THE STRUCTURE OF DOWN FEATHER KERATIN

A thesis submitted by

IAN DOUGLAS WALKER, B.Sc. (Hons.),

to the University of Adelaide,

South Australia,

for the degree of

Doctor of Philosophy.

DEPARTMENT OF BIOCHEMISTRY,
UNIVERSITY OF ADELAIDE,
SOUTH AUSTRALIA.

FEBRUARY, 1974.
SUMMARY

The work of this thesis is concerned with the structural basis for the heterogeneity of chick down feather keratin chains. The number of keratin chains was investigated by examining discrete fractions of the S-carboxymethylated feather protein by polyacrylamide gel electrophoresis at two pH values and at least nineteen prominent proteins were found to comprise the down feather. Each of these proteins was remarkably similar to the others with respect to molecular weight and amino acid composition.

Sequence analysis of the 14C-SCM-tryptic peptides of down feather keratin indicated that the electrophoretic variants of feather keratin differed only at a few sites in the primary structure from one another. The nature of these amino acid substitutions were compatible only with the existence of multiple genes, each encoding a specific keratin variant. However, few of these substitutions, if any, could be the result of alleles and their existence is due to the presence in the chick genome of mutationally altered replicates of an ancestral keratin gene. Extensive homology exists between the amino acid sequences of down feather keratin and that of a purified protein of emu feather rachis, and this homology allowed the deduction of a partial amino acid sequence for down feather keratin.

Amino-terminal sequence analysis of the keratin chains of chick down feather, adult barbs and scales established that whereas the two feather tissues may have possessed common keratin chains, all the keratin chains of scales are unique.
The origin and the possible arrangement of keratin genes within the chick genome is discussed.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>STATEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>v</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>A. The Structure of Feathers</td>
<td></td>
</tr>
<tr>
<td>(i) The Morphology of Feathers</td>
<td>1</td>
</tr>
<tr>
<td>(ii) The Molecular Structure of Feather Keratin</td>
<td>2</td>
</tr>
<tr>
<td>B. The Properties of Feather Keratin</td>
<td>3</td>
</tr>
<tr>
<td>(i) The Molecular Weight of Keratin Molecules</td>
<td>4</td>
</tr>
<tr>
<td>(ii) Amino Acid Composition</td>
<td>5</td>
</tr>
<tr>
<td>(iii) The Heterogeneity of Keratin</td>
<td>6</td>
</tr>
<tr>
<td>(iv) Primary Structure Studies on Keratins</td>
<td>7</td>
</tr>
<tr>
<td>(v) Species Specific Differences between Keratins</td>
<td>9</td>
</tr>
<tr>
<td>C. The Development of Feathers and the Synthesis of Keratin</td>
<td>10</td>
</tr>
<tr>
<td>(i) The Onset of Keratin Synthesis in Embryonic Feathers</td>
<td>10</td>
</tr>
<tr>
<td>(ii) The Tissue Specificity of Keratin Synthesis</td>
<td>11</td>
</tr>
<tr>
<td>D. Aims of the Project</td>
<td></td>
</tr>
<tr>
<td>(i) Heterogeneity of Down Feather Keratin</td>
<td>12</td>
</tr>
<tr>
<td>(ii) The Relationships between the Keratin Variants of a Single Tissue</td>
<td>12</td>
</tr>
</tbody>
</table>
(iii) Differences in Keratin Chains between Tissues

CHAPTER 2. MATERIALS AND GENERAL METHODS

A. Materials

(i) Tissues 14
(ii) Enzymes and Proteins 14
(iii) Chemicals 14
(iv) Resins for Column Chromatography 15
(v) Radioactive compounds 15

B. General Methods

(i) Amino Acid Analysis 16
(ii) Determination of Radioactivity 16

CHAPTER 3. THE SPECIFICITY OF THE S-CARBOXYMETHYLATION REACTION

Introduction 18

Methods

(i) Reduction and carboxymethylation of Feathers 20
(ii) S-carboxymethylation of Feathers with $[^{14}C]$-iodoacetic acid 21
(iii) Gel electrophoresis at pH 9.5 22
(iv) Gel electrophoresis at pH 2.7 22
(v) Gel autoradiography 22

Results

(i) Polyacrylamide gel electrophoresis of SCM-feather keratin 23
(ii) The Amino Acid Composition of Feather Keratin 24
(iii) S-carboxymethylation of Defined Proteins

Discussion

CHAPTER 4. THE NUMBER OF PROTEINS IN THE DOWN FEATHER

Introduction

Methods

(i) DEAE- cellulose chromatography
(ii) Gel filtration on Sephadex G-100
(iii) SDS- gel electrophoresis
(iv) Elution of protein bands from polyacrylamide gels

Results

(i) DEAE- cellulose chromatography
(ii) Amino acid compositions of protein fractions D1-D9
(iii) Determination of Molecular Weight of Feather Keratin by SDS gels
(iv) The determination of the molecular weight of Feather Keratin by Gel Filtration on Sephadex G-100
 (a) Sephadex G-100 chromatography at pH 7.0 and pH 2.7
 (b) Sephadex chromatography of $\text{^{14}C}$-SCM- feather keratin
(v) Elution of Fp from pH 2.7 gels

Discussion

(i) The Two Sets of Proteins in the Chick Down Feathers
(ii) The properties of the Proteins of Set F

(a) Molecular weight 42
(b) Chromatographic properties on DEAE-cellulose 45
(c) Amino Acid Composition 45
(d) Electrophoretic properties 46

(iii) The properties of Protein Set K 48

(a) Molecular Weight 48
(b) Chromatographic properties on DEAE-cellulose 50
(c) Electrophoretic properties 52
(d) Amino Acid Composition 52

CHAPTER 5. THE TRYPIC PEPTIDES OF SCM-DOWN FEATHER

KERATIN

Introduction 54

Methods 55

(i) Tryptic digestion 55
(ii) High Voltage Paper Electrophoresis 56
(HVPE)
(iii) Amino-terminal analysis 56
(iv) Gel filtration on Sephadex G-50 57
(v) Detection of peptides from gel filtration 58

Results 58

(i) The specificity of tryptic cleavage
(ii) The separation of tryptic peptides of SCM-feather keratin by Sephadex G-50 chromatography 59
(iii) Size-charge peptide maps 60
(iv) Amino acid compositions of peaks A, B & C 61
(v) Polycrylamide gel electrophoresis of fraction A 61

Discussion 62

(i) The specificity and efficiency of tryptic cleavage 62

(ii) The number of tryptic peptides of SCM-feather keratin 63

CHAPTER 6. THE PARTIAL SEQUENCE OF SCM- FEATHER KERATIN

Introduction 66

Methods 67

(i) Enzyme digestions 67

(ii) Chromatography on Dowex-50 68

(iii) Purification of peptides by HYPE 69

(iv) Edman degradation 69

(v) Purification of reagents 70

Results 70

(i) The partial structure of T3 70

(a) The amino-terminal sequence of T3 71

(b) The carboxyl-terminal sequences of T3 71

(ii) The structure of the peptides of peak B 73

(a) The isolation of tryptic peptides Tla, Tlb, Tlc and Tld 74

(b) Peptide Tla 75

(c) Peptide Tlb 77

(d) Peptide Tlc 80

(e) Peptide Tld 82

(iii) the structure of the peptides of peak C 83
(v) Polyacrylamide gel electrophoresis of fraction A

Discussion

(i) The specificity and efficiency of tryptic cleavage
(ii) The number of tryptic peptides of SCM-feather keratin

CHAPTER 6. THE PARTIAL SEQUENCE OF SCM- FEATHER KERATIN

Introduction

Methods

(i) Enzyme digestions
(ii) Chromatography on Dowex-50
(iii) Purification of peptides by HVPE
(iv) Edman degradation
(v) Purification of reagents

Results

(i) The partial structure of T3
(a) The amino-terminal sequence of T3
(b) The carboxyl-terminal sequences of T3
(ii) The structure of the peptides of peak B
(a) The isolation of tryptic peptides T1a, T1b, T1c and T1d
(b) Peptide T1a
(c) Peptide T1b
(d) Peptide T1c
(e) Peptide T1d
(iii) the structure of the peptides of peak C
(a) The purification of peak C peptides

(b) The amino acid sequences of peak C peptides Tle and Tlf

Discussion

(i) Homology between protein molecules

(ii) The primary structure of SCM- feather keratin

(a) The amino-terminal sequence of SCM- feather keratin (T1)

(b) T2

(c) T3

(d) T4

(e) T5

(f) Tx

(g) The necessity for the isolation of overlap peptides

(iii) The primary structure and evolution of feather keratin

(a) Evolutionary relationship between emu and chick feather keratin

(b) Evolution of multiple genetic variants of SCM- feather keratin

(iv) The relation of structure to function of feather keratin

(a) Salient features of the "general" primary structure

(b) Conservation of primary structure
CHAPTER 7. STUDIES ON PURIFIED FRACTIONS OF SCM- FEATHER KERATIN

Introduction 105
Methods 106
Results 107
(i) Preparation and electrophoretic properties of three highly purified fractions of SCM- feather keratin 107
(ii) Peptide mapping of D4P1, D4P2, and D4P3 108
 (a) The amino-terminal peptides of D4P1, D4P2, and D4P3 109
 (b) The internal and carboxyl-terminal peptides of D4P1, D4P2 and D4P3 111
Discussion 113
(i) The amino-terminal sequences of D4P1, D4P2 and D4P3 113
(ii) The internal and carboxyl terminal peptides of D4P1, D4P2 and D4P3 113
(iii) The genetic basis for heterogeneity 116

CHAPTER 8. THE AMINO-TERMINAL SEQUENCES OF DOWN FEATHER, ADULT BARB AND SCALE KERATIN CHAINS

Introduction 118
Methods 119
(i) Tissue 119
(ii) Enzymic digestions 119
(iii) Isolation of blocked peptides by Dowex-50 chromatography 119
(iv) Chromatography of blocked peptides on Dowex-1 119

Results

(i) The preparation of the amino-terminal peptides of scales, barbs and down feathers 120

(ii) Sequence analysis of the blocked peptides 121
 (a) The blocked peptides of down feather keratin 121
 (b) The blocked peptides of barb keratin 121
 (c) The blocked peptides of scale keratin 122

(iii) Peptide mapping of the 14C-peptides of SCM-scale keratin 124

Discussion

(i) The amino-terminal sequences of the keratin chains of scale, barb and feather 125
(ii) Gene expression in keratinising tissues 126

CHAPTER 9. CONCLUDING DISCUSSION

(i) Keratin structure in relation to other proteins 128
 (a) The nature of the heterogeneity of feather keratin molecules 128
 (b) Sequence heterogeneity in other proteins 130
(c) The salient features of the primary structure of feather keratin 133

(ii) The control of keratin synthesis 134
(a) The cellular distribution of keratin variants 134
(b) The structure of keratin genes 137
(c) The arrangement of keratin genes in the chick genome 137

(iii) The role of multiple genes for feather keratin 138

BIBLIOGRAPHY 142