THE USE OF ^{14}C IN STUDIES OF MICROBIAL ACTIVITIES
IN SOIL AGGREGATES

A Thesis

submitted by

JOSEPH KWASI ADU, B.Sc.(Agric.), Legon, Ghana

to the

University of Adelaide

for the degree of

Doctor of Philosophy

Department of Agricultural Biochemistry and Soil Science
Waite Agricultural Research Institute
The University of Adelaide

CHAPTER I. LITERATURE REVIEW

USE OF 14C IN STUDYING MICROBIAL DECOMPOSITION OF SOIL ORGANIC MATTER

Introduction

A. METHODS

1. Methods of determining 14C
 (i) Measurement of 14CO$_2$ during incubation
 (ii) Determination of 14C in soil

2. Method of incubation

B. INCUBATION OF 14C-LABELLED COMPOUNDS AND MATERIALS IN SOIL

1. Laboratory studies
2. Field studies
3. Fate of residual 14C in the soil
4. Factors affecting results obtained during decomposition studies in soil

C. MICROBIAL UTILIZATION OF ORGANIC MATERIALS IN SOIL AGGREGATES

D. EFFECT OF WETTING AND DRYING CYCLES ON DECOMPOSITION OF ORGANIC MATTER
CHAPTER II. AIMS OF THE PROJECT

CHAPTER III. AN EXAMINATION OF A METHOD OF SUSPENSION COUNTING OF 14C IN SOIL, SOIL EXTRACTS AND PLANT MATERIALS BY LIQUID SCINTILLATION

1. Introduction

2. Materials and methods
 2.1. Preparation of standards
 2.2. Determination of balance point of counting
 2.3. Counting of 14C-tagged solid samples
 2.4. Application of method to samples containing a range of 14C-labelled compounds
 2.4.1. Preparation of soils containing a range of 14C-labelled compounds
 2.4.2. Counting of samples containing a range of 14C-labelled compounds
 2.5. Counting of 14C-labelled plant material

3. Factors affecting counts
 3.1. Effect of particle size on suspension counting
 3.2. Stability of suspension
 3.3. Effect of colour
 3.4. Effect of iron content of samples on counting
 3.5. Effect of entrapped air on counts
 3.6. Effect of temperature of counting

4. Application of method to counting of 14C-labelled soil extracts and fractions

5. Results and Discussion
 5.1. Standardization of (recolystallized) 14C benzoic acid
 5.2. Balance point of counting
 5.3. Counting of 14C-tagged solid samples
 5.4. Counting of samples containing a range of 14C-labelled compounds
 5.5. Determination of 14C-activity in soil by combustion
5.6. Examination of soil extracts and fractions 66
5.7. Counting of plant material 68
5.8. Factors affecting counts 69

CHAPTER IV. USE OF UNSTERILIZED SOIL AGGREGATES
TO STUDY MICROBIAL ACTIVITIES 85

1. Introduction 95
2. Materials and methods 86
 2.1. Preparation of 14C-labelled soil 86
 2.2. Preparation of aggregates 89
 2.3. Incubation studies 89
 2.4. Determination of initial 14C activity in aggregate samples 93
3. Results and discussion 94
 3.1. Release of 14CO2 during incubation (14C-glucose amended samples) 94
 3.2. Release of 14CO2 during incubation (14C-starch amended samples) 104
 3.3. Comparison of 14CO2 values released from the different sizes of aggregates 106
 3.4. Comparison of glucose and starch amended samples 108
 3.5. Problems of interpretation 109
 3.6. Conclusions 110

CHAPTER V. USE OF STERILIZED SOIL AGGREGATES
TO STUDY MICROBIAL ACTIVITIES 112

1. Introduction 112
2. Materials and methods 113
 2.1. Preparation of 14C-labelled soil samples and aggregates 113
 2.2. Incubation of sterilized aggregates 115
3. Results and discussion
 3.1. Release of $^{14}\text{CO}_2$ from ^{14}C-glucose amended samples 118
 3.2. Release of $^{14}\text{CO}_2$ from ^{14}C-starch amended samples 124
 3.3. Comparison of the four soils 129
 3.4. Comparison of results with those obtained by other workers 130

CHAPTER VI. THE INFLUENCE OF PHYSICAL TREATMENTS ON RELEASE
OF $^{14}\text{CO}_2$ FROM PRE-INCUBATED SAMPLES 134

1. Introduction 134
2. Materials and methods 135
 2.1. Materials 135
 2.2. Methods 135
 2.3. Effect of breakdown of aggregates 136
3. Results and discussion 137
 3.1. Drying and wetting treatments 138
 3.2. Shaking treatment 144
 3.3. Conclusion 150

CHAPTER VII. COMPARATIVE STUDIES OF ACTIVITIES OF SPECIFIC
MICROORGANISMS IN SOIL AGGREGATES 152

1. Introduction 152
2. Materials and methods 153
3. Results and discussion 157
 3.1. Incubation of ^{14}C-glucose amended samples 157
 3.2. Incubation of ^{14}C-starch amended samples 172
 3.3. Conclusions 182
CHAPTER VIII. INTERPRETATION OF THE $^{14}\text{CO}_2$ RELEASE CURVES DURING INCUBATION OF ^{14}C-LABELLED SUBSTRATES IN SOIL

1. Evidence for successive development of different microbial populations
 1.1. Quantitative estimation of soil microorganisms during incubation of glucose in the fine sandy loam
2. Carbon assimilation by microorganisms

CHAPTER IX. GENERAL DISCUSSION

Method of counting ^{14}C in soil
Influence of soil aggregates on microbial activity
 Distribution of substrates and microorganisms in samples
The influence of aggregates
Type of soil
 Fine sandy loam
 Clay soils
Physical treatment
Bacteria versus fungi in metabolism of organic substrates in soil aggregates
$^{14}\text{CO}_2$ release curves
Suggestions for further research on effect of structure on metabolism of carbohydrates

APPENDICES

REFERENCES
SUMMARY

The following topics were surveyed in the literature review:

(a) studies of soil organic materials using ^{14}C,
(b) methods of determination of ^{14}C,
(c) influence of aggregates on microbial activities,
(d) drying and wetting cycles in soils.

A method was developed to determine ^{14}C in finely ground soil samples, stabilized by CAB-O-SIL as suspensions, in toluene-PPO-dimethyl POPOP scintillant. Addition of internal standards to samples yielded efficiencies which allowed 100% recoveries of activity provided (a) samples were ground to <53 μm diameter and (b) weights of samples were such that the optical density of the gel remained below 0.9 at 450 nm in a 1 cm cell.

The method was applied successfully to counting of ^{14}C in soils, plant materials and freeze-dried, coloured extracts of soils.

Incubation of ^{14}C-labelled glucose and starch incorporated into soil from which aggregates were prepared show that several factors are involved in the metabolism of organic substrates in soil aggregates. Two peaks of $^{14}CO_2$ release occurred, the first between the 2nd and 5th days of incubation, and the second on the 8th or 9th days of incubation. In a fine sandy loam the first peak was shown to be due to a dominantly fungal population which utilized all ^{14}C-glucose releasing about 40% of the ^{14}C present as $^{14}CO_2$. In clay soils studies with single organisms suggested that bacteria were dominant during incubations of ^{14}C-labelled carbohydrates in aggregates.
With the odd exception, all soils amended with either 14C-glucose or starch showed greater release of 14CO$_2$ from control samples (substrates present in macropores only) than from aggregate samples (substrates in micropores and macropores). The rate of release of 14CO$_2$ during incubation of 14C-glucose was inversely related to the size of aggregates in a fine sandy loam. For samples amended with starch release of 14CO$_2$ was slightly higher from the larger aggregates.

A self-mulching clay showed the opposite trend with the release of 14CO$_2$ during incubation of 14C-glucose being proportional to the size of aggregates. When starch was the substrate the rate of release of 14CO$_2$ was again higher from the larger aggregates.

Physical disturbance by either drying and wetting cycles or mechanical disturbance of aggregate samples pre-incubated with a 14C-labelled substrate caused a flush of microbial activity based on 14CO$_2$ evolution. The results showed that physical factors should be considered together with biological and chemical factors in interpretation of the flush of activity caused by a drying and wetting cycle.

In a fine sandy loam fungi were more active than bacteria when substrates were present in micropores and macropores of soil aggregates but both groups of organisms were active when substrates were within macropores only (controls). On the other hand, in a clay both groups of organisms competed well throughout the incubations probably due to the pore size distribution and more favourable pH for bacteria.