-
ence patterns in dotted lines. On the same graphs, the experimental
results are plotted in continucus lines. The agreement between the
theoretical and experimental results are quite good considering the
approximations made. Fig. l4(c) shows the experimental sum and diffe:
ence patterns. From the figure, it can be seen quite clearly that the
partition has deepened the null in the central plane considerably and
alsc has caused the alignment of the nulls and the sidelobes. The

partition has no effect on the sum pattern. As the partition height
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increases, it is expected that the difference pattern will assume the
same shape as the sum pattern with an exception that the phases on

either sides of the central plane are opposite.

Better agreement between the theoretical and experimental
results will be achieved if higher order diffraction terms due to the
finite ground plane and finite length partition are included. This
slot line model is unlike the slot dipole model in that the slot lines
are not cut into the ground plane but are A/2 above it. The presence

of the backing cavities will complicate the situation somewhat.

{c) Two Apertures:

The theoretical expressions for the sum and difference patterns

of two parabolic cylinders can be obtained as follows:

(1)} The expressions for twe finite length apertures can be
applied to the aperture field distributions. of the two
parabolic cylinders.

(ii) The expressions for the direct radiation from the slot
lines are those of two finite line sources separated by
a partition.

(iii) The expressions for the diffraction off the edges of

each parabolic cylinder have been given in Chapter Three.
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The edge diffraction behaves like a line source thus the
edge diffraction contribution can be deduced by applying
the expressions for two finite line sources separated by

a partition.

To illustrate the effect of the partition, the following cases

are considered:

(i) The Case of No Partition:

When the two parabolic cylinders have no partition in between
them, the experimental sum and difference patterns are shown in Fig.
16(a). The null in the central plane of the difference pattern is not
very sharp and the sidelobes of the sum pattern do not line up with
those of the difference pattern. Such sum and difference patterns
will contain inherent false courses. Fig. 16{b) and Fig. 16(c) com-
pare the thecretical results with the experimental ones. The agree-
ment is quite good in the regions of the main beam and immediate

sidelobes.

(ii) The Case of a Partition 2.4) High:

When the two parabolic cylinders are separated by a partition
2.4X high, the experimental sum and difference patterns are as shown
in Fig. 17(a). The sum pattern remains unaltered. Once again the
theoretical prediction is verified. The null in the central plane

of the difference pattern becomes deeper and the sidelobes are brought
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closer to the central null. It is expected that the difference
pattern will resemble the sum pattern more closely when the partition
height is increased. Fig. 17(b) compares the thecretical results

for the difference pattern with the experimental ones. The agreement
is quite good in the vicinity of the null in the central plane but
deteriorates rapidly towards the sidelobes. The disagreement is due
to the fact that other contributions such as higher order diffraction
finite length partition, finite length reflectors and plane corners
due to ﬁinite length have been omitted. The most significant higher
order diffraction contribution is that due to a 'line source' due to
diffraction at the edge of the partition illuminating the parabolic
reflectors and their edges. The edge diffraction effect can be
easily taken into account but it never plays a dominant role in the
vicinity of the main beam so it can be safely ignored. However the
illumination of the parabolic cylinders by the 'line source' at the
edge of the partition will play a dominant role in the main beam but
it is too difficult and too involved to analyse. This is so because
the partition edge is not the focal line of the parabolic cylinders.
Since the length of the partition and the parabolic reflectors has
been made as long as practicably possible, the finite length effect
has at least been greatly reduced. Depending on whether a plane
corner is illuminated by a strong or weak signal, its diffracted

contribution could become quite serious. Fig. 18 shows the effect
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of a partition in the form of a 90° plane corner. The plane corner
is 2.4XA high at its highest point, and is illuminated by the main

beam of the parabolic cylinders. Predictably, it has no effect on
the sum pattern but it raises the sidelobe levels of the difference

pattern gquite considerably.

The effect of the H plane partition between the two corner
reflectors is the same as for the two parabolic cylinders. Fig. 19
shows that the sum and difference patterns of the two corner reflectors
do not differ much from those of the two parabolic cylinders. The

beamwidth is slightly narrower because of the phase error.

If the measuring equipment accuracy, the manufacturing toler-
ances of the three models and the errors due to the effects of the
test range are taken into consideration, it must be said that the
experimental results agree quite well with the first order solutions

of the problem of diffraction off the edge of a partition.

The use of an H plane partition in the plane of symmetry of a
distributed antenna system tends to create the desirable effects for

a navigational system free of false courses. These are:

- the deepening of the null in the central plane of the

difference pattern, and



- the lining up of the nulls and sidelobes of the sum and

difference patterns.

94.
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CONCLUSION

The analysis and experimental verification of the problem of
diffraction off the edge of a partition placed along the medial plane
of symmetry of a distributed radiating system have confirmed the

behaviour of the partition as predicted by physical reasoning.

The geometrical theory of diffraction in its cylindrical wave
formulation gives quite an adequate solution to the antenna problem
presented in this thesis. It has an advantage in visualization and
also the solution is expressed mostly in terms of the well known
Fresnel Integrals. The Fresnel Integral representation is exact in
the case of thin partitions but cnly approximate in the case of a
partition of any included angle for points well away from a shadow
boundary. For points on a shadow boundary, the diffracted field can
be taken to be one half of the incident field. When the propagation
is at right angles to the edge of a partition, the propagation con-
stant in the Fresnel Integrals should be taken to be k = 27/i where
A is the wavelength. When the propagation is at an angle 6 with the
edge of a partition, the transvérse propagaticn constant kr = E% sind
should be used in the Fresnel Integrals; the diffraction of the com-
ponent parallel to the edge can be taken to be the radiation pattern
of the edge line. Generally for most practical cases, first order

diffraction terms are quite adequate. However better results can be
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obtained by including higher order diffraction terms. This is done

by treating a diffracting edge as a line source.

The partition can be used in the medial plane of symmetry of
any distributed antenna system. Its effect, on the radiation patterns
depends upon the electric polarization with respect to the edge. This

has been discussed in Chapter Two.

The new type of long slot leaky wave antenna described in Chapter
Three can be used together with an H plane partition to form a ground
based localizer. Because of the cpposite polarity of the electric
field at the top and bottom of the slot and because of the phase
reversal upon reflection, direct and reflected signals are expected
to reinforce at angles of elevation of the order of 2° to 5°. This,

together with the following characteristics due to a partition:

(i) a sharp null in the difference pattern,
(ii) the lining up of the nulls and sidelobes of the sum and

difference patterns,

will make the proposed grocund based localizer an attractive system.
For broadband operation, the long slot should be terminated and a
broadband tapered strip line balun should be used for a coaxial feed
line or a tapered waveguide for a waveguide feed line. However the

proposed ground based localizer is not perfect. At higher angles of
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elevation, due to the phase reversal of the sidelobe in the sum
pattern, false courses could be set up by the sidelobes of the sum
and difference patterns. This is not at allserious because the side-
lobes can be suppressed and what is more an aircraft does not often
come to land at a steep angle of descent. Low silhouette require-
ments dictate the height of the partition. For a low partition,
diffraction ripples appear in the difference patterns. Thus the
proposed ground based lccalizer appears to be more attractive in
microwave systems. One way of reducing the diffraction ripples in
the difference patterns is to use a slotted partition. This type of
partition will still leave the sum pattern unchanged. While the slot
can be designed in such a way that the diffracted contributions from
the same side of the partition cancel each other out in the differ-
ence pattern. The designing concept [30] is given in Fig. 1 and the
results of such a design is seen in Fig. 2. It is demonstrated
clearly that the diffracted ripples in the difference pattern are
considerably suppressed when the results in Fig. 2 are compared with

those in Fig. 10(b), Chapter Four.

The work done in this thesis is by no means complete. The
solution to the problem of diffraction off the edge of a partition
has been presented in general forms. The use of a partition in a
paraboloidal reflector system deserves some serious consideration and
the need to suppress the large diffracted ripples due to a low parti-

tion in the resulting difference patterrs should be studied more thoroug
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APPENDIX A

A SLOT LINE PARAMETRIC STUDY

As discussed in chapter three, because of the many parameters
involved in the equation for the transverse resonance of the long slot
leaky wave antenna, viz. slot width (SW), slot depth (SD), narrow
side (AN}, wide side (AW), strip line thickness (Tl) and cavity wall
thickness (T2}, it is not possible to present the solutions in a
general form which will then apply to all cases or at least a major-
ity of cases. However by assuming zero thickness, some physical
insight into the behaviour of the slot antenna can be gained by
obtaining solutions of the transverse resonance equation for various
AW, AN and SW and plotting the results obtained for the attenuation
and velocity ratio against SD. Of course there is an infinite number

of possible combinations and to obtain all such sclutions is impossible

.Since multimode operation depends on the dimension of AW, it
is therefore considered that AW should have values above and below
that of the cut off dimension of the TEO1 mode i.e. AW = .3A, .6A,
9N,

)

Sometimes laxge dépth is not practically a good virtue, whereas
a wider AN and a shallower AW could deo the job better. In such a

case AN could be expected tc be larger than the cut off dimension
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thus the chosen values for AN are .lA, .1l5A and .6A.

From the strip line theory, only the TEM exists if the width of
the line is made less than A/4, this puts the limitation on the var-
iation of SD. It can vary from a small value of .25i. The limita-
tion can be waved if multimode operation involving one more higher

order mode is anticipated.

The slot width (SW) is finally selected by taking AN and the
characteristic impedance of the line intc consideration. Some useful

values of SW are 0.005A, .01\ and .04%.

The results obtained for the attenuation and velocity ratio can

be divided into two types as follows:

Type I includes the following:

{a) AW = .3, AN = .15, SW = ,005 (Fig. 1la)
SW = .01 (Fig. 1b)
SW = .04 (Fig. lc}
(b) AW = .6, AN = .15, SW = .005 } Fig. 2a for lst solutions
SW = .01 )
SW = .04 ) Fig. 2b for 2nd solutions
(c) AW = .9, AN = .15, SW = .005 ) Fig. 3a for lst sclutions
SW = ,01 }
SW = .04 ) Fig. 3b for 2nd solutions

Type II includes the following:
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(a) AW = .3, SW

.01, AN: -1 (Fig. 4)

(b AW = .6, SW = .01, AN = .1 y Fig. 5a for 1lst solutions
AN = .6 ) Fig. 5b for 2nd solutions

{(c) AW = .9, SW .01, AN = Fig. 6a for lst solutions
AN = .6 ) Fig. 6b for 2nd solutions

!
[
I_l
St

It is interesting to note that for the dimensions in type I(a)
and II(a), there is only one acceptable set of solutions to the

transverse resonance equation.

From Fig. la, lb and lc of type I, the velocity ratio is seen
to be very close to unity and does not change very much with the
slot depth (SD). The attenuation is large when the slot width (SW)
is large, which is to be expected from physical consideration. Its
change with slot depth (SD) is more rapid as the slot width (SW)

decreases.

Fig. 2a presents the first set of solutions for the transverse
resonance equation with the characteristics that the velocity ratio
is close to unity and the attenuation is large for a large slot
width (SW) and decreases as the slot depth (SD) increases. Fig. 2b
shows the 2nd set of solutions, the velocity ratio is much less
than unity. Tt is in fact centred around 0.5 and the attenuation is
a.couple of order of magnitude larger than that given in Fig. 2a.

This means that the first higher order mode, the TEOl mode, cannot
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travel far down the slot before being completely attenuated.

Fig. 3a and 3b represent the first set and 2nd set of solu-
tions respectively. The velocity ratio of the 2nd set of solutions
is closer to the first i.e. unity, whereas the attenuation main-
tains the same trend as described earlier for the type I(a) and I(b)
sclutions. Since the attenuation is about the same order and
velocity ratio is quite close to one another, it is anticipated that

a multimode operation could be used here.

The above discussion also applies to the solutions type II{a),
(b) and (¢). Type II(b) and II{c) have each two sets of solutions
like .type I(b) and I(c), the second set of solutions as above corres-

ponds to the TE.. being excited in the backing cavity.

01

The approximate constant variation of the velocity ratio
together with the variation of the attenuation with the slot width
{(SW) and more significantly with the slot depth (SDj suggest that
distributions other than uniform can be created along the slot.

Good .gaussian and tapered distributions have been obtained and given
in chapter three. The antenna is capable of sidelobe suppression as

much as 10 dB and beam shaping.

This modest parametric study of the slot antenna mounted in an

infinite ground plane is by no means complete. It is hoped that it
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will give a good insight into the behaviour of the slot antenna.
The case of the antenna in free space is not much different from
the infinite ground plane case as far as the velocity ratio is con-
cerned, but the azimuth directivity is expected to be less due to

the spreading of the radiated enexgy into the whole space.

TEEET g W
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APPENDIX B

SLOT LINE AZIMUTH PATTERNS

The azimuth pattern of a slot line described in chapter three
is not necessarily circular. It depends on the geométry of the
backing cavity and the depth of the slot i.e. the width of the
strip line. The near field azimuth pattern is useful in estimating
the amount of direct radiation when such line source is uséd—as a
feed for a parabolic reflector, in minimizing the aperture blocking
and in suppressing the back lobe due to diffraction by having a
steep slope for the field variation along the edge [19]. The con-
trol of the azimuth patterns can be achieved by adding narrow strips

of metal bent at various angles along the sides bordering the slot.

The method of measurement consists of mounting a terminated
slot antenna on a vertical stand well away from the ground with the
main beam shooting to the sky, and picking up the signal the slot
radiates at various azimuth anglesby a small probe. The cable is
kept at right angles to the electric field to reduce the current
being set up on it to a minimum. The signal received is fed
through a variable attenuator and then a crystal detector which in
turn drives a tuned amplifier level meter {(at 1 KHz). The reading

is taken from that of the variable attenuator which brings the
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level meter to the same value. Thus the measurement depends on
the accuracy of the variable attenuator and no calibration is

necessary for the crystal detector.

The figures presented here are self explanatory and the
results obtained show.that some success has been achieved by
using .two simple sideplates to shape the azimuth pattern. It
should be added here that the azimuth pattern of the slot antenna
could be obtained in principle by sclving the boundary value
problem of the antenna geometry but such an apprecach is difficult
and time consuming. One such example is seen in [18], and there-

fore the experimental approach has been adopted here.
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APPENDIX C

[A] DESIGN FOR A RING HYBRID

A ring hybrid is used extensively where there is a need for
two equal power outputs of the same phase or 180° out of phase to
feed .two identical loads. Good isolation could be easily realised
between a load and the generator and between the two loads. Due
to its designed nature, the ring hybrid is frequency sensitive and

sO narrow-banded.

The Theorz

A ring hybrid in parallel form consists of a ring of trans-
mission line of mean circumference of g-k and four ports as seen in
Fig. 1. A signal fed into the ring at port 1, say, will split at
the junction into two parts of equal power and set up a pure volt-
age standing wave within the ring since the ring is assumed to

be lossless. The voltages at the various points B, C, D on the

ring seen in Fig. 1 are as follows:

XS
(1) at B, a voltage maximum because the two paths AB and
—>
ADCB have the same electrical length.
—
{(ii) at C, a voltage minimum because the two paths ABC and

ABC differ by a half wavelength in electrical length.
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a3
(iii) at D, a voltage maximum because the two paths ABCD and

+
AD differ by one whole wavelength in electrical length.

Thus the positions of voltage maximum and minimum will alter-
nate every A/4 on the ring. A matched load placed at a position of
voltage maximum will derive maximum power output whereas at a volt-
age minimum will derive no output. It is essential that each arm
should be terminated by a matched lcad to preserve the balance of

the ring.

Using the above characteristics of the ring, two signals of the
same phase or 180° out of phase can be easily achieved. For instance
an input fed into port 1 will give an output each at port 2 and 4 of
equal power and copposite phase and no power output at port 3. Simi-
larly, an input fed into port 2 will give an output each at port 1
and 3 of equal power and same phase and no power output at port 4.
For an input at 2, say, any small mismatch from the lcad at 1 will
tend to cancel ocut at 3 and vice versa, and any mismatches from the
two identical lecads at 1 and 3 will cancel cone another out at 2.
Thus good isolation is obtained between the two loads themselves and
between them and the generator. Port 4 is usually terminated in a

dummy matched load.

By using the reciprocity theorem, any two signals may be added
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to or subtracted from one another. The sighals when fed into ports
1 and 3 will give the sum at port 2 and the difference at port 4, if

the fourth port is terminated in a matched dummy load.

The Design
The equivalent circuit for a ring hybrid in parallel form is
given in Fig. 2. Assuming ZS = Zo’ the impedance presented at A

by each load Z_. at B and D must be ZZO, thus the characteristic

L

impedance of the quarter wave transformer Z1 must be:

Zl = VZZOZL eoo (1)
if ZL = Zo then
Zl = v2xZO seo{2)

Thus the characteristic impedance of a ring arc is V2 times the

characteristic impedance of a sidearm.

Since the ring hybrid is intended for use with 502 loads and

souxce impedance, the characteristic impedance of the ring will be:

z, = Y2 x 50 = 70.7Q oo (3)

Such a ring hybrid could be made out of strip transmission line
and there is available on the market a dielectric material called

Rexolite 2200 of dielectric constant 2.62 (this remains unchanged
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over a wide bandwidth from 3 cm to 20 cm) and of thickness 1/8".

The characteristic impedance of a parallel plate transmission

line is given by H. Jasik [20]:

94 l-tsd

° Ve w

= =+ 0.47 + 0.65 /D - 1.12(t/D)>

Z

oes (4)

for £t < 0.5D and W > .35 (D-t).

For Rexolite 2200, t = 0.001", D = 1/4" and e, = 2.62.

For 2 = 70.7Q0 W, = 0.0867"
o 1
Z° = 50. @ W = 0.170995"
and for £ = 2GHz
Ao
Ag = —— = 3,628"
TEM /——er

The Construction

The hybrid was drawn up in indian ink at five times its full
size for accuracy with calibrated dimension markings for reducing
purposes., The drawing was photographed and reduced to the correct
size. A 'positive' negative was then made and etched onto the

rexolite in the normal fashion. The resulting hybrid was gold
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Fig. 1. Ring Hybrid.

Fig. 2. Equivalent Circuit. =
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Fig. 3. Strip line ring hybrid.




plated before being assembled and held together by a series of screws
not more than A/4 apart well away from the ring. Female N-type con-
nectors were then carefully mounted and the whole set up was bolted

onto a solid bakelite plate for support.

The Performance

The performance of a ring hybrid is measured in terms of the
equal power division and the dB isolation between an input port
and the third port. The bandwidth must also be known. The per-
formance of a typical ring hybrid designed for the frequency of

2GHz is shown in the following table:
TABLE I

Frequency (GHz)

Relative

Power 1.92 1.94 1.96 1.98 2,00 2.02 2,04 2.06 2.0

(aB)

->
Port 2 0 0 0 0 0 0 0 0 0
Port 4 0.7 0.2 0.3 0 0.1 0.3 0.05 0.1 0.1
Port 3 -23.0 =-28.8 -25.1 -30.1 -32.9 =-29.7 -25.2 -28.8 -27.1

The results in Table I were some typical ones obtained by feed-
ing a signal kept at a predetermined constant level into port 1.
Signal was also fed into the other ports and the measurements indi-

cated that the order of magnitude was the same as that given in
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Table I. The method of measuring the performance of a ring hybrid

is set out in Microwave Measurements by Wind and Rappaport [21].

Thus from the above table, it can be said that the ring
hybrid have a practically equal power division and an isolation
between port 1 and 3 better than 30 dB in a bandwidth of approxi-
mately 2%. The VSWR of such a ring hybrid at the centre frequency

is better than 1.02.

[B] MAKING A LOSSY TERMINATION

As mentioned in chapter three, there is a need for a lossy
termination for the long slot leaky wave antenna to make it a
travelling antenna. There is no commercially available lossy
terminations which could be used for a slot of width of the order
of 1/16" wide and 1/2" tc 1" deep. G.K. Teal et al. [22] made an
intensive study of the lossy materials and apart from others, came
up with the idea of using graphite and silica dispersed in phenol
formaldehyde (bakelite) as a microwave absorber. The basic

requirements of a good microwave absorber are:

(i) The loss tangent (tand) must be of the order of 0.1 to
1l or even larger,

(1ii) or else the dielectric constant value of the material
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must be greater than 40.

The dielectric constant of bakelite at 3 GHz increases from 3
to about 70 at 45% graphite by weight. The loss tangent increases
in a similar manner and reaches 1.1l at 45% graphite by weight.

This data indicate a loss range from .9 to 219 dB per wavelength.
For practical reasons,a lossy termination for the slot should be as
short as possible or else the length of the antenna will beccme
prohibitively long. Thus the length of the lossy termination was
fixed at 1.5A or less., To reduce the amount of reflection the
determination must have a gradual taper. To achieve a VSWR ratio
near 1, there was no option but to experiment with various composi-
tions of silica, graphite and bakelite. The following compositions

appeared to give the best result:

(24%C + 76% Bakelite)
+ 16% (fine gi)
84%
All the above ingredients were commercially available. After having
been thoroughly mixed, they were poured into a mould of a desired
tapered shape and subjected to a pressure of 10,000 lbs/inzc The
mould was heated slowly from room temperature up to 200°C and kept

there for 4-6 mins in an oven. It was then taken out and a bakelite

tapered termination was obtained. It took up to half a year to
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achieve some success with the above experiments. An ambitious
program of analysing and measuring the dielectric constant of the
various compositions was abandoned for lack of time and immediate

relevency to the present work.

Moulded bakelite with dispersed silica and graphite particles

is capable of high power applications.
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APPENDIX D

APERTURE FAR FIELD DERIVATION

A comprehensive analysis of aperture radiation fields has been

given .by E.A. Wolff [23]. The radiation fields from a two dimen-
sional aperture can be determined when the fields and geometry of
the aperture are specified. This appendix applies the radiation
from an elemental area to a rectangular aperture with normal and

oblique plane wave 'incidence'.

An Elemental Area

Considering an elemental area of an arbitrary aperture lying
in the plane x = o. Such an elemental area in general can be
excited by both electric and magnetic fields. Let J and M be the
electric and magnetic surface current densities and n be the unit

vector normal to the elemental area, then
J=nxHandM=-nxE oso (L)

The electric and magnetic vector potentials are then given by:

e—ij

ds eso(2)
4r S R
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ds oso(3)

where S is the area of the aperture,

ds is the elemental area.

From Fig. 1, R =r - x' cosy, and for far field condition:

-jkr
He
A= N aso (4)
4t
ee—jkr
F = L Y
dmr
L) )
where N = f g_ejkr cosV ag c0. (6)
S
L ]
L= f M_ejkr casy ds eoo ()
S

if the vector potentials are known, the electric and magnetic

fields are given by,

jw 1
E=-jwA - —V(V.A) - =V XF eoo (8)
sl — 2 — —_—

k €

Juw 1
H=-Juk - — V(V.E) + =V xA oo (9)

k H



P(r:e:¢)

A

Fig. 1.

P(r,8,9)

}

Fig. 2.
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Each expression contains the far field contributions from the

electric and magnetic vector potentials, i.e.

E=E, + E, and H=H +H, =00 (10)
where H —£VxA
T -
1
H, o= -ju [E+— 7 (V.B)] )
k )
' i
E, = -jw [_A_+—2-V (V.p)] ) .o {11)
k
)
1 )
_ )
EF = ; VxFE )

The field components in the directions 6 or ¢ can be obtained by

expressing V x V in spherical coordinates:

a ‘ eve: a 1 oVr
VxVs= = la—— (sinev¢}- +—_§-[ —
rsinb 496 20 r sinf 9¢
P a P ovVr
-—(rV¢) +:-¢—[— (rve) -———] eao(12)
or ¢ r 9r 09

where V is either A or F.

When r is very large, {12) becomes:
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oV ave
VxVs=-a —+a _ eeo {13}
— or — or
Applying (13) to the magnetic vector potential:
jke_jkr
H =——— N oo (1l4a)
Ae aTr ¢
—jke_Jkr
H =-———N oo (14b)
Ad 4rxr ¢
and plane waves can be assumed for the far fields, thus:
-jke_Jkr
EAe = E—— Zo Ne 000 (15a)
dnr
—jke—Jkr
E k6K = ——— Z N . «o {15b)
Ad 4tr 2

Similarly, by applying (13) to the electric vector potential

together with the plane wave assumption:

—jke_:lkr
= — L .0 (l6a)
EFe 4mr ¢
jke_Jkr
E,, = —— L eoo (16b)
Fé ATr o
and —jke IKE Lg
HFe = —— eoo(l7a)
41r zZ

o]
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-jke_jkr

R &} es0 {17b)
HF¢ dmr Z

The electric field components of the far field are given by:

—jke_Jkr
Ee = EAe + EFe = — (L¢ + ZoNe) .50 (18a)
4Tr
jke—Jkr
E =E + = (L, - 2 N,) .0 {18b}
¢ " " T FRe T T R
and the magnetic field components are:
_je-jkr
H, = H + = ———— (L, - Z N,) «s« {19a)
6 = Hag * Hpg - B~ “oMo
o}
_je—Jkr
H, =H ,6 + = (L, + 2 N,.) <o (19b)
¢ A¢ I-chb ZArZo ¢ o0

An Aperture with Normal Plane Wave

Considering a rectangular aperture in the plane x = o as
shown in Fig. 2. The electric field is parallel to y axis and the
magnetic field is parallel to the z axis, Thus the plane wave is
travelling in the direction normal to the aperture, the x axis.

Since

E
J=nXx a -a._ H = -a 2 oco (20)
- = —Z o =y o =

I
I

Z
[e]

S e . o~ - =S O
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M=-nxE=-a xa E =-a E eos{21)
- -7 = == - "o —Z o
Hence
Eods
dN = Jds = -a eos (22)
o
dL = Mds = -a_E ds a5 G2
- = —Z "o

The 6 and ¢ components of N or L are given by the rectangular com-

ponents as follows:

Ne = (Nxcos¢ + Nysln¢) cosf - N251ne oo (24)
N, = -N_sin¢ + N_cos eos (25
s = "N Sing + N cosé (25)
Therefore:
—Eods sin¢cos®
dN, = dN_sin¢cosb= eeo (26}
6 g
Z
o
—Eods cosg
dN, = dN_cosp = ———— eos (27}
¢ Y z
©
dLe = -dL251n6 = Eods siné oo (28)
dL =O 955(29
¢ )

The component of the far field which is of interest here is that

in the direction ¢,given by:
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. —jkR
je
dE, = —— (dL, - Z dN¢)
* R ° o
je—]kR
or dE¢ = ds(sinb® + cos$) oeo (30)
2AhR
Hence —jkr
jE e (sinb+cos¢) Sy
E, = = [(eIkr cosVayay ... (31)
2Ar
It can be shown that
r'cosy = Ernr' = y'sinOsin¢+ zcos6 eoo (32)
Thus (31) becomes:
one_Jkr(sine+cos¢) a/2 L/2
E¢ - f ; exp[jk (ysin®sing¢+
2Ax -d4/2 -L/2
zcosf) 1dydz cos(33)

An Aperture with Oblique Plane Wave

Now considering the same rectangular aperture with the plane
wave travelling in a plane which passes through the y axis and makes
an angle 6 with the z axis. This is the obligue 'incidence' case,
The electric field is again parallel to the y axis and the magnetic
field makes an angle 90° - 8 with the z axis. The far field compo-

nent of interest for such an aperture is the w component of the
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electric field on a cone of half angle 90° - 8 = 61 as shown in

Fig. 3.

Using the spherical coordinates (r, el,w)

from (12).

Since

[

M
Hence

any
dL
The 63 and
Ne .

N
W
Therefore:

drL

91

aVw ovVe ]
V=V=-a — + a o a0 (34)
- ]
Lar ™ or
Eo
nxHs= X a_ cosfH = -a_ cosb; — e 2 (35)
=T = = o = 7
o
-n x E=-a xa E = -aE . (36)
-7 = - o Ao}
Eo
Jds = -a_ cosB; — ds 200 (37)
o
Mds = -a_ E ds -0 (38)
- -z "o
components of N and L are given by
-Nysinf+ (Nysinw + Nzcosm) cosf s (39)
-N cosw + N_ sinw oo s (40)
vy z
-coswcosh ) Eods ooa(41)



Fig. 3.
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dN = -coswcosf1E ds eoo (42)
W o

The component of the electric far field in the direction w on a

cone of half angle 6; is:

. —~JkR
Je
dE = = —— (dL - Z dN )
w 2R 01 o w
je—ij
= = ————— 2coswcosf;ds coo (43)
2AR
. -3kr
jE e 2coswcosf] a—
E = ° ff e:lkr cos]’pdydz oo (44)
w
2Ar
Using (32) in (44):
. -jkr
jE e
Ew = ——9——————-ZCoswcosel Id/z fL/z exp[jk(ysinfsin¢g) +
2\r -d/2 -L/2
zcosf8)] dydz eso{45)

It should be pointed out that the results obtained in (33) and (45)
are for aperture field of uniform amplitude. If the amplitude is
not constant but dependent upon y and z then function like E(y)

and E(z) should be inserted into (33) and (45). This is the case
for many applications especially the aperture distribution mentioned

in chapters three and four.
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APPENDIX E

BEAM COLLIMATION FOR OBLIQUE INCIDENCE

The analysis of beam collimation for a scanning line source
feeding a parabolic cylinder is given by N.A. Begovich [24]. If a
line source feed illuminating a parabolic cylinder radiates at
broadside, then the rays reflected from the cylinder are collimated
to a plane wavefront. The reflected rays from the parabolic cylinder

will still be collimated if the line source radiates off broadside.

Let the rays leaving a point 0 on the line source shown in
Fig. 1 form a cone of half angle 6 with the axis of the line source.
The path length of one of such rays being bounced off the reflector
to a plane P making an angle 90° - ¢ with the line source is ccn-
stant. This can be proved by considering the contributions to the

path length. The equation of the plane P is
zZ-8s8x+k =0 eos (1)

where s = -tan® and k is a constant. Let (x;, y;, z1)be the point
on the reflector hit by a ray from 0, then the distance di; from O

to the reflector is given by:

1/2

dy = (xf + y§ + 2%) ... (2)



Y
>

Focal line

y

Fig. 1. Parabolic cylinder with travelling
wave line source feed.

Reflector —>

B

Aycosb

Fig. 2.
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where z] = (xf + yf)l/2 cotf . ez (3)
and yf = 4f(x; + £) coo(4)
By adding x{:

xf + y¥ = 4f(x; + £) + x¢

x¢ + yf = (x; +2£)2 oo (5)
Using (5) in (3):

z] = (x; +2f) coté eoo(6)

d] can now be written as:

d; = (x7 + 2f) csco eoal7)

A line parallel to x axis passing through (x;, vy, zy) will meet P at

(X2, Y1, 21) where xp is given by (1):

Xp = (2] + k)/s <o (8)

The distance from (X3, y1, 2z3) to the plane P is therefore:

d2 = (x2 - xl) Sine now(g)

From (3),

d3 = -(xjcscl + 2fcos?6 csch + kcosh) oo (10)

Thus the path length of a ray from O to the plane P after being
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reflected off the reflector is:
d =d; +d, = 2£sind® = kcosb eoc{ll)

Since £ and k are constant, d is a constant if € is constant. It
can be seen from (l11) that all rays from O to the plane P off the

reflector have the same path length.

It now remains to be proved that P is a wavefront of all rays
coming from the line source and being bounced off the parabolic
reflector. As seen from Fig. 2, the progressive phase delay between
any two elements is g;-Ay cosb. The phase of a ray leaving o' lags
that of a ray leaving O by 3% Ay cosd but it reaches P ahead in phase

2 . .
by —% Ay cosf. Hence, the rays from 0 and 0' arrive at P in phase.

Thus it can be concluded that all rays leaving the line source
placed at the focus of a parabeolic cylinder will collimate for any

angle of scan.
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APPENDIX F

COMPUTER PROGRAMS

To obtain the theoretical results for the work presented in the

thesis, extensive automatic computation has been performed on a CDC

6400 computer. Generally speaking, all computer programs used consist

of:

for n

(i) Main Programs

The main program defines the problem, supplies data, performs

the computation and displays the results in appropriate forms.

(ii) Functions Subprograms

The expressions to be processed are entered in the form of

EXTERNAL FUNCTIONS.

(iii) Subroutines

Several subroutines are used. Each performs a certain specific
computation. Some are written whereas others are made available
through the University of Adelaide Computing Centre. Some useful
subprograms are:

{(a) Bessel functions Jn and Yn (first and second kind) [27].
This routine evaluates tables of Bessel functions Jn(x) and Yn(x)

=0, 1, 2... If n < O only Jn(x) is calculated. A recursive

procedure is used to obtain the Bessel functions Jn(x), Yn(x) is then
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computed through a summation involving the lower order of Jn(x).

(b) Fresnel integrals [28].
This routine computes the Fresnel integrals of C(x) =
X X
fo cos (t)/Y2rt dt and S(x) = Io sin(tyv2rt dt. Evaluation using

different approximations for x < 4 and n > 4.

(c) Complex roots of a complex equation [15].

This subroutine MULROOT uses Millers algorithm and complex
arithmetic to compute a zerc of an arbitrary complex function f£(x).
It compares the moduli of F(Xk—2)’ F(XR—l)' F(xk) at eaéh step and
discards the point (xj,f(xj)) for which If(xj)] is maximal (j=k,
k-1, k-2). That point is replaced by the latest iterate, Xy 41 ® This

device often provides a sense of direction to the search phase.

(d) Simpson's rule integration [29].
This routine obtains the quadrature by adaptive Simpson methocd
subdividing the range of integration non-uniformly as required to

obtain the desired accuracy.

(e) .Simpson's rule integration for a complex integrand.
This routine obtains the complex quadrature when the integrand

is complex. The limits of integration are real.





