THE CONSERVATION OF WATER IN SPARROWHAWK

ANTHONY COLLOCH LINNUS

by

ANTHONY STEENKAMP VALLIES IIICc. (Stellenbosch)

DEPARTMENT OF ZOOLOGY

THE UNIVERSITY OF ADELAIDE

A thesis submitted to the University of Adelaide in
part fulfilment of the requirements for the
Degree of Doctor of Philosophy

January 1966
CONTENTS

SUMMARY i-iii

PART 1

1.0 INTRODUCTION: A BRIEF DISCUSSION OF THE MECHANISMS INVOLVED IN WATER CONSERVATION IN TERRESTRIAL INSECTS

1.1 Morphological adaptations 2
1.2 Physiological mechanisms 7
 1.2.1 Excretion 8
 1.2.2 Intake of water from the surroundings 10
 1.2.2.1 Absorption of water vapour from unsaturated air 10
 1.2.2.2 The utilization of metabolic water 12
 1.3 Behaviour that helps to conserve water 16

2.0 WATER CONSERVATION IN TINEBERG HOLITOR L.

2.1 Morphology of the cuticle 20
2.2 Excretion 22
2.3 Water Intake 23
 2.3.1 Drinking 25
 2.3.2 Absorption of water vapour from unsaturated air 23
 2.3.3 The utilisation of metabolic water 25
2.4 Behaviour in response to atmospheric humidity and water 26

PART 2

3.0 THE AIM OF THIS PROJECT 32
PART 3

MATERIALS, METHODS AND CROSSLAY OF SPECIMEN

4.0 MATERIALS AND METHODS

4.1 Feeding methods

4.2 Problems considered and encountered in rearing T. politor

4.3 Selection of experimental material

4.4 Handling of experimental material

4.5 Standard apparatus and techniques used

5.0 CLOSURE OF METHOD USED DURING THIS INVESTIGATION

PART 4

WATER CONSERVATION IN SCAPHIDION TENERIFIC POLITOR L. ADULTS

6.0 PRELIMINARY STUDIES ON THE WATER RELATIONS OF STARVED ADULTS

6.1 The relation of total dry material to initial live weight in newly emerged adults of T. politor

6.2 A preliminary investigation regarding the influence of atmospheric humidity on starved adults of T. politor

6.21 The influence of atmospheric humidity on the length of life of starved adults of T. politor in a constant temperature

6.22 The relationship between weight loss and atmospheric humidity

6.33 The influence of atmospheric humidity on the amount of dry material left at death
6.24 The influence of atmospheric humidity on the rate of metabolism

6.25 The influence of atmospheric humidity on the total amount of water lost and the rate at which it is lost when L. m. m. adults are starved to death

6.3 A summary and discussion of data obtained during a preliminary investigation of the influence of atmospheric humidity on the ability of starving adults of L. m. m. to stay alive

6.31 Variability in the dry material and water content of newly emerged L. m. m. adults

6.32 Possible causes for death of L. m. m. adults starved in different relative humidities

6.33 The relationship between relative humidity and the length of life of starved L. m. m. adults

6.34 The influence of relative humidity on the metabolic rate of starved L. m. m. adults

6.35 The relationship between relative humidity and weight loss in starved L. m. m. adults

7.0 THE CHANGE IN THE DRY MATERIAL AND WATER CONTENT OF STARVED AGES OF L. m. m. WITH RESPECT TO TIME AND HUMIDITY

7.1 The change in the dry material content of starved L. m. m. beetles, with respect to time and humidity

7.11 Change in dry material content with time

7.12 Influence of atmospheric humidity on the rate of dry material consumption

7.2 The change in the water content of starved L. m. m. adults with respect to time and humidity
7.3 The change in the dry material/water ratio with respect to time and humidity in starved adults of T. molitor ... 150
7.4 Summary and discussion ... 162

8.0 SIZE AND ITS IMPORTANCE IN THE WATER RELATIONS OF T. MOLITOR ... 167
8.1 The influence of size on the rate of change in total weight of T. molitor adults, starved in 25°C and 45% R.H. .. 169
8.2 The influence of size on the amount of dry material used till death ... 173
8.3 The relationship between size and the life span of T. molitor adults starved to death in an atmosphere of 45% R.H. in 25°C 179
8.4 The change in total weight, with respect to time and size, of T. molitor beetles starved in an atmosphere of 45% R.H. in 25°C 181

9.0 THE ABILITY OF STARVED FEMALES OF T. MOLITOR TO MATURE EGGS AND HOW THIS IS INFLUENCED BY ATMOSPHERIC HUMIDITY AND THE SIZE OF THE INSECT .. 186
9.1 The influence of atmospheric humidity on the ability of virgin T. molitor females to mature eggs when starved in different relative humidities ... 191
9.1.1 Amount of water incorporated in eggs .. 194
9.2 Eggs maturation and the size of the beetle ... 195

10.0 REASONS FOR DISCRIMINATING BETWEEN THE SEXES IN STUDYING THE WATER RELATIONS OF T. MOLITOR ... 198
10.1 Differences in the initial body composition of adult males and females T. molitor ... 203
PART 5

A STUDY OF SOME ASPECTS IN THE WATER RELATIONS OF STARVED T. MOLITOR LARVAE

12.0 INTRODUCTION

12.1 The influence of atmospheric humidity on starved T. molitor larvae
12.11 The influence of atmospheric humidity on total weight lost by starved T. molitor larvae and how the rate of weight loss changes with time

12.111 Weight loss as a function of atmospheric humidity

12.112 Change in the rate of weight loss with respect to time

12.12 The change in the water/dry material ratio of starved T. molitor larvae with respect to humidity, time and temperature

12.13 The influence of atmospheric humidity on dry material consumption in starved T. molitor larvae

12.14 The change in oxygen intake of starved T. molitor larvae with respect to time and humidity

12.15 The influence of atmospheric humidity, temperature and size on the length of life of starved T. molitor larvae

12.16 The influence of atmospheric humidity and temperature on moulting and pupation in newly moulted T. molitor larvae deprived of food

12.2 Water absorption in starved T. molitor larvae

12.21 The influence of desiccation and starvation on water absorption in T. molitor larvae

12.22 The influence of humidity on water absorption on starved and desiccated T. molitor larvae

12.23 Water absorption in T. molitor larvae which have previously been fed

12.24 The advantages to T. molitor of larvae having the ability to absorb water from unsaturated air
SUMMARY

(i) A study was made of water conservation in starving *T. molitor* adults and larvae that were kept at various combinations of temperature and humidity. Particular attention was paid to the way in which environmental humidity and temperature influence the internal condition of these insects and how these insects respond to changes in their internal condition.

(ii) The relationship between the length of life of starving *T. molitor* adults and atmospheric humidity and temperature has been defined.

(iii) Causes of death were found to be: desiccation in the lower humidity range, starvation in the intermediate range and "water-logging" of the tissues in the upper humidity range. Death as a result of desiccation occurred after the initial water content of the beetles had been reduced to a certain minimum. To be able to make this statement it was found necessary to show that some water, an amount increasing with humidity, is "bound" and thus unavailable to the insect. Water incorporated in eggs was found to constitute a form of "bound" water in starving virgin *T. molitor* females. Death as a result of "water-logging" of the tissues was found to occur when the wet/dry ratio has increased to a certain high level and that this condition occurs after the initial water content was reduced to below the level considered normal for newly emerged beetles. This suggested that the water content must be reduced in response to a reduction in dry matter content and at a certain minimum rate.
(iv) It was concluded that the malpighian tube rectal system acts as a water regulatory mechanism by excreting water with, or re-absorbing water from, the faeces.

(v) Evidence obtained, indicated that the rate of dry material consumption in starved *T. molitor* adults is independent of atmospheric humidity, suggesting that no additional energy is used to relieve internal conditions caused by either very low or very high humidities. To arrive at this conclusion it was necessary to (a) demonstrate a change in the rate of dry material consumption with time (b) to identify two populations within the experimental population. A change in the metabolic rate with time was found to be associated with egg maturation in females and possibly with sperm production in males. It is further associated with a change in the rate of reduction of the water content, but only in the lower humidity range.

Two populations within the experimental population were identified as females and males of the species. Differences in the response of the sexes to temperature and humidity were found to be in magnitude only and not in principle.

(vi) It was finally concluded that for maximum use of their energy resources starving *T. molitor* beetles have to exploit atmospheric humidity to either reduce excessive evaporation or to facilitate water loss.

(vii) The metabolic rate of starving *T. molitor* larvae in contrast to the adults decreased, at first independently of atmospheric humidity,
and then increases with time in all humidities. The increase in metabolic rate could be associated with either (a) the production of metabolic water which allow larvae to maintain an adequate ratio of water to dry material in very low humidities or (b) with the continuation of development in higher humidities.

(viii) The ability of T. molitor larvae to absorb water from unsaturated air was confirmed. In connection with this phenomenon, evidence is presented which indicates (a) that larvae need to be deprived of food to acquire the ability to absorb water from unsaturated air (b) that in larvae which were simultaneously deprived of food and desiccated a greater proportion absorbed water and at a lower relative humidity than larvae which were merely deprived of food (c) that water absorption stimulates metamorphosis in immature larvae, and also in larvae in which metamorphosis was prevented by desiccation.