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ABSTRACT

An important solution of the paracommutation relations is the so-called Green

ansatz. Recently it was observed that this may be constructed from an algebra

which shall be termed in this thesis, a colour algebra. Colour algebras are natural

generalizations of the better known superalgebras. Their generality suggests they

may be the key to exploring further forms of quantization.

In Chapter 2 colour algebras are studied in their own right. It is observed

that a colour algebra can be described by an abelian grading group and a complex

valued commutation factor defined on this group. It is further observed that these

two objects are, in general, not fixed for a particular colour algebra and in fact, a

unique canonical pair may be found.

Another aspect of the classification problem for colour algebras is considered

in section 3, where it is shown that there is an abstract algebraic map between

colour algebras and "canonical" superalgebras. In section 4 it is shown how this

abstract map may be implemented by a Klein transformation and how this allows

one to show that a representation of a colour algebra can be obtained in a simple

manner from a representation of its "canonical" superalgebra'

In Chapter 3 another method of quantization called modular quantization

is examined. This is shown also to have a colour algebra ansatz solution- the

relevant colour algebra being different to that for paraquantization. The unique-

ness of this solution for Fock representations is examined and an algebraic vacuum

condition (being a generalization of a similar paraquantization condition) is found

which implies the solution. It is further shown that the only ansatz type solution

is the one given. Relativistic complications are also examined.

In section 3 the question of suitable observables is discussed. A condition

known as strong locality is imposed and a set of observables is demonstrated to sat-

isfy the condition. Moreover these observables are shown to satisfy commutation

relations that are a generalization of the paracommutation relations. Restrictions

on the algebraic order of strongly local observables are then discussed.

IV



Section 4 contains a comparison of a modular field theory and a normal freld

theory with a hidden U(^) global gauge symmetry. This comparison is made

possible by the Klein transfomation.

Finalty in Chapter 4, a generalization of the modular quantization is exam-

ined.
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CHAPTER 1

INTRODUCTION

It is well known that observable particles may be divided according to their statis-

tics into the two categories of bosons and fermions. Although there is no reason

to suspect any other kind of particle statistics, it is not possible to rule out such

possibilities mathematically. In fact, it was realized around 1950 by Wigner and

others [l] that the Heisenberg equations of motion for quantum field theory do not

neccessarity imply the usual bose and fermi equal-time commutation relations.

Somewhat later Green [2] showed that there are more general commutation

relations which also satisfy the equations of motion. There is one set of relations

for fermi-like spinor particles and one set for bose-like tensor particles. The two

kinds of particles are referred to as parafermions and parabosons respectively.

The relations have become known as the para commutation relations and the

resulting field theory is usually referred to as parafield theory. While the para

commutation relations are satisfied by the usual fermi and bose relations, Green

also demonstrated the existence of further solutions. These are referred to as

the ansatz solutions and are constructed by letting the parafields be sums of a

certain number of ansatz fields which satisfy anomolous fermi or bose commutation

relations. The number of such frelds in each sum is then referred to as the order

of parafield theory. In particular, the usual fermi and bose cases are of order one.

This scheme of generalized quantization remained of somewhat academic in-

terest until 1964 (see however [3]) when Greenberg [al made the suggestion that

it be applied to the newly proposed quark model. The reason for this suggestion

lay in the apparently anomoious statistics satisfied by the spin one half quarks

within the baryon. They appeared to be symmetric with respect to interchange

whereas their spin indicated that a fermionic antisymmetry should have been ob-

served. By treating the quarks as parafertnions of order three, Greenberg lvas able

to construct, with the aid of Green's ansatz, a baryon state of three quarks which

was symmetric with respect to interchange.
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It was later shown [5], [6] that the Greenberg model was essentially equivalent

to another suggestion madò to overcome the above problem. This latter sugges-

tion is the well-known colour model [7] which involves the introduction of the

SU(3) colour group as a further particle symmetry. The symmetry of the baryon

state is then ensured by postulating that all observed particles are colour singlets.

The baryonic colour singlet can then be shown by group theoretical means to be

symmetric.

The possible physical relevance of parafield theory then stimulated a greater

analysis of the subject. In 1965 Greenberg and Messiah [S] demonstrated that

in the case of Fock representations, the only solutions to the para commutation

relations are those given by Green's ansatz. Although non Fock representations

have also been considered by several authors [9], even in these studies the ansatz

fields still play a cental role. This indicates that the ansatz fields are of interest in

their own right. We pursue this idea below.

In the late 1960s the properties of the Fock-space of parafleld theory with re-

spect to the symmetric group 
^9,n 

were investigated by Landshoff and Stapp [10].

If this group is implemented by particle permutations (permutations of the mo-

mentum or spatial indices of the fields), it is well known that only the trivial

representation of the group occurs for bosons and fermions. In the case of higher

order parafermions (parabosons) however, Ohnuki and Kamefuchi [f 1] were able

to demonstrate that for n-particle states exactly one representation of ,So occurs

for each Young tableau with rows (columns) of length no more than p, where p

is the order of the parafields.

This result was important because it allowed Drühl, I{aag and Roberts [6] to

demonstrate that parafield theory with a Fock representation is essentially equiv-

alent to an ordinary field theory with a t/(p) symmetry. The proof given by these

authors applied only to a non-relativistic theory in the sense that no consideration

was given anti-particle states. The extension to anti-particle states was provided

by Ohnuki and Kamefuchi [12].

The comparison with an ordinary theory was made possible by means of the

Klein transformation [f3], which enabled the authors to transform the ansatz fields,

which satisfy anomolous commutation relations, into ordinary fermi or bose fields.

2



The notion that parafield theory is equivalent to a t/(p) global gauge theory

was reinforced by Gray [14] who showed that the cluster decomposition principle

is satisfied by parafield theory only if the observables of the theory are those

which are left invariant under t/(p) in the corresponding normal theory. This

conclusion was disputed however, by Ohnuki and Kamefuchi [15] who claimed

that the cluster decomposition principle places no restriction on observables and

that it is only conditions of locality which impose constraints on the theory. The

differing conclusions appear to this author to be due to differences in how the

theory should be physically interpreted.

The trþ) symmetry of Drühl et al is, as was noted above, only a global tr¿uge

symmetry. Now since the colour group used in elementary particle theory has be-

come a local gauge symmetry with the advent of Quantum Chromodynamics [16],

one might hope that a similar extension of symmetry may be possible within the

framework of parafield theory. In 1976 this problem was tackled by Freund [17]

who concluded that it was impossible to construct the Yukawa term of an Str(p)

local gauge theory using parafields. Freund did acknowledge, however, that there is

a possibility of constructing an SO(3) theory using parafermions and parabosons

of order three. This suggestion lvas made by Greenberg, and later Govorkov [t8]

explicitly constructed such a theory by means of the quarternions.

This lack of success in introducing the usual gauge fields led to a number of

modified parafield theories. One of the first of these involved the introduction of

octonions [f g], which are a non-associative generalization of quarternions. In this

theory the spinor fields are the the sum of three ansatz fields which are the products

of ordinary fermi fields and certain complex octonion units. Gauge fields for an

SU(3) theory can then be introduced because the Lie algebra of derivations for

the octonions contains .SU(3) as a subalgebra (the full algebra is the exceptional

Gz). One of the difficulties involved in considering such a theory is the non-

associativity of the octonions. This means that frelds can no longer be considered as

operators on an ordinary Hilbert space and the latter must be generalized to what

is called an octonionic Hilbert space [20]. Another feature of such models which

has not been sufficiently explored, is the problems involved in the "bracketing" of

operators. This is obviously only a feature of non-associative theories, as in the
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usual formulation the composition of opet'ators is unambiguous. The bracketing

problem may have physical consequences urs it appears to produce a profusion of

new states, just as the non-commutatiae nature of parafields produces more states

than the commuting and anti-commuting bose and fermi fields.

A further attempt at using a non-associative algebra in the context of ansatz

constructions wzrs made by Domokos et al [21]. In this approach the bracket-

ing problem was resolved for states by assuming a fixed pattern. This was the

"composition" bracketing, namely (ot (or(o"(. . .(o"d) .)))

It is interesting to examine the consequences of such bracketing in the case of

the octonion theory mentioned above. If we consider the octonionic Hilbert space

to be the direct product of an ordinary Hilbert space and the eight dimensional

octonion algebra, then the above bracketing allows operators on states to be re-

placed by an associative algebra of operators acting on the direct product of the

ordinary Hilbert space and an eight dimensional vector space. In this formulation,

the octonion units in the ansatz are replaced by matrices corresponding to the "left

multiplication" operators of the octonions [ZZ]. In this reference, it is shown that

these matrices form the complex Clifford algebra which has three pairs of starred

and unstarred elements. It should be emphasized that the above conversion to an

associative algebra is applicable only to the formation of states and the formation

of observables still requires investigation.

In the light of the above discussion, it is interesting to note that Greenberg

and Macrae [23] have considered ansatz fields which are products of ordinary fermi

(or bose) fields and elements from a Clifford algebra. In the case of a real Clifford

complex algebra however, a slightly modified theory results. The Clifford elements

from the ansatz transform according to the fundamental (and conjugate in the

complex case) representation of the groups SO(p) in the real case and ,Str(p)

in the complex case. The transformation is implemented by quadratic Clifford

elements which are then used to define gauge fields. A local gauge theory in the

respective groups can then be constructed.

of bose frelds and quadratic elements from the Clifford algebra.

All of the approaches to rnodifying parafield theory discussed above have as

their central feature a modification of the ansatz solution to Green's original com-
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mutation relations. In view of this, it is of some interest to study the ansatz from

a mathematical point of view. Now the ansatz "algebra" contains commutators

and anti-commutators and one might at first sight concllrde that it was an ex-

ample of a superalgebra [2a]. This is not the case however, and Rittenberg and

Wyler [ZS] have demonstrated that it is an example of what they term a colour

(super)algebra. This class of algebras is in fact, a generalization of the class of

superalgebras.

Such algebras are graded by an arbitrary abelian group while superalgebras

need only be graded by the cyclic group Zz. In addition the commutation relations

in colour algebras are described by a complex valued commutation factor and thus

need not be restricted to commutators and anti-commutators.

In 1979 Scheunert [26] analysed colour algebras in more detail and concluded

that there is a "canonical" superalgebra for every colour algebra. In Chapter 2

of this thesis we continue the analysis initiated by Scheunert. It is shown that

in certain c^ses, a grading group and commutation factor may be replaced or

"covered" by a new such group and factor. This means that any colour algebra

having the original grading group and commutation factor may also be considered

as a colour algebra with the new group and factor. \ryith the use of a particular

kind of replacement called a covering homomorphism, it is shown that there exists

a "canonical" set of grading groups and commutation factors. The canonical factor

is almost determined by its canonical grading group. It is further shown that for

a particular grading group and commutation factor there is a unique minimal

replacement grading group and commutation factor from the canonical set. The

word minimal means in this context, that no smaller grading group can cover the

original group.

Klein transformations are also introduced within the general framework of

colour algebra theory. It is shown that they allow the explicit transformation of

colour algebras into their canonical superalgebras. This result is shown to have

important implications for the representation theory of colour algebras.

As well as considering Klein transformations within the context of colour

algebla theory, in Appendix B we consider them purely within the framework of

ansatz algebras. Although the Klein transformations derived are no more general
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than their colour algebra counterparts, they are more convenient for the purposes

of field theory.

It is interesting to compare the colour algebra ansatz solution of parafield

theory with the modified ansatz constructions considered above. In the former

case the fields are sums of products of ordinary fermi or bose fields and Klein

operators which commute among themselves but not with the frelds (they acquire

numerical factors when "taken through" the fields). In the latter case the ñelds

are again sums of products of ordinary fields and certain operators, bowever these

latter operators commute with the fields and form a non-trivial algebra amongst

themselves.

In 1975 Green [27] considered a further kind of generalized quantization which

he termed "modular" quantization. The commutation relations satisfled by the

modular fields are a generalization of a set of commutation relations discovered

for parafield theory of order two (see Green [2] and Volkov [3]). By means of a

unitary "permutation" operator* Green was able to derive a particularly simple

billinear set of commutation relations for the modular fields. This operator was

also used to demonstrate the existence of an energy-momentum operator satisfying

the Heisenberg principle. In Chapter 3 a detailed analysis of modular quantization

is undertaken. It is shown that the introduction of the permutation operator is

equivalent to considering an ansatz solution of the original commutation relations.

The modular ansatz fields form a colour algebra of a different kind to that of

the parafield ansatz algebra. Given the interest in the literature in generalizing

parafield theory and also in developing the mathematical theory of colour algebras,

it is of some interest to study the implications of modular field theory. This is

particularly so since, as far as this author is aware, modular field theory is the

first example since parafielcl theory of a field theory with a colour algebra ansatz

solution.

The permutation operator introduced by Green is shown to fit into the frame-

work of colour algebra theory also, since it generates the l(lein operators for the

* Such an operator had already been introduced by Carey [28] in the context

of parafreld theory of order trvo.
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modular ansatz fields.

The similarity in the solutions for modular and parafield theory suggests that

an analysis of the former along the lines described above for parafield theory may

prove useful. This philosophy motivates the remainder of Chapter 3.

It is shown firstly that there is a condition on the Fock vacuum, involving

modular creation and annihilation operators, which allows us to deduce the ansatz

solution from the original modular commutation relations. It is not known whether

such a condition can be derived from the commutation relations and the Fock-space

properties, as it can be in parafield theory. It is shown, however, that the particular

ansatz solution is the only such one. Relativistic complications are then considered

and it is observed that anti-particle operators of modular fi.eld theories appear to

be algebraically different to their particle counterparts. This is a situation not

holding in parafield theorY.

In the next section, the question of observables is considered and following

Ohnuki and Kamefuchi [29], two notions of locality, strong and weak, are intro-

duced. A neccessary and sufficient condition is derived for strongly local modular

observables and a set of such observables are then derived. The algebraic form of

such observables is far from trivial and may prove of interest in further develop-

ments of modular field theory (particularly in the area of interacting field theory).

The fact that such observables are strongly local allows us to then introduce a

new set of commutation relations for modular field theory. These relations are a

generalization of the basic para commutation relations. It is possible that these

relations may be more useful than the orìginal relations although thìs question is

not explored. Finally it is demonstrated that for modular field theories of order

three or more, there are no quadratic strongly local observables while for order

greater than four, it is shown that there are no such observables of order four or

less. This latter observation is important because it may have consequences for

constructing renormalizable interacting field theories.

In section 4, modular field theory is compared with an ordinary U(^) gauge

theory (m being the order of the modular fieid theory). It is firstly observed

that it appears likely in modular field theory that not all the observables for the

gauge theory can be constructed. Despite this, a number of observables which øre

7



.invariaut under U(m) are constructed.

The states of the two theories are then compared and it is shown that all
physically relevant states for the gauge theory are included in the modular theories,
Fock-space. It is observed that in the modular case, the redundancy of these states
is intermediate between the gauge theory and parafield theory (where there is no
redundancy).

The conclusion of the above is that modular field theory is essentially equiva-
lent to a U(m) gauge theory which has some further restriction (apart from global
gauge invariance) placed on its observables. This contrasts with paraûeld theory
where there is no additional restriction. The mathematical and physical nature of
this restriction awaits further investigation.

Finally in section 5, the question of the energy-rnomentum operator is consid-
ered. Various reasons are advanced as to why an interacting field theory may be
a more natural setting for modular quantization. The most promising candidate
in this regard is modular field theory of order threê.

In the final chapter of the thesis a generalization of modular field theory is
considered. This is introduced by considering a generalization of the modular
ansatz algebra to a more general colour algebra. A possible application of the
generalization to the rishon model of subconstituents [80] is then considered.

The rn'ajor original results in this thesis are as follows:

Theorems 2.4 and 2.ll in Chapter 2, where a unique minimal commutation factor,
grading group pair is demonstrated for all colour algebras graded by finite abelian
groups.

Theorem 2.1 in Chapter 3 where a vacuum condition is shown to imply the ansatz
solution for modular ficld theory.

Theorems 3.2 and 3.4 in Chapter 3 where the algebraic form of strongly local
observables in modular field theory is explored.

Theorems 4.3 and 4.4 in Chapter 3 where it is shown that the usual modular field
theory possesses all states relevant for a (I(m) gauge theory.
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CEAPTER 2

COLOUR ALGEBRAS

The simplest non-trivial example of a colour algebra is the so-called Lie superal-

gebra. The study of superalgebras began, in mathematical physics at least, in the

lg7gs [Bf] when they were usecl to describe a postulated symmetry between bosons

and fermions (supersymmetry). The idea behind such an algebra was that anti-

commutation as well as the usual Lie commutation relations should be included

in the one algebra.

In order to make such objects tractable one first supposes that the algebra

is grailed, by Zz : Il. øo and öp are elements of the algebra and a and B are

elements of, 22 then

ao o bg -- ca1.þ ¡

where o is the product of the algebra. In addition a generalized symmetry of the

product, together with a generalized Jacobi identity, are assulned to be satisfied.

These algebras have been studied fairly intensively over the past decade and a

classification analogous tc the semi-simple classification of Cartan for Lie algebras

has been obtained by Kac [2a].

The object of this chapter is to study a further generalization of superalgebras

to colour algebras*, which were introduced by Rittenberg and Wyler [ZS]. These

will be defrned more precisely below, but essentialty all one does is extend the

grading group 22 of superalgebras to a finitely generated (usually finite) abelian

group. The symmetry property and the Jacobi identity are generalized in an

ob,¿ious rvay and the anti-commutation and commutation relations are generalized

by means of a complex-valued commutation factor.

For any particular colour algebra the grading grouP and commutation factor

are not unique. This phenomenon is explored in section 2, where it is shown that

* These are also known in the literature as generalized Lie algebras. rvVe adopt

the name colour algebra in the the interests of brevity.
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"canonical" forms are possible for these two objects. It is further shown that these

are, in some sense, unique.

An important property of colour algebras was discovered by Scheunert [26]

who showed that to every colour algebra there conesponds a "canonical" superal-

gebra. In section 3, proofs of this correspondence are given while in section 4, the

correspondence is made more concrete by means of a generalization of a transfor-

mation due to Klein [13]. The usefulness of this transformation will become clear

when we study the application of colour algebras to modular quantization in the

next chapter.

1. Deûnitions nnfl P¡¡mplsg

A vector space Y is said to be graded by the abelian group f if it may be decom-

posed as a direct sum of subspaces each labelled by elements of f . Symbolically

we write

v - Øv,. (l.l)
c€f

We say further that an algebra A is graded by f if, as well as being graded as a

vector space, its elements and product satisfy

A.,ap Ç a.,+þ. (1.2)

In order that this graded algebra becomes a colour algebra we need to impose

further algebraic constraints.

Central to these extra conditions is the notion of the commutøtíon factor.

This is a mapping e : f x f -' C rvhich satisfies the conditions

e(a,B)e(B,o) : I

e(a, þ + 1) - e(a, B)e(a,1) (1.3)

e(a * þ,1) = e(a,1'.)e(B,l .

One now defines a colour algebra as satisfying (1.2) together with the two condi-

tions

aobþ : -€(4, þ)bpo" (l'aa)

e ('y, c)øo (bpcr)+e(a, þ)bp("roo) * ,(þ,1)cr(aobp) : 0 . (1.4ö)

l0



The second of these conditions is a generalized form of the Jacobi identity.

One can thus think of a colour algebra as a graded algebra and a commutation

factor. In the special case of a Lie algebra the grading group is trivial and the

commutation factor is always I while in the case of a superalgebra the grading

group is Zz and the commutation factor is (-t¡"É a,þ € 22 - {O,L} '

A few trivial consequences of (1.3) which prove useful below, are

e(a, a) - tl

e(4,0) = e(0, û) = I

e(a,nB) = eo(c, þ) - e(na,þ) -

(r .5)

0 is the identity of f and nB = p + p+...+B (n times).

Associated with a f graded colour algebra is a natural Zz grading. This is

obtained by the homomorphic mappiug ö il 'Zz as follows

d(a) - o if

Ö(o) : r if

e(a, c) - 1

e(4, c) _ -l .

(r.6)

(1.7)

This map is well defrned because of the first of (1.5), and is homomorphic due to

(1.3). A ,,canonical" commutation factor €s ma1l now be defined on I:

The fact that ee is a commutation factor follows from the homomorphic nature of

{. This grading and commutation factor will play a central role in sections 3 and

4 below.

As our first example of a colour algebra we consider the "ansatz" algebra of

parastatistics [2]. This consists of lV creation operators, .tY annihilation operators

and the identity and satisfies the relations

eo(a, þ) - (-t¡ó(')ó(É)

lø;,ø|l-: [o¡, øil- - [øi,o]]- - o

[o¡, o¡]+ - lai, dil+ = 0

[o¡,oi]+ - 1.

11
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The grading group for this algebra is taken to be Zz @ Zz O .. . O Zz (N factors)

and the elements of the algebra are assigned the gradings

øitøl 
- 

(0,0,...,0,1,0,...,0) (i'th place)

1-+ (0,0,...,0) .

With this assignment the commutation factor takes the form

e(a,þ\ - (-1¡ó(o'É) ,

with {(4, p) - DL t d¡þ; and where we are using the notation

d : (at ,dzr.. . , dry) .

The product of the colour algebra is taken to be the brackets in (t.a). We shall

meet another ansatz algebra with a similar interpretation in the next chapter.

Another simple example is the so-called generalized Clifford algebra of Ra-

makrishnan [32]. This consists of m elements ø; satisfying

0.; o (Ii : øiøi - 1i-i oio; = 0

where 4 is the m'th primitive root of unity. The algebra is gradedby Z*@ Z^

as follows

ai ------+ (d, l) ,

and the commutation factor is simply

e(a, þ) - ,ú(a'Þ) ,

with r/(4, þ) : otþ, - azþt.

Perhaps one of the most important examples of a colour algebra is the algebra

denoted by gI(V,e). This is the set of graded linear maps on the graded vector

space V, with e being the commutation factor with rvhich they are turned into a

colour algebra. More specifrcally they satisfy

g,(Vp) CVa+þ V 9o € gI(V,e) , (1.e)

t2



and are turned into a colour algebra by the product

ga9þ = gq o gþ- €(4, þ)gp " g", (1.r0)

where o is the composition of maps product. The associativity of composition

maps, together with the axioms (t.e) for €, ensure that the conditions (l.a) hold.

ln perfect analogy with Lie algebra theory we are able to defrne a, represen-

tation of a colour algebra A as a homomorphic mapping of A into gI(Vre\ which

preserves the grading of the elements of A and e obviously must be the same in

both A and gl(V, e).
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2. Commutation factors

The major result of this section shall concern finite abelian groups however the

preliminary results shall apply equally well to finitely generated abelian groups.

2.1. Introduction

The fundamental result [33] concerning finitely generated abelian groups is that

they possess a uniqu¿ (up to isomorphism) decomposition given by

f :fp. oro. o...ofp" (Ð z @...@z, (2.1)

where fo, are abelian pd-groups (with the p; being distinct primes) and Z is the

integers. The Io, have a further unique (up to isomorphism) decomposition into

cyclic groups given by

lo, = zlþù"1@z [(pr)"]o...o zlþ¡)'^l ' (2.2)

where Z l@;\" I is a cyclic group of order (p¡)" .

If one confines oneself to finite groups then the copies of, Z in (2.1) are omitted.

We begin by deriving a couple of basic results concerning commutation factors

on frnitely generated abelian groups. Firstly let us denote the generators* of the

cyclic groups in the decompositions (2.1) and (2.2)by g;. In otherrvords q¿ either

generates Z lþ,)'^l or Z (the fact that f is finitely generated means the i ranges

'over a finite number of values). We now define

E;i=e(q;,q¡)*0. (2.3)

When use is made of (2.1) and (2.2) we can write an arbitrary c € f as

* -i'iei t Q.4)
i=1

where M is the number of cyclic summands in the unique decomposition. We can

now deduce from (1.3) and (1.5) that an arbitrary commutation factor may be

written as

M
e(a, þ) - II (E r)o'*' f[ (øin)" ir'.k-nkmi . (2.5)

f:l i<h
where

* These need not be unique.
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M
p-

and where (1.5) shows that

E;;=*l . (2.6)

A simple consequence of (2.5) which we will have cause to use in the next section

is the following: For every e satisfying e(4, þ): t there exists a o :l x I -+ C

which is non-zero and satisfies the relations

D^to,
d=1

It is simply given by

e(a, þ) - o(a, B)o-t (þ, 
")

o(a,þ +1) - o(a,B)o(e,1)

o(a * þ,1\ : o(a,lo(B,l .

o(a,þ) - II (E¡¡\ni^* ,

a - min(r, s) .

(2.7)

(2.8)

i<k

where the notation is the same as that of (2.5). The results expressed in equations

(2.5), (2.7) and (2.8) are due to Scheunert [26].

The ^Ðr¡ are not arbitrary and, by using (1.5), it is straightforward to see that

(E¡¡)' -- (D;¡)' : t ,

where r and s are the order of the cyclic groups generated by q¡ and q¡ respec-

tively (we take the order oÍ. Z to be zero for convenience). It immediately follows

that if r and s are different prime powers then .E¡¡ : I whereas if they are powers

of the same prime then .Ð;¡ is a u'th root of unity, where

(2.e)

(2.10).

We now impose the restriction that f be finite in order to get a convenient de-

composition of commutation factors. By use of the remarks following (2.9), and

(2.5), we deduce that a commutation factor may be written as

e(a, þ) - er (ar , þt)r"(or, þ") . . . etù(oo, þ,-) ,

15
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where the e; are commutation factors on the abelian pd-groups of (2.1) and a;, p¡

are the projections of d and p onto these groups. Notice that if we had allowed

copies of the integers in I then we could have cross terms between the integer

groups and the p;-groups (consider (Z.O) witn r : 0).

Now let the cyclic groups in (2.2) be generated by the elements s1, 82t . . . ,8''..

We can write then
tft

Ë
i=l

o, -l{'i þ¡ lttt¡ , (2.r2)
i=t

and by using (2.5), together with the remarks preceding (2.10), we can write the

commutation factors e; as

e¡(ai, þ¡) : ,'!r(ot'9t)

with

,þ(o¡,þ¿) =klM¡l¡ . (2.13)

?;r is the primitiue (pr)" root of unity; the k¡ and l; are vectors of length m

with elemerrr {p, } r"a {fi} respectively and M; is an mxm matrix of integers

modulo (pr)".

2.2. Covering

We now consider the central question of this section: The non-uniqueness of the

commutation factor and grading group of a colour algebra.

Consider the class C¡¿ oI colour algebras with commutation factor e and

grading group I. We say that ( f',d ) couers ( I,e ) if every tnember o1 C¡,

is also a member of C¡,., and any representation of an algebra in C¡. is also a

representation of the algebra when considered as a member of C¡,.,. Notice that

this relation is not neccessarily symmetric and in fact is a partial ordering which

is inherited from the class containment relation.

In order to use this relation we need a more technical definition of a colour

algebra than that given in section l: Suppose we have an algebra A whose elements

we denote by od (r belonging to sorne set 0) then we may define this algebra

through its structure constants C'{.* In otherwords the product on A is defined

* Vfe assume for simplicity that these are complex.
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through the equation

oí o øi - ií øk , Q.t4)

where summation over O is implied by the repeated index. We now say that A is

a colour algebrø with abelian gradingSroup I and commutation factor €, ormore

briefly A. is coloured by < I, e >, if

(i) Thereexistsamap ö:{l-I suchthat whene'toer Cit l0 then

d(i) +öU)=ö(k).
(ii) e is a commutation factor in the sense of (1.2).

(iii) C'J : -€(d(r), óUÐCi' Y i,i,,t e l.
(i") D D.(C(k),ö(ù)c*ciË:0 Y i,i,k,m€dt.

cgcl(í,J',h) I

It is clear from this definition that A will also be a colour algebra with grading

group f' and commutation factor d if there exists a map Ó' , Q -+ f' satisfying

condition (i), and if

. (d(i), dU)) : e' (ö'(i),ó'UÐ v i,i € o . (2.15)

Upon consideration of (t.tO), (2.15) also implies that any representation of A with

( f,e > will be a representation with ( f',d ).
A very general situation where ( I', d ) covers ( I, e ) is when there exists

what we shall term a coaering-homomorphlsm between f and f''
We say å : I -- f is a covering-homomorphism if

(i) it is a homomorphism,

(ii) e and e' satisfy the relation

e(a, þ) - e' (t¿(a), h(BD Y a, þ € f . (2.16)

To show that ( f',€' ) covers ( f,e ) we observe that given any algebra Â

with a colouring ( l,e > rve can obtain a colouring by < f',€') with the new

grading map ó' given by

Ö':h"ö '

This satisfies condition (i) of the colour algebra definition because l¿ is a homo-

morphism. Finally, equation (2.15) follows directly from (2.16).
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If we suppose that h is onto and satisfies the relation

aeker(h) + e(a,P)-1 YBef' , (2.t7)

then e' will be induced from e via (2.16). This is the case since if l¿ is onto then

(2.16) will define d. This definition will make sense since if there is a 1f a such

that å(a) =å(f) then a-1€ ker(h\ andso e(a-1,þ):1 or e(ø, þ) -e(1,þ\.
A similar argument holds for the second argument of e . Finally it is easy to

establish that e' witl be a commutation factor on f': The first equation of (1.3)

follows from (2.16) and the fact that e is a commutation factor. The other two

also follow this way with the additional use of the homomorphic property of å,.

Notice that if l¿ were an isomorphism, that is I : I øs well as onto, condition

(2.17) is fulfitled trivially because ker(h,) - {0} and so (2.17) follows from (1.5).

It should be observed at this point that Scheunert [26] has considered what he

terms equiualenc¿ of commutation factors. Thus two commutation factors e and

d, defined on the same l, are termed equivalent if there exists an øutomor'phism

g: f ---+ f such that

d (o, þ) - e (s(a), s(É)) . (2.18)

It is clear that in this case we can conclude that g is a covering-homomorphism,

as is g-1. Thus in our terminology ( f,e ) covers ( l,e') and vice-versa.

It is an interesting question as to whether a covering-homomorphism between

f and f is neccessarily implied when ( f', d > covers ( l, e ). \4/e shall

provide a partial answer to this question in Theorem 2.2 below. Before this result

is proved we need a preliminary definition and lemma:

We say that ( I, e ) is reduced \1

e(a,BJ-1 Vpe f + o:0

Lemrna 2.1. There always exists an onto covering-homomorphism beúween f
and a lt, where ( lt, et > is reduced.

Proof: We define fe, the e-triuial subgroup of f , as follows:

fe={ae f : e(o,1) -l V'ye f}.

18
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To see that it rs a subgroup of I suppose arþ € lo then

e (a - þ,1) : e (4, '¡)e (-B, 1)

- e(d,'l)u-t (þ,1)

-l Vlef .

We identify the f' with f/fs and choose the homomorphism g : f -' f/f¡ to be

the natural homomorphisnt (Fuchs [34]) which is onto and has kernel ls and thus

by (2.L7) is a covering-homomorphism. As we have seen this means there is an

induced e' . Finally ( f', e' > ts reduced since suppose g(a) € f is an arbitrary

element of f' then

+
e"(g(a),1") :l v'¡"€l'

e(s(o),s(r)) :r V'y€f

+ e(4,^J) =1 V'Yef

:+ a€Io

=+ g(a) -0. I

Theorerrr 2.2. Suppose (l',e'> covers (f,e ) then úàe¡eexistsasubgroup

Iä g l' suc.h that there ts a covering-homomorphism between I and t.he reduced

lo /18 F! being the d -trivial subgroup of lh ).

Proo!: The proof depends mainly on the following proposition:

Proposition 2.3. There exisús a well defrned mapping l¿ : I -+ lì satisfying

e(a,þ) - e'(ä(a), h(P)) .

The proof of this is somewhat technical and may be found in Appendix A.

We define fh to be the subgroup of f generated by å,(f ). The covering-

homomorphism we require is just the composition of the map lr and the onto

covering-homomorphism ß : fh -- fo/fä given by Lemma 2.1. To see this, firstly

lve observe that

e(d, p) - e'(/¿(o) , h(P)) - e'(ftl¿(o), kh(P)) ,

l9



using Lemma 2.1'and proposition 2.3 and where e' is the induced commutation

factor on fh/ff. It remains to be shown that /cl¿ is, in fact, a homomorphism. If

we define

t(q, þ) : kh(a + B) - kä(a) - kh(P)

then

e'(t(c, þ),kh(t)\ =e(0,1) :1 V 1€I.

Now ftr/f[ consists of elements of the form

k (Ddniä(or)) = f,rnitl(c;) a; € I

but

e'(t(a, þ),D;nikl,("¡)) - II[e'(t(c, p),kh(a;))lo' : t .

Now since Io/f3 is reduced this means that l(a, þ) :O which in turn means that

,tå, must be homomorphic. I

2.3. Canonical Forms

V/e consider now a canonical set of pairs ( 1",€" ) which cover all possible pairs

( f,e ).
Theorem 2.4. Dvery colou¡ aìgebra À wåicà can be colou¡ed by < I, e ),
where f is a frnite group, can also be coloured by a 4 1", ê" ). Tåe f" a¡e of

the following form

f"=lpr@fo.o"'efo,, (2'19)

where the p; a¡e disti¡cú primes and each pi-grouP fo' wiúà p¡ * 2, is of the

fotm

lo, = z lþù"1,. @ z[(p;)"], o... @ z lþt)"lz¡; @ z l(p¡)'"lr @ ...

@ZIþù'"lz¡,@...@z[(p¡)"']rr; , (2.20)

where Z [(p;)'^], means the u'th copy of the cydic group of order (p;)'u . For

p; : 2 the group åas úåe same form except that an odd numbe¡ of copies of Zz

are allowed. The e" defrned on the I " have the decomposition given by (2.11)

êc : €Le2 '. . €n
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with e¿ defrned on the Io, . Tùe e; are .unigue ìn the case pi f 2, and are gíven

by

e¡(arþ\ - r¡!-'(o''at)r!rz(oz'F¡ ...rt;(a^'þ^) Q.}l)

with q¿o beíng the prímitive (p;)'" root of unity; ao and po the projections of

a and B onto the copies of Z l(p;)'"1 in lo, ; and lt,(ao, þn\ is the following

antisymmetric bilinear form defrned on copies of Z l(p;)'"1

,þo(oo, þol = f ¡t"-t t2"t - tc2"t tlt-t) (2.22\
7u

¡'= I

The k and I are as in (2.12). I¡ úåe case of p; - 2 t.äe e; has the form

e¡(a, þ) - q!r'(o''É') - . .rf,;(a^'þ^) 1-1¡'r(o"É') (2.23)

where the q¡o, 1þo, do and po are the sarne as before with the restriction that

ro *0. p is defrned on the copies of Zz (a' and Bt being the projections of a

and B onto tàese copies) and has two possible forms. Tàe frsü is

l,

p(o',þ') = Ik"¿" (2.2aø)
í=1

with q being tåe number of copies of 22 ín f2 . The second is ú.äe antísymmetric

form
cl2

P(a, ,þ,\ = Ð [t,rr-t Pi _ ¡n;¡n;-tf . (2.24b\
¡':1

Noúice that in ú.his case q musú be even.

Proof: Weshallshowthat ¿ 41",€c > coversanarbitrary ( f,e ) byconsidering

a sequence of covering-homomorphisms between f and l". It shall be sufficient to

restrict the covering-homomorphisms to a particular p;-group with commutation

factor obtained from the decomposition (2.11). It is obvious that these restricted

covering-homomorphisms extend to the whole group- just set the action on the

other pd-groups to the identity.

Let us write the p;-group of I as

ZÍ(p;)"lr@ Z [(p¡)"], @. ..@ z [(p;)"],", @ Zlþ¡)"1, @...

@ Z lþ¡)'"ì,." @ ...@ Z [(pt)'-¡*_, (2.25)
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where 11 ) 12 > ... > r-. With respect to this basis of the p-group* the matrix

M of (2.13), which determines the commutation factor on the p-group, can be

written as
M1
Mz I

Mtz
Mzz

Mt^
Mzrn

M_ (2.26)

Mrnt Mrnz Mrnrn

where the M¡n are the submatrices of dimension n¡ x n¡ç. By use of (2.10) we

deduce that these submatrices have the form

M¡¡ - ort-mín(r¡"n) Rik , (2.27)

wherethe .t?¡r is an arbitrary ni Xn¡ matrixof integersmodulo p".In thesame

manner as M, we can decompose the k and I of (2.13) into subvectors k¡ and l¡,

where I runs from I to m.

Shoda [35] has shown that the automorphisms on the p-group have the fol-

lowing expression through the k:

ffL

ri: ÐPírk, , (2.28)

i=t

where the P¡¡ have the following form: For i > j the entries of the matrix P¡¡

are integers modulo pri, while for d ( i P¡¡ - P"i-Ìi Qi¡ rvith Q¿¡ having the

form of P;¡ when i > i. Finally d'et(P;¡) is required not to be a multiple of p.

This is to ensure that the homomorphism is 1: 1 and onto.

Now given a commutation factor € on our p-group the automorphism of (2.28)

induces a new commutation factor e' via (2.18). This is given by

e'(a, þ) = e (a' , þ') = I!r@' '9'\ ,

with

ú(o' , þ') : (Pk)t M (PI) - kt (PûMP) I . (2.2e)

In otherwords the M is transformed to M' given by

M,: PúMP.

* We drop the subscript i for notational ease.
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As is usual in reduction problems of this kind we shall be interested in particular

types of P lvhich conespond to column and row operations on M. From the form

of (2.30) it is clear that a given row operation must always be followed by the

correspondrng column operation. The conditions on P outlined above mean that

there are restrictions on the row (and corresponding column) operations allowed.

These are easily seen to be the following:

(i) Let us denote the addition of a multiple of a row to another row by sr¡ * r2 _
y'2 and suppose r1 belongs to the r'th block row (M;)t - Mii and 12 to the

k'th block row (M¡) i : Mri. We then have the restriction that if r < È,

then s must be a multiple of pri-r*. If r > k then s is not restricted.

(ii) The multiplication of a row by a constant s has the restriction that s may

not be divisible by p. This is a result c¡'1. det (P¡¡) not being a multiple of p.

(iii) The interchange of two rows is only possible when they belong to the same

block row.

Apart from the above automorphisms we shall also be interested in the follow-

ing non-automorphic covering-homomorphism: Suppose the m'th row in the first

block row (M1), - Mti is a multiple of p, then there is a covering-homomorphism

/ which maps the Z [(pr)"]- summand of (2.25) into a Z lþ)"-'] summand and

leaves all other summands unaffected. The map d is defined as follows: We can

write any element of Z [(p;)"]- uniquely as

ftpr'-l a I , (2.31)

with ,t ( p and I not divisible by p"-t. Clearly I corresponds to an element of

Z lþ)',-'] and then / is simply given by

ö(kp"-'*l) -¡. (2.32)

To show that / is a covering-homomorphism, we observe firstly that it is obviously

an onto homomorphism by its definition. Secondly the kernel of { just consists

of elements of the form kprr-l lrom Z [(p¡)"]- and zeros from all the other

summands in (2.25). Given now that the m'th row of the first block row is a

multiple of p, it is clear from (2.13) that if a € frerl then ktM is a vector which
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is a multiple of p" and so e(a, p\ - 1 V p e I. This demonstrates that t'

satisfies (2.17\ and hence that it is a covering homomorphism.

We now use the above covering-homomorphisms to reduce Mn. We consider

firstty the case p + 2 for which (2.5) gives

-aLnt -a2nt 0

Consider now the first column: Two possibilities arise, either it is a multiple of

p or else there exists an ø1, not a multiple of p. In the first case we apply the

covering-homomorphism / o1(2.32) to the summand Z Í(p¡)"1, converting it to a

Z lþ),,-t] rn*-rod and then relegate the column (and row) to the second block

column (or row). Note that it may or may not be a, neu block column (or row)

depending on whethet t2 : rr - l. We then restart the analysis with a smaller

(r, - l) x (21 - 1) matrix M¡¡. In the second case we multiply the the column

by the inverse oî. a1¡ (which exists and is not a multiple of p because ø1¡ is not a

multiple of p) and then interchange the second and j'th row. Mrr has now been

reduced to the following form

Mn-

0

-otz
-ate

øtz
0

-azs

3

a!nt
(tr2l¿t

@gnl^ (2.33)

M,,,:

0

-l
-a'Lz

I
0
ø!,

a'L"

øLs
0

@l:,.,

øLo,
oLo,

0

(2.34)

-a'!o, -øLn, -øLo,

We now eliminate all other elements in the first column (and row) by multiplying

the second row by ø'r¡ and subtracting it from the i'th row. We can then multiply

the first row by a!"¡ and add it to the j'th row, thus eliminating all but the I

from the second column. M11 now becomes

0

-1
0
0

0 -ä3o, -b+o,

0

0

ög,,,
b¿o,

4

0

0
ó3

0

0

0
0

-ös¿

I
0

0
0

ò

M'i,

24

0



It is obvious that'the above analysis can be applied to the third column and so on

and we therefore conclude that Mrr may be reduced to the form

ItS, -

I
0
0

0

0

0

-l
0

0

0

0
0

-l

0

0
0
I
0

ò

0

0
0
0

ò0

which is of dimension n" x n|' with n" 1 nt.

We can now use a row operation of type (i) to eliminate all elements in Mjr .

This is because, by (2.27), elements in M¡r (and thus Mit) have the form frprr-ri ,

and the restriction (i) allows us to multiply a row from Mh by a number of this

form and add it to a row in Mjt. It is to be noted that such an elimination would

not have been possible in general, if we had not allowed the non-automorphic

covering-homomorphism (consider the extreme example of when Mft consists

entirely of zeros and hence all the rows in the first block row are multiples of

P).

We have now reduced M to M' with

0 0

M': (2.35)

Clearly now we can regard M as determining a commutation factor on â group

with cyclic summands of order strictly less than p". We may now repeat the

analysis of above on this M without affecting the decomposition in (2.35). The

only complication with continuing the analysis iteratively is at the end where

there may be rows (and columns) of zeros left. It is fairly obvious that the cyciic

summands corresponding to these rows (and columns) may be mapped into the

trivial group with a covering-homomorphism. Equations (2.21) and (2.22) are now

clear.

In the case that p :2, (2.5) shows that we may get diagonal elements in M
and this will interfere with the reduction process outlined above. The approach

we shall follow will be governed by the nature of these diagonal elements. Firstly

M

Mi,
0

0
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if there are no such elements then clearly we may pursue the previous reduction.

Secondly if there exists an a € I such that*

e(c, a) - -1

and (2.36)

e(a,t) - il V,¡ e f ,

then we shall show that there exists an onto covering-homomorphism between f
and a 1". Thirdly if there exist elements satisfying the first equation of (2.36), but

none of them satisfy the second, then we shall demonstrate a non-onto covering-

homomorphism between f and a 1". We proceed now to prove the second case.

Firstty we observe that if there is a B € f satisfying (2.36) then B cannot

have the form 2'y, since in this case

-1 - e(B,p) = e(21,2t) = en(t, t)

which means that e (1,'I) I +1 and this contradicts (1.5). We conclude therefore,

lhat B must have the form

þ : q +Z'rez I ... * 2'"-reo,

where the e; are the generators of the cyclic summands of f . Consider now the

covering-homomorphism g, given by Lemma 2.1, onto a reduced lt. It is clear

that
e' (g(þ),1') for arbitrary 'y' € I'

- e'(g(þ), gh)\ for some ? € f

= e(þ,?) : *l .

Now since I' is reduced and

e'(29(þ),'t') : I V ?' € l',
* f shall be understood to be the 2-subgroup and e the commutation factor

restricted to this subgroup of the grading group.
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it follows that g(p) has order 2. Furthermore

e'(g(þ), s(þ)\ = e(P, P) - -l

and so

g(þ) : e\ + 2" ei + . . . + 2'^-' e'o

with

o(ei) - o(2" ei) = . . . _ o(z¡"-ter) - 2

and where the et are generators for the cyclic subgroups of fr.
Flom the form of the isomorphisms given by (2.28) it follows that there exists

an isomorphism / mapping g(P) into e[. Now consider any el rvith o(ei) > 2

and e'(ef , ei) = -l then apply the following isomorphism fr to the ei:

k(ei)-ei+ei

but

e'(fr(e[),r(ri)) -e'(el *e\,ei +ri) - -1.1.- I = I ,

which means that there are no diagonal elements in the reduced Mt except those

in the frnal Zz block. We can now apply the iterative process used in the case of

p + 2 (which consists only of onto covering-homomorphisms) until we are left only

with a sub-block corresponding to the Zz summands. The proof is now completed

by use of a theorem of Scheunert [26].

In the third case mentioned above, consider âD. e¡ (notation as in the second

case) with least order such that e(e¡,e;) = -1. Now let the other e¡ satisfying

e(e¡re¡r)_ -l have the following isomorphism applied to them:

eL:e*+e;

It is fairly clear that after such transformations only e¡ will contribute a diagonal

element to M. As lve shall see later this cliagonal element cannot be removed to

the 22 sub-block by means of an onto covering-homomorphism and instead we

put it there by the following non-onto covering-homomorphism: Let e; generate
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a ZlL'tl¡ cyclic summand then we map Z [2'r]n into Zz@ Z [2rt] as follows: It

is clear that any element of, Z l2';l¡ can be written as 2k * I with I = 0,1. The

covering-homomorphism h is then given by

h(zk+ r) - (r,2k+I\ (2.37)

and the new commutation factor on the expanded I' has a new M' which is the

same as M except that all diagonal éntries not in the Zz sub-block are zero. In

addition there is a new 22 sttmmand in f' whose effect on M is to introduce a

single diagonal element 2Ìt-t; all new off diagonal elements are zeros.

It is obvious that (2.37) describes a homomorphic map and a little thought

then shows that the new commutation factor we have defined satisfies the condition

(2.16). We can now repeat the comments that applied for the final reduction in

the second case and obtain the stated result. I

2.4. Uniqueness Results

Another important question to be considered is the uniqueness or otherwise of the

canonical ( 1", e" ) for a particular colour algebra. A little thought will show that

if ( f¿, €6 > covers ( l, e ) and if Ia C fo then it may be possible in general, to

extend e6 to a commutation factor on lo and then obviously 4 fo, €¿ > covers

( fre ). Clearly then, what we may hope for is that there is a unique smallest

4 f", €c > covering ( f , e ). More precisely, what we shall prove is that there

existsa (1",€c > covering (f,e) suchthat anyother <I:,e! > covering

( I,€ ) satisfies f" ç I:. Further we shall give criterion to determine what this

minimal ( 1", e" ) is.

In order to prove the above result we neecl to introduce a little mac.hinery from

elementary abelian group theory. This shall differ somewhat from the standard

treatment (see Fuchs [aa]) and so we shall be forced to prove a number of basic

results in this field.

Firstly we define two notions of,linear independence. We say that the set {a;}
of elements of f is pJinearly independent tl o(a¡) is a power of p and if

)- nia¡ - o
I
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implies that for dll d, nd:0 mod p. Secondly we say the set {a;} is p-linearly

independent with respect to e iî, again o(a¡) is a powerof p, and if

e(f;zda;,t) =l VTer (2.39)

means that for all r, ni : 0 mod P.

From these two definitions we are further able to define two notions of rank.

We say the pk -ranlc of I is the maximal number of p-linearly independent elements

in pÉf . A similar deflnition holds for ph -ranlc with respect to e. In the interests

of brevity, we use rank when we wish to refer to po -rank and Li. when we wish to

talk of p-linear independence.

Lemrna 2.5. The rank of Zo" is one.

Proof: Let 0 * o,b e Zp, and let e generate the group. It follows easily that

6=en€ b-qme (2.40)

with (m,¿) :1. This means that one of m or n is non-zero mod p. Also (2.40)

implies that

md-nb-O

which shows that ø and ö are linearly dependent. r

Lemma 2.6. If {a¡} ìs lìnearly dependenü t^hen tåe¡e exists an i such that

or: D nioi.
i+i

Proof: {a¡} tinearly dependent means that f m; * 0 mod p such that

Imic; - I (2.41)

?"' 
*r-"

+ (md,o(a;)) -1 =+ 3r,se Z suchthat

,^i+so(a¡) -1
=+ ,^;o; * so(o;)ai: di

D
i+i

I ûd:-rm+ ûi
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Proposition 2.'1. rank( A @ B ):¡7ak( A)+rank(B )

Prool: Let {ø;} and {ö;} be maximal sets of l.i. elements from .¡{ and B respec-

tively. We show firstly that {ø¡, ö;} is an l.i. set. If

Dntot+Dmibi-oíi
+ Drtor-Dmib¡-0,íi

where we have used the definition of the direct sum, namely A n B - {0};

=) nd:0 and mi:O modp Vt,i

lvhich is what we require and shows

rank(Ao B) > rank(A) + rank(B) .

The follolving lemma is useful in demonstrating equality:

Proof: Let us suppose that

^ (or* Ðrtr&to;) + ! mdø; - o

r'> I

+ Íta,¡ I D (-ft + *t) ød : o

d>r

+ m:o and mki+rnd:o modp Vi

+ md:o modp Vi. t

Now let {c¡} be an l.i. set in A@ B, then we can write c¡ uniquely as øi*ü¡. Let

us further assume that there are fr > m*n elements in {c¡}, where m - rønk(A)

and n - rønk(B). W" show, to begin with, that m2l:
We deduce firstly that either there is a ö¡ : 0, in which case we are done, or

else the ö¡ must be linearly dependent. In the latter case, select an r such that

the statement of Lemma 2.6 holds. In otherwords we have

ö': Ð kib¡ .

ifi
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Now transform the set {c¡} to the set {cl} with the same number of elements:

'l:ti i+i
c!¡: c¿ -Ð*",

iti

-ai-D,r"r:a!;eA,'iJ,i

where (2.42) is being used for the last step. This new set is l.i. by Lemma 2.8

which means that o', is l.i. (non zero) since any subset of an l.i. set is obviously I.i.

We conclude that m) | and the proposition is demonstrated if, in fact, m = 0.

We now show that m 2 2:

The set {örl} has at most fr - I non-zero elements since ö! - 0. If there are

less than k - | non-zero elements then clearly we are done. Now

k-l>m*n-lln

since we have already shown that m ) 1. It therefore follows that if {Af } has

,t - I non-zero elements they must be linearly dependent. Therefore from Lemma

2.6, there exists a k+ d such that

aL: Dtib'¡ .

i#i
i*k

(2.43)

We redefine our {ci} as follorvs

i+iar'djl.k

ÐF"',
i+i
i+k

Ðt'o'r:allea.
i#i
i+k

By Lemma 2.8 this new set of fr elements is l'i' and so at! : øl and øfl are I'i',

which means that m 2 2. The proposition has now been shown for m : 0 or

1. Obviously the above argument can be repeated until lve finally conclude that

m= k which contradicts our assumption that k> mIn- I

"'j 
:"'i-"i

c!! -clr-a'.
^t, _ ^,uß-(,Ê-

- ølp-
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The following coiollary is used in a major way in Theorem 2.ll below:

Corollary. A fniüe abelian group is uniquely deüermined by its pk'ranks.

Proof: Lemma 2.5 and Proposition 2.7 imply that the rank of a p-group fo is

equal to the number of cyclic summands in its unique decomposition (2.2). Now

the rank of pI, is the same as that for Io less the number of, Zo summands in Io.

This argument extends in an obvious way to the rank of pßlo which is equal to the

pk-r -rank l¿ss the number of Zox cyclic summands in fo. We therefore conclude

that Io is uniquely specified by its pþ -ranks. To extend this result to an arbitrary

frnite f it is sufficient to observe that, by the definition of p-linear independence,

elements of non-prime power order do not contribute to the p& -ranks of I . Hence

the pÉ-ranks of I determine uniquely, the unique P-grouPS making up the total

group. I
We nolv examine the connection between rank and rank lv.r.t. e :

Proposition 2.9. The ph -rank of f is at least as large as its pk -rank w.r.t. e .

Equality holds when f is reduced.

Proof: Let ø¡€pÊf andsuppose D,.mia;=0. Furthersupposethat {ø;} isl.i.

w.r.t. e

=) .(D¡mia;,r):t V'YeI

=+ mi:O modp Vi

which means that {a;} is 1.i.. For the second part of the proposition, suppose that

f is reduced and that {ø;} is l.i. If

. (!; ¡niøi,'I) = I V 1€ I

then because I is reduced

=+ )- *jo; - g

+ m modp Vd,-Q

which means that {a;} is l.i. w.r.t. e .

The reason for the usefulness, from our point of view, of rank w.r.t.

containecl in the following:
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Proposition 2.1O. The pk-¡a¡k w.r.t. e is preserved by an onto coverìng-.

homomorphisn.

Proof: Suppose I¿ : f -r I' is the onto covering-homomorphism and suppose that

tz(ø;) e f' are l.i. w.r.t. ¿ . fi

. (D¡ mioi,?) - t V'y e f

+ .'(rr(D,^;ai),h(r)) -t V1eI,

which implies, since /¿ is onto, that

.'(D, m¿h(a¡),'l) = t V y' e f'
=+ mi:O modp Vi

and this therefore means that {ø¡} is l.i. w.r.t. e .

Conversely suppose that {o;} is l.i. w.r.t. e . If

. (Di mih(a;),^/) :1 V "Y' € f'

=+ .' (h(D, ^tor),h(r)) - t V 1 e f

+ .(D¡miøi,'Y):t V'Y€f

+ mi:o modp Vr

and so we conclude that {lr(o¡)} is l.i. w.r.t. e'. r

Having dispensed with the algebraic preliminaries, we are now able to prove

the second major result of this section:

theorer¡¡ 2.L1. There exisús a unique canonic¿l 4 f", e" ) coverìng 1f,e )
suc,h t.hat if another canonical < I'", ë" > also covers ( I,e ) t^äen f" C f'..

.Flrrü.hermore the pk-rank of f" is equal to the ph'tank w.r.ü. e of I unless

ú.here exist B € I suc.h that e(p, þ) : -l and none of úåese p satisfy

e(þ,ù:tl V'Y€f . (2.44\

ln this latter case the 20 -rank of l" is one greater than the 20 -rank w.r.t. e of

I buú all other pb -ranks are identical. Finally tåe unigue ( 1", e" ) for every

( I, e ) is ú.he one achieved in the proof of Theorem 2.4.

Proof: We begin with the following essential Lemma
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Lemma 2.12. If 1o Ç 16 úåen the pk-¡ank w.r.t. eo of Io is no greaterthan

the conesponding rank of 16 (providing, of course, that en and e6 agree on Ic).

The same resulú åolds for ú.he pß -ranks of T o and l¿ .

Proof: Suppose a¡epklo. Since pkloCpßf6 thismeansthatthe rrd arealsoin

phfu. Further suppose that {o¿} is Li. w.r.t. eo in I". If

eo(D;míaí,r) -t Vl€Io

=+ e"(D;míoi,t') :t Vy'ef"

=+ mi:O modp Vi,

which shows that {ø;} C pßf¿ is l.i. w.r.t. €.6. The second part of the lemma

follows from the obvious observation that an l.i. set in pÉfo C pFf¿ is still one in

pklo. r

Now if ( f',d > covers ( f,e ), then Theorern 2.2 tells us that the reduced

fo/Iå contains the image of a covering-homomorphism from f . Lemma 2.12 and

Proposition 2.10 then show that this quotient group must have pþ-ranks w.r.t' e"

at least as large as the corresponding ranks oi I lv.r.t. e . By Lemnta 2.L,lhllt
is the image of a covering-homomorphism from Ih and so, by Proposition 2.12 the

pß-ranks w.r.t. e' of the former group equal the pß-ranks w.r.t. d of the latter

group. Finally since I[ C I', we deduce from Lemma2.l2 that the pß-ranks

w.r.t. e' of f' are at least as great as the corresponding ranks w.r.t. e of f . TVe

also have the following:

Lemma 2.1S. Any canonical < f",€" > is reduced.

Proof: Let c € f" satisfy

e"(a,1) -l V1€l'

and for a p¡ * 2, Iet sj. be the generator of Z f(p;)',\r. We now deduce, using

(2.2r) and (2.22\, that

I - e(a, s,i) - e¡(a, s!) - ,r*rr:*

where frlsl is the projection of a onto Z lþ¿)'t ], and the * depends on whether

ú is orld or even (t even gives the +). It follows immediately that kI: O mod pii
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and so ktst - 0. Since this holds for all j and ú we conclude that û can have no

components in p; -subgroups of 1". For P¡ : 2 the argument is identical except

in the case that copies o1 Zz have the form (2.24a) defined on them, in which case

we get the simpler equation (-t)e' - t V ú, where /ctsú is the projection onto

the ú'th copy of Zz in I" . Again this implies that kt st = 0 and so we conclude

that a-0. t

Proposition 2.9 and Lemma2.l3 now allow us to conclude that the pß-rank

of any covering f" must be at least as large as the pe-ranks w.r.t. e of I. Now

by the Corollary to Proposition2-7, the pk-ranks of a group determine it uniquely

and so there must be a unique minimal canonical If; with pb-ranks equal tothe

ph-ranks w.r.t. e of I. Clearly then, any ( f",€c > covering ( f,e ) , must

satisfy ff C f".

Except in the pathological case outlined in the statement of the theorem, the

proof of Theorem 2.4 has shown that there exists an onto covering-homomorphism

between f and a f". Proposition 2.10 therefore shows that this must be in fact

fr.
In the pathological case we have seen in the proof of Theorem 2.4 that there

exists onto covering-homomorphisms at all but one place in the reduction- where

we are forced to append an extra ^Z2 summand. It follows, again from Proposition

2.10, that a reduction to ff; @ Zz is possible. Finally we complete the proof by

showing that, in the pathological case, if l" has 2É-ranks equal to those of If;

then it cannot cover l. A little thought will shorv that this implies that any f"

covering f must satisfy ff @ Zz Ç1".

Let us assume that a f " with 2e -ranks equal to those of If; does cover f .

The covering of I implies the existence of a covering-homomorphism / : f -t
fo lft with fh Ç l" i also there is an onto covering-homomorphism /c : IÞ -t
fu/få. Consider now the 2-subgroups of l, fo/få, ftr and f";denote them by

lz, Qz, f!" and 126 respectively. Now by [aa] the covering-homomorphisms /
and ,b restrict to covering-homomorphisms lz - Q2 and l*" - Q2 Ìespectively;

moreover it is easily seen that the latter must be onto. Denote by r(f) and r(l' e)

the 2k-rank and 2k-rank w.r.t. e of f respectively. We have, by the use of the
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technical lemmas and propositions above, the following inequalities

r(fz,e) :r(/(Iz),€') ( r(Qz,e') : ,(1*",e") (

r(f2., €") : r(lz") : r(fz, e)

r(f(fz), €,) ( r(/(rr)) < r(Qr)

which shows that equality must hold amongst all of them. Now we have seen that

lo lI| is reduced and we now show that this implies that Q2 C f"/fä is reduced.

Suppose d€Qz satisfies

e.(o,,y) - I Y 1eQz,

then it is quite clear from (Z.f f ) tnat

e,(o,1') -l v1'efo/r}

and so c : 0, which shows that Q2 is reduced. We have thus r(f2") -- r(Qr,er) :

r(Qz) and hence

lz"?Qz. (2.48)

A further set of inequalities are the following:

(2.47)

(2.4s)

which, when (2.17) and (2.a8) are considered, become equalities and lead to the

conclusion that

/(rz) : Qz

and combining / with the isomorphism (2.+a) leads one to conclude that there is

an onto covering-homomorphism g between f2 and 12¿ '

We define a diagonal element B to be one satisfying e(B, þ) : -l; such an

element must exist in the pathological case. Now I : Iz @ t¿ with Iú being a

direct sum of p + 2 groups. The diagonal B € f must be able, therefore, to be

written as þ:d+1with a€fz and 1€f¿. Now

-l - e(8, Ð: €(û * 1,a + 1) - e(4, a)e ('y, 1) - e(4, o) , (2.50)

where the last step follows from the results of section 2. Clearly then, a € lz is

diagonal which implies, from the definition of the covering-homomorphism, that
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g(fz) :lz" possesses a diagonal element also. Examination of (2.2a) then shows

that this diagonal element must satisly (2.++), but since f2" is the image of a

covering-homorphisms from f2 it follows that this latter group must also contain

a diagonal element satisfying (2.44). This however, contradicts the assumption

that I is pathological and so we are done. r
It is an obvious step now to extend the above results to the case where f is

finitely-generated. This should not prove too difficult; however the result (2.11)

will not now hold, and as a number of the proofs depend on this result, some

reworking may be required. The concept of the covering-homomorphism should

still, however, play a central role.
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3. The canonical superalgebra

In this section we basically follow the work of Scheunert [26], however we provide

proofs for a number of results stated by him and provide greater detail in the

derivation of the main results.

The basic concept we shall require is the o map which converts an e colour

algebra with grading group f into an d colour algebra with the same grading

group. This new algebra will be the same set-theoretically as far as the grading

is concerned, but will have a different bracket defined on it. We define this new

bracket as

1&ø¡øþ )o: o(arþ) l aorap ) (3.1)

where ø: f XI--+ C isanon-zerovaluedmap. Ourfirstmainresultconcerns

the conditions that a needs to satisfy in order that this new bracket still defines

a colour algebra.

Proposition 3.1. I! o is a multþlier [36] on f , úåaú is, iú saúisfies

o(a*þ,t)o(o,B¡ -o(a,þ+ùo(þ,ù Y a,þ,I€f , (3.2)

úåen ú.he mzp gtven by (3.t) defnes a map from a e colour algebra to a d colour

algebra where

e' (o, þ) = o(dt þ)o-t (8, a\e(a, B) . (3.3)

Proof: In order to show this result we need to show firstly that d is a commutation

factor and secondly that the bracket defined by (3.1) satisfies the conditions (t.4)

required by a d colour algebra.

For convenience we define the maps

L(o, þ,1) = o(t, a + B)o-L (t, o)o-t (1, þ\

R(o, þ,1) : o(a + þ,1)o-t (o, ?)o-t (þ,ù ,

(3.4)

L(o, þ ,t) - L(þ , a, t)

R(o, þ,ù : R(þ,d,'t) .
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It is now trivial to observe that the multiplier condition (3.2) is equivalent to

L(þ,^t,a\ - R(a,P,1)

By the use of (3.5) and (3.6) we conclude that

R(o, þ,1\ = L(þ,'1, a) = L(1, þ,')
: R(c, l,þ\: ß(r, o, þ): L(a,þ'l) .

(3.6)

(3.7)

In particular (3.+) and (3.7) show that

o(a * þ,1)o-t (o,'ùo-t (þ,ù : o('l,a + p)o-t (t, o)o-t (1, þ). (3.8)

Consider now d deflned by (3.3)' clearly it satisfies

e' (a, B)e' (þ, a) = L ,

if e does. In addition we have

e'(o * þ,1) : e(a,1)e(8,ùo(a + þ,1)o-r (1, a + þ)

- e(û, ù e(þ, t)o (a, t)o-' (t, o)o (þ, 1)o- 
t (1, þ),

from (s.a) and (1.3). However this is just equal to d(c, ^ù¿@,'y), using (3'3).

A similar argument shows that d(a, þ + l) = e'(d,þ)d(",'y) and so we conclude

that d is a commutation factor.

We now use (l.a) for the e bracket to conclude that

1 da¡bp )o : o(a, þ) 1 oo,bp )

: -o(d, þ)r(r, B) 1bp,ao )

- -o(d, P)o-'(B,a)e(a, þ) < bp,ao )o

: -e'(d,þ\ <bp,ao)o

It remains therefore, to show that (, )ø satisfies the generalised Jacobi identity

(1.4b). In otherwords we need to show that

t ëh, o) 1 aat1bp,c, )olo : o (3.9)

cgcl(a,þ,1)

or
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I.'(r, o)o(þ,t)o(o,B +ù 1@.'1bp,c" )) - 0. (3.10)

cgcl

By the use of (a.f) we see that this will hold if

o(1, a)o-L (r,l)o(þ,1)o(a, P + "r)

= [o(?, a)o(a, þ)"(þ,r)]o-t (o,t\o-t (a,p)o(a, þ + l\

is invariant under a cyclic permutation of a,B and 'y. It is now easy to see that

this is equivalent to L(B,"y,a) being invariant under cyclic permutations (this is

because o(1,a)o(a,þ)o(þ,f) it). The invariance of .L under cyclic permutations

is an easy consequence of (3.7) and (3.6) and so the proof is complete. I

The converse of the above proposition is not true as we can see from the

following counter-example:

Let A be an algebra with grading group Zs and three elements ø¡rø2 à\d

as satisfying

1 ør¡a2 )= - 1Ø2¡4¡ ): &g t

and with all other brackets zero. d is a colour algebra since (1.4) will hold if

e(1,2) = 1; also the Jacobi identity is satisfied trivially.

If we allow ø to be symmetric in its arguments then (3.8) will hold and as a

consequence the new bracket (, )o will have the required symmetry property of

(t.a); the Jacobi identity will obviously hold, again trivially. Thus the new bracket

also defines a colour algebra. Now if we put a : þ - I and 1 = 2 in (3.2) we

obtain

o(2,2)o(r,l) - ø(1,0)ø(1,2) .

Evidently by a suitable choice of o this may be violatecl and hence we have our

counter-example to the converse of proposition 3.1.

The following result is one of the more important results in colour algebra

theory:

Proposition 3.2. Let T be fr,nitely-generated then there exists a unigue (up to

isomorpåism) ncanonical superaþbra associaúed wiúå eacå colour algebra by the

o mappìng of (3.t). The commutation factor is úåe one given by equation (l.Z)
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in section 7. We denote it by es and the conmutation factor from which it was

derived by e.

Proof: Firstty it is straightforward to observe that ese-l is a commutation factor

q which satisfies

4(c,o)-r Vo€I.

Section 2 now shows that there exists a ø satisfying (2.7), (providing I is finitely-

generated) such that

o(a, p)o-'(p, o) - q(d, B) .

It is easy to see that conditions (2.7) imply that ø is a multiplier in the sense of

(3.2) and so (, )o is a colour algebra with commutation factor es, in otherwords

it is a superalgebra. It remains now to be shown that this superalgebra does not

depend on a particular choice oI o.

Norv any superalgebra produced by the ø mapping of (3.1) must have ee as its

commutation factor. This is because commutation factors €¡ on superalgebras are

determined by the values e¡(a,a) - *l since these values determine the grading

on the algebra. The result now follows from the equalities

e¡ (4, a) : o(dt o)o-' (c, a)e(c, a)

- e(a¡ d) : eo(o, *) '

From this we conclude that any two ø and ø¡ producing a superalgebra, must

satisfy

o(a, B)o-'(B,o) : ot(a¡ þ)ot t (þ,o)

or

o(a, B)o, '(o, þ) : o(þ,o)ot'@,o) .

In otherwords, the multiplier r given by

r(a, þ) = o(d, þ)ot'@, þ),

must be symmetric. We now prove the following lemma whic.h holds on finitely-

generated grading groups f:
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Lemma 8.8. On frnitely generated abelian groups all symmetric multipllers are

ürivial. Thaú is, theY satisfY

r(a, P): .s-r (o)r-t 1B)s(a + Þ) (3.11)

where s is some map I -- C -

Proof: Substituting a : þ:0 into (3.2) we see that

r(O,'y) -r(1,0)--constant Vf e f .

Thus a simple rescaling of the multipliers allows us to set this constant to I and

prove (3.11). We can then rescale the s to get our original unscaled multiplier.

We now have

Lemma. If f is generated by one element then r is trivial.

Proot: Denote the generator by I then we define

s(n) = fI "(r, 
lc)s"(l)

t¿- I

lc= I

n-t

l=1

n2.2, (3.12)

(3.13)

where n has its obvious meaning as an element of I;

s(-n) : Í-r (n, -z)s-r (n) ;

and s(1),s(O) are arbitrary. We now shorv that (3.11) holds

Let n 2m>- 2 then

-t . rr¡lrr-l

"-r 1n)s-1 (m)s(n * -, - 
[-LI:

r(1, ß) f[ r(r,l) il r(1,r)
¡n-l

l=l
¡n*n-t

lc=tn

n-l

l=l
n-l

i=l

fl "-'1r, 
t¡ II r(r, È)

: ¡(t,n * m- 1) fl r(1, t* m - r)r-1(r, t)

-r(r,n*m- 1) fl r(m- l,t* 1)r-1(m - l,t)
l=l

- r(m- l,n)r-r (* - l, l)r(1, n+ m - l)

-- r(m,n) ,
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where we have used the fact that r is a symmetric multiplier to derive lines 4 and

6. Consider next the following:
z-l tn-l n-tn-t

s-r (n)s-1(-m)s(n - m) : r(m, -m) fI "-'(1, 
fr) f[ r(r, l) II r(r, k)

ls=l l=1. lc=l
r-l m-l

= r(m, -m) II r-'(1, t') II r(1, l)
k=n-m l=l

m-l

- r(mt-m)r-' (l, r - l) II "-t(1,,t + (n + m - l))
k=1

.r(1, ß)

¡n-L

- r(m,-m)r-L(l,r- l) II r-r(k* l,n - m - l)
&=1

.r(krn-m-l)

- r(1, n-m- 1)t-t (*,o-m-l\r(m,-^)r-' (t,n- t)

: r(nt-*) ["-t (t - 1, -*)r-'(*,n - m - l)r(m, -llz)]

: r(n, -m) , (3.15)

where again rve have used the fact that r is a symmetric multiplier to derive lines

4, 6 and 7. In addition, r(0, n - 1) = I was used in the last line. consider now

arbitrary pre € I and suPPose we have

r(p, q) : s-r (p)t-t (q)t(p * g) ,

then using (3.13) we have

"-t 
(-p)'-t (-q)'(-p - q)

- s(p)s(q)t-t (p * q)r(p, -p)r(q, -q)r-'(p * q,-p - q)

: r-L (p,q\r(p, -p)r(q, -q)r-t (p * q, -p - q)

- r(p * q, -p - q)r-t (q, -p - q)r(q, -q\r-t (p + q, -p - q)

- '(-q' -P\

- r(-P¡ -q\ '

Where we have used the symmetry and multiplier nature of r repeatedly. When

this result is applied to (3.1a) and (3.15) we see that only the cases n = 1 or 0

remain to be shown. These are fairly easy consequences of the defining relations

(3.12) and (3.13). Thus the proof is complete. I
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Lemma. Suppose r ís trivial on 11 and Tz, tåen it is trivíal on their direcú sum

I:Ir(EIz.

Proof: Suppose that

r(a,þ) - sil(o)rr t@)s1@+fl Va,PeIl

and

r(t,6)- s;t (r)rrt(6)sz(r+6) V1,6 €tz,

then we shall show that an appropriate trivial factor s for I is given by

s(a * ^ù : r(a,'y)s1(a)s2(1) v a € lr v 1 € 12'

This is consistent since I is a direct sum of f1 and f2. Consider now a,B el1
and 1, ô e lz, then it follows that

s-1(a + r)s-r(p + a)s([a + þl+ [r + ó])

: î-t (o, r)"it (o)r, t (r)"-t (É, ó)rlt (B)rtt (ô)

x s1(a * þ)trh + 6)r(c + þ,"1+ 6\

: î-L (a,1þ(a, þ)r-t (þ,6)r(t,6)r(a + p'1 + 6)

- r(a + l, þ)r-L ('y, o + þ)r(þ * 6,1)r-r (þ,0 + ùr(a + þ I + 6)

- r(a + l, þ)r-' ?t, o + þ)r(o, l)r(a + l, þ + 6)

x r-r (o,þ +.y * 6)r(a, þ + l * á)r-t (o,þ)

=r(a*.1,þ +ó) ,

where \rye are repeatedly using the fact that r is a symmetric multiplier on f . The

proof is now complete. r
The main result (Lemma 3.3) now follows in a straightforward way from the

above two lemmas. I
lVe now complete the proof of Proposition 3.2 by showing that 1Í oo, t is

trivial then the brackets 1,)o and <, )o,, define isomorphic superaìgebras on the

bracketless abstract vector-space A (which consists of elements from the colour

algebra).
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Denote the elements of (,t\, ()o) by li and those of (4, a)ør ) by fåt , where

a refers to the grading on A. We deflne the map d , (4, (>") - (4, ()s,) by

ô(IÐ: s-r(c¡l;'

where we have from Lemma 3.3 that

o(a, B)o, 
t (o, P) = s-r (o)r-t (É)s(" + p) . (3.16)

We now show that / is an isomorphism:

Firstly it is trivial to observe that / is, by its definition, one to one and onto.

Secondly from (3.1), (3.15) and (3.16) we have that

ô (< Ii,ti >ò - C ('- (o)r-' (þ)r(o + P)e(. ,i' ,ti' ,",))

= s-1(o)r-t (p) < I"o, ,|fr' )o,

_< ö(t",),ö(ri) > ,

where e: (4,4)or) * (,{,<>') is given by e(lfl'):1""

follows immediately.

Proposition 3.2 now

I
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4. Kleia transformations

The above correspondence is rather abstract and not very well suited to the ap-

plications we shall later study. For this reason we study what we shall term Klein

transformations. These generalize the original Klein transformations [13], intro-

duced some years ago to change commutation relations to anti-commutation rela-

tions. As we shall see the transformations play a central role in the representation

theory of colour algebras.

Consider firstly a graded algebra A with an associative product. As we saw

in section l, in a different context, this may be turned into a colour algebra by

defining a bracket as

1 Øø¡aþ ): øødþ - e(a, P)apao . (4.1)

(4.2)

(4.3)

The closure of the associative product, the grading of the algebra and the fact that

e is a commutation factor ensure that with this bracket, A is a colour algebra.

The Klein operators Kl are a set of commuting operators with grading 0

which extend A. They satisfy

/(Í(o) - I

where the notation implies a unique Klein operator for each c € I. Also ø is a

non-zeromap f Xf ---+ C, satisfying ø(a,0) - t forconsistencybetween (4.2) and

(4.3). The confusion of notation with the a of the previous section is deliberate as

will become clearer below. r, on the other hand, can easily be sholvn to be firstly

symmetric and secondly, by the use of the law of associativity, a multiplier. As we

have seen in section 3 this implies that if f is flnitely-generated, then r must be

trivial. In otherwords (+.2) becomes

r(a)Ki @)r(þ)tcT @) : r(a * p)Ki @ + 9)
(+.za)

r(a,þ): r-1(o)"-t (þ)r(" + B\ ,

which shows we can rescale our Kf to a new set K' which satisfy

K" (a)K" (þ) = Ko (o + B) .

Ki @)xi (þ) : r(a, B)Ki @ + 9)

Ki@)øP: o(þ,a)aPKi@) ,
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For the rest of this section we consider the Ko only. We shall have cause to

consider the original Ki again in Appendix B.

Consider now the factor otwe can use (4.2), (a.3) together with the graded

nature of A to show that in general* we must have the following relations

o(a * þ,t\ - o(a,)o(8,1) 
Ø.4)

o(a, þ + T) - o(a, P\o(a,1) ,

which imply, as we have seen before, that ø is a multiplier in the sense of (3.2).

The Klein transformation .Lo of the algebra A is a subalgebra of the above

extended algebra and is defrned elementwise from K" and A:

ø"o: K" (-a)ao V oo € A . (4.5)

Notice that if we had used Kf here, all we would obtain would be a rescaling of

the ø[.

The usefulness of the Klein transformation becomes apparent when one com-

bines (4.1), (4.2\, (4.3) and (4.5) obtainins

K"(o + þ)a"t+p:1oarøfl )
: K" (a\ø""K" (þ)"i - €(c, þ)K" (þ)"þK" (a)ai

- K" (a + Ð l"-'(a, B)a',ø"p - €(o, P)o-t (B,a)øþa"'l .

(We are assuming here that I aataþ >-- øo+þ). In otherwords we have the

interesting relation

o(a, B)a".*þ = o(a, þ) 1 oo,trp )o: ø",""p - e(a, B)o(a, þ\o-'(p, a)øþø"". (4.6)

We can see from this that Ao is again a colour algebra with commutation factor

given by equation (3.3). In fact, it is evident that the Klein transformation is

just implementing the o map of section 3. This follows since the colour algebra

bracket (, )o for Ao is given by

1 ooorol )o- o(a, þ\ 1 datap )o ,

* In certain special cases we may be able to avoid (4.4) - see the example

following Proposition 3.1 for the kind of pathologies which may arise.

47



which is just (3.1), when one remembers that in section 3 the two colour algebras

were identified set-theoretically whereas here they are different algebraic objects.

In a more general sense, if we restrict our transformations (3.1) to those

for which ø is a multiplier, then the Klein transformation (a.5) will produce all

such transformations (up to isomorphism), prouiding we assume that f is finitely-

generated.

This statement follows because 1,or o a multiplier on a finitely-generated f ,

we have seen in section 2 that there rvill exist another ø¡ satislying (+.4), such

that

o¿(a, P)o¡ 
t (þ, r) : o(a, P)o-'(o, þ) .

Then the final two results of section 3 show that two multipliers satisfying this

relationship will produce isomorphic algebras under (3.1) (providing again that f
is fi nitely-generated).

As a result of the above remarks we shall, for the rest of the section, restrict

ourselves to the K" satisfying (a.a).

We now consider representations of colour algebras and it is here that the

Klein transformation proves its usefulness.

Proposition 4.1. Suppose we have a representatíon of a colour aLgebraA, úåen iú

is possible to imbed this representation ín a representation of the extended algebra

( A, Ko >. In otherwords, the represenúation for A can provide a rePresentation

for Ko as weII.

Proof: Let V be the graded vector-space upon which the representation r(.â.) of

A acts. Now we define ,(K") as follows

Fbom this it follows that

r(K" (þ))r": o(a, B)uo V uo € V .

r(ap)r(K' (r))r' : o(o,1)r(øp)u'

r(K" (j)r(op)r" - o(þ * a,1)r(ap\uo

(4.7)

and
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because r(ap)ao has grading t + þ. We therefore conclude using (a.a) that

r(K" þ))r(op) = o(p,lr(øp)r(K" (r)) .

Also from above

r(K"(0))uo = o(a,0)uo = uo ,

and

,(K" (a))r(K" (þ))r, - o(^t,a)o(1' B)u,

=o(^l,a*p)a,
r(K" (a * þ)W ,

which demonstrates the proposition. t
The concept of ineducibility of representations of colour algbras is the usual

one for algebras: A representation is irreducible if the graded vector-space V upon

which the representation r(A) is defined contains no non-trivial proper subspace

u such that r(A)u c (I . The following lemma now follows easily:

Lemma 4.2. Tåe K,lei¡ transformation of a representation of a colour algebta

given by Proposition 4.7, Preserves irreducìbility-

Proof: Suppose the Klein transformation of an irreducible representation was re-

ducible. Then it follows that there exists a non-trivial U C V such that

r(K"(-a))r(a.)U ÇU Voo €4.

It then follows from the definition of r(K") and the non-zero nature of ø that

r(a")U cU V øo €A

which is a contradiction. I
Schur's lemma holds for superalgebras (see Kac [2a]) and we can now conclude

that it holds for arbitrary colour algebras:

Lemrra 4.3. Let r(.L) be a frnite-dimensional i¡reducible representation of the

colour algebra A, acting on the graded vector-space V and suppose s is a homo-

morphisrn V -+V satísfyíng

(i) s(V,) cV" V oo € A

(ii) sr(øo) - r(¿o)s Y ao € A' ,
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then s is a mütiple of the identity-*

Proo!: By the results of section 3 there exists a o such that r(K")t(A) forms

a finite-dimensional representation of a superalgebra which, according to Lemma

4.2, is irreducible. Furthermore the definition of r(K") together with condition

(i) ensures that sr(Ko) - r(Ko)s which means, by condition (ii), that

sr(K" (-a))t(o' ) : r(Ko (-a))r(ø" )s .

Hence using Sc.hur's lemma for superalgebras we have the desired result.

We can now deduce the following result:

t

Proposition 4.4. Every representation of a colour algebta A ís glven by a

Klein transformation of a representatìon of z superalgebra. Fl¡rú.hermore when the

representation is irreducible and finite.dimensional this transformation is unique

(up to a scalar multiple).

Proof: Let r(ao) be a representation of the colour algebra then, as in the proof

of Lemma 4.3, there exists a ø such that r(Ko(-a))r(ø") is a representation of

a superalgebra. Now defining r(K"' (")) = r(K"(-a)) we have that ø'(o, þ):
o(c.r-B\ and so by (+.+), ot is a multiplier. It follows trivially that r(K"'(a))

are Klein operators for the representation of the superalgebra and furthermore the

Klein transformation of this representation is, using (4.2)' just

,(Ko'(-c))r(K" (-a))r(a') - r(oo) ,

or, in otherwords, the original representation of the colour algebra.

For the second part let ,(K") and r(.[") be two different representations

of Klein operators, with the same multiplier, on a finite-dimensional irreducible

representation of a superalgebra. By the use of the definition of Klein operators

(4.2) and (4.3) we have

r(K" (a))r(øp) = o(þ, a)r(ap)r(K" (c))

and

* A more general result, with so(rø) CVa+þ, mâY be possible - see Kac [2a]

for the superalgebra case.
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r(L"(a))r(op\ = o(B,a\r(op)r(L" (")) ,

or

r(L" (-a))r(øp) - o(þ, -a)r(ap)r(L" (-"))

: o-r (8, a)r(ap)r(L" (-"))

when (+.+) is used;

+ r(L" (-a))r(K" (c))r(ap) - r(ap)r(L"(-o))r(K"(")) .

Since Klein operators have grading 0, we can apply Lemma 4.3 and conclude that

r(K"(")) - kxr(L"(a)) keC ,

which concludes the proof of the proposition. r

It should be noted that the correspondence between representations given

here by Klein tansformations has also been given by Scheunert [26] in a different

way.

In the case where finite-dimensional representations are being considered, we

have two possibilities.

(i) The representation is completely reducible, in which case Schur's lemma may

be applied to each irreducible component of the representation and so Klein

transformations may differ by scalar multiples on each component.

(ii) The representation is incompletely reducible. This situation applies only when

the canonical superalgebra has a non-triaial 22 grading (see, for example,

Scheunert [37] ). The question of the uniqueness of the Klein transformation

(up to equiualence) is open in this case because Schur's lemma is of no help.

There is another notion of uniqueness that is broader than the one we have con-

sidered here. Let us suppose that we have two sets of Klein operators K"(a) and

Ko'(o). As we have seen in section 3 and the beginning of this section, if øø'-r is

trivial as a multiplier then the two Klein transformations will give rise to isomor-

phic colour algebras. On the assumption that this is the case here, we nolv consider

representations of a colour algebra and the two sets of Klein operators. The two

different lflein transformations will produce different representations of the same

colour algebra. It is of interest then to know whether these representations are

equivalent or not.
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This question remains at present unsolved horvever the answer appears likely

to be affirmative for the following reasons:

Consider a basis for our representations which has all its elements with a

definite grading. This is certainly possible due to equation (1.1). It is clear that the

only graded elements of the untransformed colour algebra with non-zero diagonal

elements are those with grading 0 (this is a consequence of (t.9)).

Now due to the second equation of þ.2) and (4.5) these elements will be

left invariant by both Klein transformations. In the case of finite-dimensional

representations this implies that the characters of all elements in the transformed

colour algebra will be the same in both representations.

On the assumption that the usual character theory for algebras [3S] can be

adapted to colour algebras, we can use the result that equal characters imply

equivalent representations to derive the required result'

Obviously the above argument is incomplete and intuitive. It would be useful

to prove it in the general situation without resort to character theory which applies

useiully only in the case of finite-dimensional representations.

52



CEAPTER 3

MODULAR FIELD TEEORY

In this chapter it is proposed to study a scheme of quantization introduced by

Green in 1975 [27]. As was mentioned in the introduction, such a scheme is of

interest because, like its parafield counterpart, it has an ansatz solution with the

ansatz fields forming a colour algebra. We begin the chapter with a brief review

of the basic features of the best known form of generalized quantization, namely

parafield theory.

1. Basics of paraffeld theorY

The parafield r/o(ø) is assumed to satisfy the following equal-time* commutation

relations:

[ú, {"r ), lrþ"p (rr),ú" (", )] .] - 
: 26 (x1 - xz) 6'pÚ, (". )

l,t,,lrr),lrþ p(r"),ú,, (".)].] _ 
: o .

Pt,:' I >[úl(t), 'l'',u1'¡1*d" ,

(1.1ø)

(1.1ö)

The subscripts refer to either spinor or vector indices and are omitted in the case

of a scalar field. The a indicates two different kinds of quantization known as

parafermi and parabose quantization respectively.

The motivation behind (l.la) lies in the Heisenberg principle which states

that the energ"y-momentum operator Pu must satisfy

lPr', rþ 
"(r)l - : -í'þ ",uþ)'

(r.2)

If one sets the energ:y-momentum operator equal to

(1.3)

then equation (1.la) can be used to derive (1.2)

* In future bold face spatial indices within a delta function will imply that we

are considering equal times
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As one might expect the usual fermi and bose commutation relations are

solutions to the parafermi and parabose relations respectively. A more general

class of solutions can be given with the aid of the so-called Green ansatz [2]. This

involves introducing an ancilliary set of ansatz frelds øf)(") (r= 1,...,p) which

satisfy the following anomolous commutation relations:

[ø;,', 
(ù,öF) (

[øl'' þ,\,öt) (',)]* = [øg' 
(ù,ött (

where r # s and the upper signs refer to parafermions and the lower signs to para-

bosons. Compare these relations with the colour algebra given by (t.5) Chapter l;

these are the relations satisfied by the creation and annihilation operators in the

discrete momentum representation of OP þ). The ansatz solution then involves

setting 
p

,þ,(r)-DOpþ). (1.5)
r:l

It is a straightforward matter to confirm that (1.a) and (1.5) imply (l.l). The

index p in (1.5) is referred to as the order of paraquantization and it is easy to

see that for p - f (1.a) and (1.5) give the normal bose and fermi quantizations.

The signiflcance of the ansatz solution becomes apparent when one considers

Fock representations for (f .t). In this case Greenberg and Messiah [S] have shown

that the ansatz provides øll solutions to the relation (1.1). In fact, the order p of

the paraquantization c¿n be obtained independently of the ansatz via the relation

a,bøfl) : 6r¡pl) , (1.6)

which holds in all Fock representations (the a¡ and øi are the annihilation and

creation operators respectively).

For the caße p : 2 a self-contained set of commutation relations are possible

for the paraquantization:

ú, (r') 1Þþ (r 2) ¡, (, 
") 

+ rþ, (" 
"),þþ 

(r r) rþ . (r')

- 26(xr -xz)6op1þ"(".) *.26(x2 - xs)6pz rþ'(rt)
(1.7)

,þLþ r\ rþ p (r r) rþ, (, 
") 

+ ú, (r r\ rl, p þ r) rþLþ r) : 2 6 (x r - xz) 6 
" 

p ú" ( r. )

,þ o(r t) rþ p ("r) rþ, (, 
") 

+ú, (" 
") 

rl, p þr) rþ, ( t r ) - O .
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These relations can easily be shown to imply (l.l). In addition the hermitian con-

jugate of the first of the equations, when written in the momentum representation,

yields

aiø¡ai * oia¡ai - 26t^al *26¡,¡øi . (1.8)

When this is applied to the vacuum state, (1.6) implies that P = 2.

Consider now an arbitrary state

øi,oir. ..o1" l) (1.e)

(l.lo)

in order 2 paraquantization. The hermitian conjugate of the third equation of

(1.7), when written in the momentum representation, is

øiaiai^ - ¡øiøiøi .

When this is applied to (1.9) one concludes that there are two different species of

particles in the state (1.9) which are fermions or bosons (depending on whether

parafermi or parabose relations are under çonsideration) amongst themselves. The

particles with momentum frr, fr., . . . belong to one species and those with ft2, k¿r. . .

belong to the other. Unfortunately the above interpretation of paraquantization

does not extend to higher order quantizations. In these cases the relations cor-

responding to (1.7) become quite complicated [39] thus precluding such a simple

interpretation. This is part of the motivation for modular quantization, whose

commutation relations are an obvious generalization of (1.7). We now examine

this quantization.
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2. Baeics of modular ffeld theorY

2.1. Introdnction

The basic commutation relations we shall adopt for modular quantization of order

m are

ú,(r t) úþ(rù rþt ( 

"r ) 
+ th þs) tþ-p(nz) rþ 

"(r t)

: 6(xr - xz)6opú"(r.) * 6(x2 - xs)6htþo("t)

,þL,þt)úrr(rr) . . .rþo^*r(r^+r) t úo, (tr) . . .úo^*,(r^+t)rþ."(rr)rþ1, ("t )

- 6(xr - xz)6.,ro."úor(r"¡ . . . rþo^*r(r-+r )

ú o,(x ¡) . . . r1, o^*,(r,n+ r) L ú o^+ r(rrn+ r)ú ". 
(rr¡ . . . ú o^(r^)ú o,(tt ) - o .

(2.1)

Apart from a factor of t/î it is clear that the commutation relations for modular

quantization of order two are identical with those for paraquantization of the same

order (equations (1.7)). For the case m: l, (2.1) reduces to the usualfermi and

bose commutation relations with the first equation then being redundant. It is

also clear that the third equation of (2.1) implies that

. ol,^el^*, = Tøl-+, aI" . . .al,^oi, (2.2)

which shows that modular quantization provides a generalization of the two species

interpretation of paraquantization of order two and we rriay interpret modular

quantization of order 7n as describing m different species of particles which are

fermions or bosons amongst themselves.

Another way of introducing modular quantization (and the way initially cho-

sen by Green [ZZ]) is to introduce a unitary operator u satisfying

al.,ol,

LL^:L

and then define a superscript on the r/"(r) via

V,f)(r) -u-túo(n)ut

The commutation relations are then assumed to take the form

E"G) (xt),,tf\ {r") * rþt*t, (rùrþLt*') (r,) - ó(*, - x2)6..p6"

,þ9) þr)+f) {r") * út-', (rù,þf*') (", ) - o .

(2.3)

(2.4)
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It is quite straightforward to show that (2.5) implies (2.1)- by simple substitution

and use of the relations (2.5). As was pointed out by Green [27], one of the

advantages of this formalism is the possibility of defining a time-ordering in a

simple way. Thus, for example, the time-ordering of ,þLþr\rþp(rr) would be

T (úL@')úp("")) - rþLþt)'þp(rz\ tt ) tz

- +{,t) (ør)ii(r)(',¡ t2 ) t¡ (2.6)

= à (+;@,)úp(,,) + út) þù,þLQ\1"' )) tt = tz .

The question of whether (2.5) is implied by (2.1) is quite difficult and not yet fully

resolved. We consider now several aspects of it:

The first clue to an approach that might be followed is provided by an ansatz

solution to (2.5). This is obtained through the following non-singular linear trans-

formation of the ,t9\ þ),
, ¡n-L

ogtþ)=h\n-,'*,f)(,) , (2.7)

where 4 is the m'th primitive root of unity. When the inverse of this transforma-

tion is taken one is able to show that

o9þ) .(')úo
,i3

,ñ ?_-
(2.8)

In addition one can use (2.7) and (2.5) to derive the following relations for the

df)1'¡ 
'

oP þ)öt) ("r) + q'-" öt) þùö9)(,' ) - 0 (2'eø)

6;tù þ)öf;) @r) + rt'-'ót\ 1rr¡6*t) (r,) - 6,.p6(x¡ -*r)6'" (2.eb)

"-, ö9) @)u, - tt" 6f;) @) . (z.oc)

The first two equations of (2.8) define a colour algebra: The grading group is Zrn@

Z,^(@22\, (the Z2 summand being added when we consider the fermi modular

quantization) with the gradings of the algebra being assigned as follows:

øf)(") __+ (r, l, t)

6"G)þ) - 
(-r, -1, l) (2.10)

ó(*t -*r) - 
(o,o,o) ,
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while the commutation factor is given by

e(a, þ) - tf(o,P) (-l¡o'ø'

r(d,p) - arþz - dzþt ,

(2.11)

(2.r2)

where eL¡d2 and a3 are the projections of a onto the subgroups Z^rZ^ and Z2

of the grading group.

It is instructive to compare the relations (2.8) and (2.9) with those of (1.5) and

(1.4). Obviously there is an anaiogy between the para and modular quantizations

in that each has an ansatz solution with the component fields of the ansatz being,

in both cases, elements of a colour algebra. Clearly because of the invertible nature

of the transformation (2.7) the ansatz solution provides a complete solution to the

relations (2.5). Whether the ansatz provides a complete solution to (2.1) in the

case of Fock representations (as it does for (t.t) in the para case) is an open

question. A partial answer is provided in the next subsection.

2.2. Fock representations and the rnodular ansat¡

We shall confine our attention, for the present, to fermi modular quantization as

the bose case appears somewhat more difficult. An outline of these difficulties and

a c.omparison with the fermi case may be found at the end of this subsection.

A further complication arises when the possibility of anti-particles is consid-

ered. In this subsection and the next we shall assume a non-relativistic theory in

the sense that the spaiial wavefunction consists only of creation or annihilation

operators. The relativistic complications are discussed in subsection2.4 below.

In addition, for convenience we shall, for the rest of this section, work with

the discrete momentum representation of the modular fields. In particular we

shall consider the modular rùng A to be finite linear combinations of monomials

in the elements G¡ and o[; these latter elernents will be assurned to satisfy the

momentum analogs of (2.1):

ø¡øia¡ * a¿aia¡ : 6irq * 6¡¿a¡

olrorrøkr .. . dk,n*t i øh . . . ø,k,o+tah"alrr: Íkrkro,lcr '. .ale,o+t (2.13)

Ctrkto,kz .., ak^ø,c-+, * dß-+, dlcz.'. 0'¡^a¡, : O .
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Likewise we shall consider the modular ansatz ring B to be flnite linear combi-

nations of products of Df;) and Ai('); with these latter elements satisfying the

discrete momentum analogs of (2.9):

oj.'lo["] * q"-e6b)oj:) - o

¿*.(')¿(") * 7'-r¿(r)6*.(r) - 6¡116," (2.14\

u-r6k\ u, - ,f 'bt:) .

The ansatz solution ring A' C I witl be the subring generated by oI and øjl

which are given by

(")
(2. r 5)t

Finalty we shaìl consider, as usual, a Fock representation of, for instance, I to

be a homomorphic mapping h of A into the ring of operators on a Hilbert space.

This space shall possess a unique aacuurn state which satisfies the usual relation

h(o¡)l) : O. I\{oreover this state shall be cyclic with respect to the representation.

In otherwords å,(l)l) shall be dense in the Hilbert space. We call the Hilbert space

the ,Focfr-space and denote it symbolically by î(A).

As a partial solution to the problem posed at the end of the last subsection

we have

Theorem 2.1. It a Foc* represenúation of úùe modular ring f satisfes*

Grcr...o,k^@;^...o;rl):6rr¡i...6r"r;l), (2.16)

for aLl n 1 m, then it is irreducible and unìtarily equiualent to the Fock represen-

tation of the ansatz soluúion ring A' .

Proof: We begin the proof with the following technical Lemma:

Lemma 2.2. If þ = o|,ol,. . .ai,l) for r 1m then a¡aiQ - 6¡rÖ.

Proof: For r - m- I the result is immediate due to the second equation of (2.13).

For r 1 m - 1 consider firstly the case o1 i - ¡. The first equation of (2.13)

shows that

ørta¡ø.¡Ö-ajÖ- (2-17)

* for notational ease we write ø¡ for h(o¡) and so on
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If we take the scalar product of both sides of this equation with the state ø*¡Ö, we

obtain

11o¡o"¡ôll'-lla.¡öll2 -(ö,a¡ø.¡ö). (2.1s)

Now if we assume that the vacuum state is normalized then we may use (2.16) to

conclude that for r < m - l, which we are assuming,

¡1"]óll2 - (l), ak,...a¡,ø¡ø*¡a;..'.o[,l)) : r .

In an identical manner we deduce that ll/ll'?- l. Now from (2.18) we conclude

that

t : l(d, a¡o]ó)l - lldll 1lø¡a.¡óll ,

and hence the Cauchy-schrvartz inequality demonstrates that

a¡o.¡Ó-aþ ae C -

But (2.1S) then shows that

r: (ö,ø¡ajó): alldl12 = a

and so we have demonstrated the case j - lc. For i + k we have from the first of

(2.13) that

a.¡a¡ai * aiø¡a¡\ - øi .

We now apply this equation to the state / and take the inner product of the

resulting state with a[{ obtaining

ll"¡oiëll' + þ¡a|ó,øka|ö): (ö,o,haió) ,

and using the results derived above, we immediately have

llø¡øi$ll2-s + ø¡ai$-s. r

Consider now a state of the form

ó= o"t\...oifaï,i. .o.nf ..."i:...oirl) i > I . (2.19)

This is an arbitrary product of creation operators applied to the vâcuuln. We

shall say that particles with momentum ftf belong to cløss j. Notice that this

is consistent with our interpretation of modular particles given previously. This

interpretation is given further weight by the following:
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Lemma 2.8. The state þ will have norm 1 if znd only ìf all the kt" for the class

j are dífferent; otherwise it vanishes. .Ft¡rtåermore a state St will be orthogonal

to S íf and only if iú possesses a particle in any class i wíth momenüum different

to any of the k! for Q; otherwise þ' - +Ö.

Proof: If any of the Ëj are the same, the vanishing of / follows immediately from

the first equation of (2.13).

Now consider the state

n -at?at?-'...atl ...øl7l ...ctrIit

.oll ...oiroii...oË;l) ; 
(2'20)

we can move the ø¡, to the rìght by use of the second of (2.13). After repeated

use of this identity and finally with the use of Lemma 2.2 we obtain

" - !(-1)î'+1 6lrt ¡aty . .. ar;+rø*o'+, . . . a*o;-sl; ø
o=1

. o.h .. . oll-'oil_,oll*, . . .oil*,

oi:;l oii*,'i;ll '''oir l)

Norv if Il : llr, Yi,t, then it is clear that

lldll' : (l), o) ,

what is more, if all the momenta in class i are different only the first term in

(2.21) will survive. This argument can be continued iteratively until we conclucle

that if alt the momenta are different in all the classes then n - l); the final step in

the argument follows from the equation (2.16). The frrst part of the lemma now

follows trivially.

For the second part, if the state d' has more particles than { then either it

will vanish or at least one of the momenta in one of the classes will be different to

all the momenta in the sane class in d. Io any case repeated use of the second

equation of (2.13) will, a la (2.21), eventually show that (d"d) : o. We need

thus only consider {' with the same number of particles. In this case we have

(ó',ó) - (l),n). Now in the class t tf Ii+ frj, Vs then this will be zero by (2.21).

rÈ

k;+'

(2.2r)
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In (2.21) we may interchange, using the first of (2.13), the o¡, with ø¡i with only

a change of sign to r and so we conclude that if any of the li f ki, Vs then the

inner product vanishes. Thus our result holds for the class i. To extend to the

other classes is simply a matter of continuing the reduction began in (2.21) and

this is, in principle, straightforward. I
The following result is quite important, not only to the proof but also to

arguments used later in the chapter.

Leurrna 2.4. There exists a subseü of states in O - {oi, . . .al^l)} wàicå provides

a complete basis for î(A).

Proof: Consider z e A to be an arbitrary product of creation and annihilation

elements, then ä(z)l) -ry be rewritten, with the aid of Lemma 2.2 and the second

oI (2.13), as h(r')ll where z' is a linear combination o1. onlg creation elements.*

It is thus clear that t(/)l) - ,z(r)l) where D c A is the ring of finite linear

combinations of proclucts of creation elements. Further Lemma 2.3 sholvs in an

obvious way how an orthonormal basis for å,(D)l) may be constructed from among

the elements of O. Now since tr.(l)l) is dense in î(A) so is å(D)l) and thus from

a standard result [at], the above basis is complete tor 1(A). I
Denoting this basis by ,Íl), with uö = l, ai eD, it follows, again from [+1],

that any ö e f U) can be rvritten as

d: aduil) . @.22)

Consider now an operator V which .olrrrnu,., with å(l). Clearly

Vó--f a¡uilzl) ; (2.23)
i

but from the definition of the vacuum we have

o -Vørl) - orVl) Vfr ; (2.24)

now Vl) must be expressible in terms of the basis uil)

Vll=fÉrr,îl) .

t

The same thing is possible in paraquantization, see [+0]
*
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Now from the proof of Lemma 2.3 it is clear that øÊuÍ l) = 0 unless the last created

particle in ujl) or orie belonging to the same class, has momentum /c. In this case

a little consideration of Lemma 2.3 will show that oßu; l) - +ril) for some i and

for every different ui there is a different ui. Hence, applying a suitable ofr on

the left to (2.25) leads, when (2.24) is used, to the conclusion that B; : 0 for

all r except 0. Thus we have shown that l/l) - ol) a€.C and hence by (2.23)

that V is a multiple of the identity. Schur's lemma [42] then shows that the Fock

representation of I is irreducible.

We norv shorv that all operators in the Fock representation of I are bounded:

We begin by proving this result for ø¡. Consider an arbitrary

ø = Da¡uil) ,

now as we have seen above a¡rall) - +ü;l) or 0 (with a unique i for every r).

Thus we have

llordll = la;12.P(r)

where P(d) - 0, l. However

ilcll - lo;1"

and so ll"*óll < lldll. This means that lla¡ll ( 1, and in fact equality holds as can

be seen from the following:

lloo(oll))ll - lll)ll : I = ll"[l)ll .

Fbom [+a] we now have lloill : 1, and now consider an arbitrary finite linear

combination of monomials in ø¡ and a[:

,: D f"ir"ir...ci^ i ci¡ - ainrøT* .

i,r

Now by the use of results from [+4] we have

llrll - llD¡,, 'ti ci,.. .c¡; ll

< tlf lll.ri'..c¡;ll

s Ð lf lll.,;ll . . . ll.,; ll

- f lr'l
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which is finite because the summation is finite, and so we are done.

Consider an arbitrary vacuum expectation value (l), "l)) of an element u €. A.

This may be rewritten with the aid of Lemma 2.4 as

(tl,Dnt',;l)) ,TO (2.26)

Thus what we have shown is that once (2.16) is specified for the Fock representation

of I then alt all V.E.V.s are determined. It now follows from [45], using the fact

that l) is cyclic, that ll) is determined up to equivalence.

Consider now a Fock representation of the modular ansatz ring I with vac-

uum state l)'. Within I is the ansatz solution ring l' and one can consider

the subspace of h(B)D' generated by applying h(A') to l)'. The closure of this

subspace, which lies within 7(A) bV [+O], is complete again by [Ae]. Letting h(A')

act on this space it is clear from the deflnitions given earlier that we have defined

a Fock representation of the relations (Z.tS). To show that this representation is

equivalent to the one discussed above, it remains simply to show that

a|r... oL^o'Ä...o';rl)' : ô¡,rr, ... 6r^i^l)' Y n 3 m (2.27)

Consider the left hand side of this equation: By use of the momentum analogs of

equation (2.5) we can shift the operator a'r^ to the right until it is applied to the

vacuum. We obtain

L.H.S. :6kninal, .. . oL^-ro'l^-, . . . o;il)'

+ (-l)* øL, . . .aL^-,ø1*(-r) . . . a'!,(-L) o*1"-') l)' 
Q'28)

The second term in (2.28) is zero because of the Fock vacuum condition for the

representation of 8. We can then reapply the argument above to the frrst term

obtaining

L.H.s. : 6kni^6kn-,,i^-roLr...oL^-"o'l^-r...o'irl)' (2.29)

Obviously this argurnent may be extended until rve obtain the desired result. The

proof of Theorem 2.1 is now complete. I

To cornplete this subsection we make a few conments concerning the bose-like

modular quantization:
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It appears difficutt to generalize Theorem 2.2 to this case. The basic problem

stems from the proof of Lemma 2.2 which does not generalize because it uses the

relation (2.17) in an essential way. There is no completely analogous relation in

the bose ca,se, as can be seen by setting k - I: m in the relation

a¡al ørn - ørnata¡ -- 6uar'. - 61^ah ,

which is satisfied by the bose ring. It is possible that in this case further relations

apart from simply (2.16) are needed to tie down the Fock representations to the

ones given by the ansatz solution.

A further difficult arises because the proof of the uniqueness of the repre-

sentation specified by equation (2.16) depends, in the fermi case, on a technical

result [+5] which applies only in the case of bounded operators. This appears to

pose problems in the bose case where the operators are unbounded.. However

given the fact that there exist general theorems (see [+7]) reconstructing boson

field theories from their V.E.Vs, this difficulty is not likely to be insummountable.

2.3. Uniqu€ness of modular ongatc

We now consider the question as to whether Fock representations of (2.13)

other than that specified by the condition (2.16) are possible. We shall show that

if they are given by an ansatz, such as (2.15), then the ãnswer is negative. This

result is significant because, as we shall see in section 4 below, the ansatz enables

one to compare the theory with a normal theory of fermions.

We shall make a number of assumptions concerning the possible ansatz solu-

tions. Firstty the solution will be given by the equation

b
(') (2.30)i

Secondly the ójl) will be assumed to satisfy the algebraic relations

6(¡)¿(t) * e(r,t¡af)oj.') _ o
(2.31)

6*.(')6(t) *e(F,t)öf;)6.(') - 6¡*6,t ,

with e being an arbitrary non-zero map into the complex numbers. Notice that

this algebra is more general than a colour algebra. Finally we shall assume that

_ il-ll-
"i-ãà
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the ring B, generated by öj.') and ö;.(') has a Fock representation. These three

assumptions appear to this author to be minimum requirements if a theory is to

be compared with a normal bose or fermi theory.

Consider now equation (2.13) with the momentum ¡j all distinct. Substitution

of (2.30) into this equation gives

ff-rt DI b
(") öj.';1') + ötii') uY'\ .. öt3)oÍl')] - o .

JV.tr+
J

f ¡ ¡...rt'a11:0

with the repeated use of the frrst equation of (2.31) this becomes

I

D[ru:'€(r-+r,',) flË,e(r¡,11) -r]a("1 '''tj'';1') -o '

Now consider î(B') and the following inner product:

(r;l?,.', . . . ö;,(.') I), ö;:?,*') . . . a;j") tl)

- (l),öÍ:') ...öii1')ö;:'i,*') . . ö;j")l))

where we have used the distinctness of the ¡¿, and the second equation of (2.31).

The non-zero nature of e implies that the state 4..('-+') . . . b;j") l) is non-zero and

orthogonal to ö;.Î,+r) . . .6*{tr)l) if this state is different. As a consequence of these

considerations we deduce that all of the öÍ:') . . .öÍ.i1') are linearly independent

and hence that

m*l

fl .-'(l,rr)6,¡, ,

l=1

tft tfl

I=1 l=2
fl .(r-*,, t,) fl e (r¡, 11) - I (2.32)

If weset r,:r for 2 < t< m in thisequation wecan deduce that

e(rrn+t, rr)e--t (r-+r ,r)r^-' (r, 11) - I . (2.33)

Further, if we set tL : tm+t = t and note that the first of (2.31) implies that

e(r, ú) = €-r (t, r), we may deduce that

e(t, t) - 1

and as a consequence (bj.(') )' - o
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Now by the use of the second of (2.13) with all the'¡.' distinct except ù = ip

for33p<m*l,weobtain

fl-t
*(rr)
i,

f ¡ ,...1f 6a¡ 1=O

Repeated use of the second of (2.31) now leads to

Ð [(t - ru:;' e(n, rr) IIíit' e(r,,,¡)) öii') . ..öi'';1') 6Ç')6"'k.)

p-t
+ (-r¡r 

-fl 
.(n, ,o)b\i"). .. ajll;')rj;ï') ...ój.'^î1.)] - o .

q=2

If we take the hermitean conjugate of this equation and introduce an obvious

abbreviation we obtain

D [t,tt t . . . t r,n* L) öj'" ) 61{" ) ó;':T,-' ) . . . ö;j" )

* u(r1,. .. tr,.-.L)ó;jT,*') . .. ö;"(iî') b;:?;'). . . ulj")] - o

In 7(B') we apply this operator to the state ö;l')l) obtaining

Ð t(r, Í2t.. .¡rn*L)k(rr, . . ¡ f'.,. L) ¿r*r(" ) ¿r*,(" ) . . . ¿;.1'f.*' ) 
l)

. trn*t)b;:,,) . . . b;:::,-,) o-,1 ö;"1",.') (2.35)

"...a;j'g')l) ,

¡p#u

+ D ü(rr, . .. tÍn*t)l(r",

where k,l + 0 and we have used (tl.{')¡z _ 0, together with the sec-

ond of (2.31) applied to the vacuum. Flom the comments made above,

the states b;:")...ö;.:'i,.']l) in the firct sum of (2.35), together with the

6*!'").. .r;"(') ...ö;.:'J,*')¡¡ t orn the second sum, are all non-zero and orthogonal.

This leads to the conclusion that ú : iL :0 or more explicitly to the equations

t b bYù ...öÍi1') + DÍ:") .. .Dj.Ï1')6(.")¿".(")) - o .(

m*1

II
l=2

e(n,r¡) fl .(tr,r¡) :1
m+1

l=3
IV-r p-l

rt=O q-2

(2.36)

t f[e(1,r0) -0.
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If we set r¡ - 12 for I 2 2 in (2.36) and use (2.34) we obtain

e^(7,ú) : t . (2.38)

A further equation may now be obtained from (2.36) by setting fi: Í for I ) 3

and using (2.38):

e(s,t) = e(S,r)e(f, r) . (2.39)

Upon consideration of the second of (2.31) with r: ú we are led, after taking the

hermitean conjugate, to the conclusion that (e(7, r))* : e(r, r). When (2.38) is

considered this implies that

e(r, r) : *1 ' (2'40)

Suppose, for arguments sake, that e(I,t) - -t for some ú. Now in 7(Bt) we have,

from the second of (2.31), that

ojl)a;{tll) =.(¿,r)6¡rl) --ó¡*l) . e.4r)

Next consider the v.E.v. (l),óf)ö;(t)ö(t)ö;(')l)) lor j I k. By (r.ar) This has

value *1, however it also equals

(l), +e(t, t)e(t, t)öj!) öf)¿i{t) ó:(') l))

-1),öjl)af)6;{ttö;.(¿)l)) (using (2.84))

- ll a;ttl6.'(t)¡¡ ¡¡z

which certainly cannot equal *1 and so we conclude that

e(7, r) - +l Vr (2.42)

From (2.39) we now conclude that

e(s, ú) - e(ú, s) , (2.43)

and we may thus restrict our attention to the e(5, t). If we set îq : I for g ) 2

in (2.37) then we obtain the useful equation

N-r
Ð."(ir,r) -o 1(z1m-l
rl:O
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Now if we let n: I and note that (2.38) implies that all the e(1,r) must be

powers of 4, the m'th primitive root of unity, we can conclude that

î,q,rt'-o (2'4b)
l=0

where g¡ is the number of occurrences of 4l amongst e(n, r) for r fixed. In general

we have
m-l

fa,(2")r=o l(n1m-r. (2.46)

l=0

Now, up to a factor of proportionality, there is only one (m - l) 'th degree polyno-

mial which has ¿ll the roots of unity (apart from l) as its roots, namely Dþ-ot "' 
.

We therefore conclude that the qr in (2.45) and (2.36) are all equal to some integer

which we call g.

From the above considerations we deduce that amongst the iV values that

the arguments of € can take on, there must be exactly g sets of m values. These

we denote by l¡ with ú - 0r...r9- 1, and i : Lr...tfr. By an elementary

reordering, they satisfy the equation

e(ls,ri)-qi-t. (2-47)

If (2.43) is now substituted into (2.39) we may generalize this to

e(n, ri ) 
I ::ä':,rl!JÌr,
:4r-i , (2.4g)

where we have taken the hermitean conjugate of the second equation of (2.31) to

deduce the second step. Finally we form the new algebraic elements

D,}
(.! )
t

i-1) :-äÐ^,

:iåö(':, -#E,r''

(2.4e)

(2.50)

By the use of (2.48) and (2.18) it is now straightforward to show that these new ele-

ments satisfy the same equations as the first two ansatz equations (2.Ia); moreover

we have

CTi
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which is identical to (2.15). As far as the last equation of (2.14) is concerned, it is

shown in Appendix B that such a u always exists on a colour algebra satisfying

the first two equations of (2.14).

The demonstration of the non-existence of other ansatz-like solutions of the

fermi modular relations generalizes in an obvious way to the bose case (only the

argument following equation (2.40) needs any significant modification).

We have not, as yet, considered the existence or otherwise of the Fock repre-

sentation of (2.13) satisfying (2.16). This question is addressed in Appendix B in

the context of the Klein transformation.

2.4. The relativigtie caee

We come now to the important consideration of a relativistic theory. In this case

one would expect, as with the usual relativistic theory, that modular fields would

be made up of two parts corresponding to positive and negative frequecies. Thus

for example, one would write the free spinor modular freld as [ S]

,þ(r) : I:
'/v

D {rttt'* -B'o) D?=rut (k)at (})
(2.51)

* 
"i(k.x*ø"") Dt. u¿ (k)c¿* (-k)i

where the ¿t (L) are the usual Dirac spin components, V is the volume appropriate

to the spatial fields, and the operators øt(k) and r¿*(k) are to be interpreted as

particle annihilation and anti-particle creation operators respectively.

In order that the relations (2.1) be satisfied by our relativistic spatial field, the

relations (2.13) which apply in the non-relativistic case, need to be extended to deal

with anti-particle operators. This may be achieved by following the prescription

that a creation operator ø[ in (2.13) may be replaced by an annihilation operator

c¡ç prouiilíng that Kronecker deltas involving the momentum labels of particles

and anti-particles are removed. In otherwords the c,c acts algebraically like o[

except with an extra degee of freedom corresponding to its status as an anti-

particle operator. Similar comments apply for exchanging o¡ with c[. With this

prescription the first equation of (2.13) expands to include the following extra

L
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equations:

c"¡c¡ci t ci c¡c.¡ - 6uc*¡ t 6¡rci

cr:aici t ci aic", - g

c 
11 

aio¡ * a¡aic.¡ - 6uc'i

clc¡a¡ I a¡c¡"c*¡ - 6¡rat

øickøI+øtchr'i=O.

(2.52)

Similar extensions occur for the other two equations. It is interesting to note

that when m ) 3 these extended equations are non-trivial in the sense that one

cannot just consider the anti-particle to be an ordinary particle with an "anti-

particle" label. To see this, we observe that the second equation of (2.52) has

no counterpart involving just particle operators (except, of course, when m = 2).

This non-trivial property distinguishes modular field theory from parafield theory

where it rs possible to consider anti-particles as simply ordinary particles with an

anti-particle label (see [a9]).

The extension of Theorem 2.1 to the relativistic case will present problems

when there is a non-trivial extension of the relations (2.13) (the trivial extension

in parafield theory can be easily dealt with by introducing an anti-particle label

into the condition (2.16)). We simply remark that in the fermi modular case

the relations satisfied by the anti-particle operators are identical in form to the

relations (2.13). As a result, if we impose the condition (2.16) on anti-particle

operators then the proof that the usual ansatz solution is implied by this condition

witl go through in an identical manner. This shows that the ansatz solution for

anti-particles is the same as that for particles. The remaining problem concerns

the commutation relations between particle and anti-paticle ansatz operators. It

is not clear whether relations such as (2.52) are sufficient to determine these or

whether further conditions such as (2.16) need to be imposed for mixtures of

particle and anti-particle operators. We leave this question unresolved and merely

demonstrate how a solution to the basic relativistic commutation relations of (2.1)

may be constructed.

We begin by extending the modular ansatz ring I to include the elements

7l



rf) uod ei(") *O'.h we assume to satisfy the relations

"f) rf\ * ¡¡r-e 
"Q)rjI) - o

e\þ\ eþ) + q'-, rk) e1þ) - 6¡*6,,

u-'"tJ\ u' - q-" ¿f;\

amongst themselves and also the relations

6Çl 
";1") 

L r¡r-a 
"*(e)öj,') - o

61k) ,*(") L qo-r ,*(c)6*(') - g

(2.53)

(2.54)

with the original elements oI B . We now define an ansatz for the anti-particle

operator c!.:

(2.55)

As in equation (2.a) we may also detine

"'j') = tt-'ct ,L'

o'j') = u-'o''¡trr

With these defrnitions and the equations (2.14), (2.15) and (2.53)-(2.55) we

can derive the equations

.,.(').(') + ctu('+t) c,j,-t¡ _ st!(,)o!l(") * of,('+t) otlt-t) - g

,t:(,) rr(ù + c,f '-r) "1t-r) 
_ o,;,)af,(') * ot;G-r) ot{r-t) : 6t,i6,, (2.57)

,,!,) ot"(') + of,(,+t) c'j,-r¡ - ¿'!G) a';G) * ot;G-r) /1t-r\ _ e .

Substitution of the expressions (2.15) and the hermitian conjugate of (2.55) into

(2.51)* gives us our relativistic modular field. When the relations (2.57) are taken

into account it is easily shown by the usual methods [+8], that the fields so con-

siructed satisfy (2.5) and hence (2.1). Moreover it is relatively easy to also see

that equations (2.57) imply the extended relations such as (2.52).

Finally we come to the question of the existence of Fock representations of

the relations (2.1). Clearly if we can show the existence of Fock representations of

(2.14), (2.53) and (2.5a) then this question will be resolved. This latter problem

is solved in Appendix B where the Klein transformation again plays a central role.

* With an appropriate addition of a spin index.

"'i hE"v,

(2.56)
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3. Obsen¡ables

3.1. Locality constraints

In ordinary field theory the consideration of what constitutes an observable is far

from resolved. As a consequence of this, we shall follow the approach used by

Ohnuki and Kamefuchi [29] to consider the analogous problem in parafield theory.

This involves using locality conditions to restrict the possible algebraic form of

observables.

The essential feature of this approach is that observables are defined in local

regions of space. This is achieved as follows: Let g be a function of the fields

,þ(rt),rþ(rr),...,rþ*(yr),rþ*(yr),... and hv a function of 11 ¡t2t...tyt,92t...
which vanishes if any of it arguments lie spatially outside the region I/. An

obseraable F(V\ for the region V is now defrned to be of the form

F(v) -- hv s(ú(r t), rþ (rr), . . ., rþ" (v r), ú* (vr), . . .)dr, drz . . . dvúvzI "r""" (3.1)

with ø1 tÍ2t--.tgt¡!2,... having the same time component. In practice we shall

possibly require derivatives of the fields in our observables. The complications

introduced by this generalization are discussed at the end of this section.

A frrst requirement of our theory is that measurement of two observables

defined at equal times in non-connected regions should be independent. This is

simply au expression of the principle of causality and can be achieved through the

following equal time equation

[r(y),F'(Ir')]_-o V-V" (3.2)

where V - Vt means that V and V' are disjoint. We shall refer to (3.2) as a

condition of weak locality.

A stronger condition than (3.2) is the equal time relation

[r(Y),91r¡¡--o tøv, (3.3)

where ,Î.,þ) - r/(ø) or ,þ.("). This relation ensures that measurement of F(V) is

unaffected by the existence of particles in regions which cannot have any causal in-

fluence* on V. Condition (3.3) shall be referred to as súrong localíty. It is fairly

See [29] p88 for a more detailed dicussion on this point.*
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clear that (a.a) impties (3.2), however, as we shall see below, the converse is cer-

tainly not true.

We turn now to the particular case of modular quantization. We make the

assumption here that the modular fields satisfy the conditions (2.3)-(2.5). In

otherwords, we are considering the ansatz solution of the relations (2.1). We

also restrict our attention here to the fermi modular quantization. These two

assumptions will remain for the rest of this chapter.

It is fairly easy to construct observables from modular fields which obey weak

locality. An example is

F(v): hv (r, v\ú. (y)rþ(r)dxdy . (3.4)

Relations (2.5) easily confirm that [F(V),F'(y')]- - 0 for V -V'. In general

however, these observables do not satisfy the condition of strong locality*. In order

to consider the form of observables which are strongly local it proves convenient

to allow them to be constructed from the ansatz flelds ¿.(')(ø) and /(')(z), or

equivalently, by (2.7), from the fields t¡t*(')þ) and r/(')(z). The following result

now holds:

Theorem 3.1. Obseru¿bles tr'(V) consúructed from the ansatz fields obey strong

locality if and only if
(i) Theyarefunctionsof 6.t)1n¡6(t)(y), ¿(.')(r¡¡...4(re)þ) anditshermitean

conjugate; where Q: m for m even and g:2m for m odd.

(ii) u-t F(v)u - r(Y) .

Proof: We firstly demonstrate the sufficiency of the two conditions: Using a Taylor

series expansion of g in (3.1), we may rewrite it, with the aid of (2.5) and a change

of variables, as:

g(ttr-..rgr¡.-.) Ð cr,-(ri, r¡,t¡,y)rþ(") ("t) . . .rþ(")1ø,¡r¿.(t') 1ot¡
l,n,r;,t ¡

...rþ*(r^)(y,) . (8.5)

* For m : 2 candidates may be constructed- see [ZO]. For m ) 2 see Theorem

3.4 below.
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Now if we take r/(z) with z eV, we obtain after repeated use of (2.5)

,þ(")F(q -- I hv D c,oqtt'+r) ("r) ...9(rr+t) þr\rþ*(',*t)(yr)
Irnrr¡ rt ¡

ry'*(¿" +r)(y")ú(,-") (")(-t)"+, d", . . .dyr. . .(8.6)

Bytheuseof condition (i) wehavethat n-I:0 mod m and n*l:0 mod 2.

It follows now from (2.4) and (3.6) that

{(z)F(v) - u-t F(v)"rþ(")

- F(v),þ(z) ,

when (ii) is used.

To demonstrate neccessity we firstly rewrite (3.5) with the aid oÍ (2.7):

9(xt,. ..tut¡. ..) - I dto(r;,x;,t¡,yìö(")(tt) .. .¿("')(rr)/.(t')1rr¡
l rnrr; rt ¡

...d*(¿,)(y,) . (B.Z)

Secondly we regroup terms in this sum as follows:

F$t= D
x-v=c
tnod m

D D dn(r¿,x;,t¡,yìô(")(r') ... 4(n)(r¿)

.p*(tr)(yr) . ..C*(t")(yo) (B.B)

with r = Ðl:, ú¡ and g = Di=r r;. We now have the following commutation

relations:

6tb)þ)hvF[c\ -rú+c(-l)'nvr[!6{b)@). (B.e)

Since

F(v): Iorfr[;ta"t...dyt... , (8.10)
J 

"ro,,
strong locality therefore demands that

f
I a*ayn, Ð tt - ,øb+c (-l)tlrof ) qQ) 1z¡ - o , (B.ll)
J b,c,q,t

rvhere dx - d,rtdrz ... and dy - dyfilz . ... Let W be a region of space contain-

ing z but not intersecting V. Define the following operator:

u(W) = erp(A)

with
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.d,: * I ,*t'l [fL;L 16*1'¡(r){(')1"¡] a" (3.r2)

and

x*þ):l r€W

-o ,êw

This operator will be unitary since á is evidently anti-hermitean. One of the

Baker-Campbell-Hausdorff identities [50] is:

etp(-A)þ ezp(A) = enP(-ad¡)Ô
(3.13)

where erp(-ød'¡)þ = | - lA,Öl- + hll,l'E,dl-l-

Now

lt,6@þ)l-: #ll xwþ)Ði=å rg*G)(ø)t'(') þ))dx, d(ó)(z)]

: tu [ **('). - 6(, - )b6jD þ)d,r
J

_ -iffþxw(z)öþ\ þ) .

Therefore (3.13) allows us to conclude that

The operator u(W) might t'e considered to be a "local" Klein operator. If (3.11)

is premultiplied by u-'(W ) and post-multiplied by u'(W) we obtain

u-L qw¡q(t) 1z1u(w) - erp(#x*þ))ö(') (r)

qbx*k) 6(u) þ) .

úr.dyhy Ð ,"lr - 4tu+"(-l)'1/')4(0t (a) - 0

(3.14)

(3.15)

(3.r6)

(3.17)

I brcrqrt

If rve multiply this by n-o', sum over r and use the lollowing

¡n-l

Ð r-o', ¡b
m-l

Ð
r=0

,r(b-d) - m6u¿ ,

r=0

then we can conclude that

I dx.ayhy Itr -rud+c(-l)'lrof) 6@\12¡ -o
C rQrt
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Consider now the operator u(V). By the use of (3.15) and its hermitean conjugate,

together with (3.8) we conclude that

u-t 1v¡rl[) "(v) - ,t" r[? . (3.re)

We can now premultiply (3.18) by u-'(V) and post-multiply by u'(V) and, using

an analogous argutnent to the one developed above, conclude that

I a*avnuÐtt - naa+i(-l)'lr[itqtdt(z) - o. (3.20)

4't

We introduce now a further unitary operator given by

u: etP DL;t ¿.(') 1z;4(,) þ)dx,

w: êîP D$' q-G) qx¡6(,) l'¡dx

I a*a"nuÐ't - rid+;(-r)'14(¡)¿(a)12¡ - o .

i2¡
lfl I (3.21)

When (8.13) is used in conjunction with the commutation relations for {(t)(g) *"

obtain

u-r qQ) (y), - ,ìö('l (y)

and hence, by (3.8),

,-'rjl)u - r¡F'[i) . (3.22\

The argument used twice above, leads then to

Finally rve eiiminate the sum over ú by introducing the unitary operator

(3.23)

(3"24)

which satisfies

,-t 6Gl @). - -ó(r) (y) (8.2s)

and hence

,-,F:l*:(-1)'4Î). (8.26)

Premultiply (3.23) by ,-t and post-multiply by ul; adding the result to (3.23)

then shows that

f
Ja*ayn"[l-z'o*t(-r)']41)ø@)12¡-0. (8"22)
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The above arguments are easily modifiable to the case ry'*(z) instead of r/(a). We

are led then to

(3.28)

The bracketed quantity in (3.27) is the complex conjugate of the corresponding

quantity in (3.28) and so therefore they vanish simultaneously. Suppose they

vanish for all values of d. A little thought will show that this can only occur when

j:i_ s -- 0 (consider d: I and m-l and solve the relevant equations). Thus

unless this situation occurs we may conclude that for some d

I a*avnrl - r-ia-'(-r)'l4jt6*@\ (z) - o .

I a*a"n, pG\ 
6@) þ) - | a*a"n, plt 6.@) þ) - o (3.2e)

Consider now the integral

and so therefore we are led to

I a*0" I o" r:! (d.,0, ()gr4 þ\ + ç(d) þ\ó.@) 121) dz

I o*0" I n"rj!6þ - z')d,z: I *o"hvl,:)

with z' 4V . By (3.29) this is zero, however by (2.9b) it is also

l a*avn nj:, - 0 , (3.30)

whenever í: i_ s - 0 does not apply. Conditions (i) and (iì) now follow from

(3.1), (3.7), (3.s) and (2.ec). I
The question now arises as to the form of strongly local observables which are

solely functions of the modular fields r/(z) and ,þ. (r). This problem is partially

solved in the following theorem:

Theo¡ern 3.2. Let us defrne the following polynomizls of modular frelds:

m-l
M(rrt' -. tî¡n-r,lr,... r!,n-t) : D Ð'þþr"-t) " "'þ('^-t)ú.(yr'-t)

perm(|,...,m-l) l=o

. . .rþ* (yt)rþ("r) . . . ,þ("^-¡-t )(- l)r (3.31)
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B¡v(ør,...,øry) : t (-t¡cvctl|lrþ(rt) ...,ú(rry) (3.32)

cycl(|,...,N)

Cx(rt,...,r,n): t ,þ@t)...ú(t¡v) . (3.33)

An obseruabte F(v) ìs strongty iï'l' ,io,Jl"".rt" s ín (a.r) is a runction or

the folÌowing modular û,eld polynomiats (and úåeir åe¡mitean coniugates): M,

CunCl^, CmCli^ and when km is even' Brrn-

Proo!: Contemplation of Theorem 3.1 shows that it is sufficient to show that the

relevant field polynomials are invariant under ¿. The case of I is considered

firstly:

It is easily seen from (2.3), (2.+) and (2.5) that when lY is even and equal to

/cm then

,þ(x ¡¡)rþ(r, ), . . . rþþ w -t) - -ú(- t) (t, ) . . . ç(-rl þ n -,,¡¿(ri-r) (cry)

- -r¡(-t)(rr) . . . r¿(-t) (rr-r¡g(-1) (ø,v)

and therefore

m-1
B¡r(rtt...trr) : fr D t/t''(rr)'.'t¡'(')(ørv) .

r:0

The form of the right-hand side of this equation now gives the desired result.

The case oI C is proved in a similar way; we content ourselves with a proof

that u-lc¡,.cliu - c., c,th as the proof for the other c polynomial is almost

identical. Now

t ú("') ...rþ(run)ú.(y¡-),... ú(v')
cgcl
cycl

D t ,þþt)...rþ(rt,^)rþ.(vr-) ...rþ.(yt)
cycl(1,...,1m) cgcl(c1,...,ø¡^ )

However by (2.3)-(2.5)

,þ(rr) . . . ú(run)ú- @u^) . .. rþ"(y,) -r¿(t) (ø¡-)r¿(t) (t, ) . . . rþ(t\ (r,, -r)
.g*(t) (yt^_r) . . . t .(t) (y, )ú.(t) (y¡*)

C¡^Cli -
î'.t-.-rllm

9 tr...'9 I ^
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so therefore we have

rn- 1

D I'/r,',("r)...9(')(ø¡-)ú.(')(y,-)...ú.(')(yr)
cgcl(t¡,...,tr-) r=0

which demonstrates the required result.

For the case of M we move the fields ,þ(rr), . . . ,rþ(rrn-r-r ) in equation (3.31)

to the left using equation (2.5) repeatedly. After a straightforward but tedious

calculation we obtain the result:

tn- l rn-q-l h¡ k2 k,I

ÐÐ t DÐ Ðxtor (^-I,m-\x?t)1t,zr)
pertn q-O l=0 tt'¡:Q n2=Q ñq=0

y(-z\(r, + 2,n¡ *nz * l) ...¡(-ø) (t - no - l,t - 2)

¡(-ø-t) (t,* -¡ - I)y(-¡-q-t) (^ - t,ÐYeFs)$ - z,t - no- l) ...

y(-r-,)(n1,1)6f,,.f I6l,:i::Ï3 6j_-i(-l)" (3.34)

where

¡(')(ø, b) = p(') (r") ...9(')(za) , Yt)(o,b): ú.(')(y") ...r¿.(")(yo)
q

t=q+1+ Dn, ; r=(l+t)(q-^+l)+t ; 6r, : 6(r¡ -v¡)
i=1

r-t
k;:m-1-l-Dn¡.

i=l

This may now be rearranged by use of (2.5)

fXt-t-t)(r,rrr)...Xt-'-ø)(ú - ns- !,t - z¡XFt-q-t)(ú,m - 1)

y(-t-a-t)(^ - r,t)...y(-t-')(',,, r)ó;iTi ój_-i(-r¡c---r . (s.as)

By the rearrangement of the summations and by setting nq+t = m - t, we obtain

\tlrn =Ct^
tn-t

f,c1,L

t Ð(-1)' t Ð x'-'-t)(1,nr)...xt-'-q-t)(m-nq+t,m- 1)

pern q=O c+r l:0
I n;=c

y(-t-ø-r) (^ - t,m - nq+L) . . . yt-'-t) 1n1, t)

rnr* I ¡m-nqar- I
unr+L "'urn-no¡r-L )

i:I
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where s stands for m - L - q. Consider terms in this sum with fixed n; with

i = l, .. .te* l. Corresponding to these terms are other terms with their n; being

a cyclic permutation of these flxed values. After an appropriate permutation of

the spatial indices these latter terms become

nj

fx{-t-tl (¡(l) +r,f (i + 1) - l) ...X(-r-r+i-q)@- nq*Ltm- r)
l=0

1çFt-z+i-o)(t, rrr) . . . y(-t-ø-t) (/(i - t) + 1, t(i) - t)
y(-r-a-r) UU) -r,f (j - l) + l) ...r(-¡-r) UU +1) - l,/(i) + l)

6iiii 6i-::i:-i (3 37)

where Í(il = j + ÐÍ=, n; with j : 1,. .. ,Q' This may be rearranged using (2.5)

repeatedly:
¡'L i

fX(-t-t+t(r))(1, r, )X?r-z+t 
(e)) (n 1 * Z,nt + nz * t) . . .

l:0
¡(-t-t-ø+ rUÐ(m - nq+rtn - r)y(-t-t-q+/(t) @ - t,m - nq+r) . . .

y(-t-t+t(r))(nr, t)6i,,Ti 6#_-;;ï;:i (s.s8) .

Now as I goes from 0 to n¡ the index -I - 1 + /U) goes from -l + Í(i) to

ÍU - 1) or when j: I, to 0. In the original unpermuted term the corresponding

index goes from -l to -1 - nq+L :Ú - 1 - q +DÍ:r n; - lk). It is clear now

that this index will cover all values mod m when (3.38) is sumtned over all rtalues

of j and added to the original term. Henc.e this sum will be invariant under u.

A little thought about how the terms in (3.38) are produced will show that all

ternrs in (3.36) may be grouped into such sunìs in a non-ouerlapping way. Hence

u-1Mu- fut. I

3.2. New modular commutation relatione

In the special cases of m :2 and m: 3, the polynomiai M has the form

M(rt, 9r ) : lrþþr)' r/. (Yt )J- (3.3e)

M(rr,Íztlr,!z) : I rþ" (yr)rþ.(yt)r/(tt),þ(rr)
perm(|,2)

- rþ (rr)rþ" (yr) rþ. (yt ) / (tt )

+ ,þ(xt)rþ(r")rþ. (yr)rþ. (Yt ) . (3.40)
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In the case of m : 2 we are dealing with parastatistics of order two and in that

case the strong locality ol M follows directly from the fundamental commutation

relation of paraquantization, namely (l.la). This observation tends to suggest

that a generalization of this fundamental equation may be possible. This turns

out to be the c.ase as the following theorem shows:

Theorem 3.3. The fretd polynomial M given in equation (3.31.) satisfres the

follow ing commuúaúion relaúions.'

m-2

lM,qp¡\- - t Ð(-r)'*'6("- em-t-t)'þ*(v^-t-r) " ''þ-(vr)
perrn(\,...,rn-f) l=0

,þ(rt) . . .rþ(r,n-t)rþ" (y^-t) . . .rþ. (y--¡) (3.41)

m-2

lM,rþ"(r)l- : I Ð(-l)'aþ-, -ç)rþ(r^-,)...,|,(r^-t)
Perrn(|,...,rn-r) l=o

,þ* (y, -t) . . .rþ" (yt)ú(tt ) . . .rþ(r^-t-") (3.42)

Proof: We have frr'stly, the following interesting lemma:

Lemma.

,þ(rt) . . .,þ(rt)ú. (y¡) . . . ú. (yt),

,þ* (y, -r) . . .r1,,. (yt+r)rl,("t+, ) . . . ti (""-r )]

(3.43)
0

Proof: \Ve introduce the abbreviations r/(ø;) : Íi and Ú.(y¡) : y,'. Now by (2.5)

we have

11 . . . ttfi. . .|t!n-t ...A+tr at

- x1 . .. rgf)-t . . sÍ?,vÍ'*')

: e¡n-t"f-tl . ..rÍ-t) yl)-r.

. l¡n-l

Í'*t) ",*, 
. . .tm-! (- t)¿- (3.44)

ryÍr+1) . . . rÍt*t) ït+t. .. E,'.-' (-t¡t('"+t) .

.-g

yÍ?

Now for there to be any fields in the range y!)-r. . . yÍ?r, the index I must be less

than m-2. It follows from (2.5) that we may move yl)-, to the left without

picking up a delta function, thus:

(-2)
"l-') v!)-". . .vÍ?'vÍ'*')
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and now for there to be any fields in the range VÍj.)-, . . .y,9, we must have I ( m-3

and hence we can also move V9-, to the left without picking up a delta function.

Obviously this argument can be extended until we obtain

!m-t '..yt+pf+t' '.."Í'*t)r(t+t) "'yÍ'*t) rt+t "'Em-r '

By the use of an argument similar to the one just described lve can move the flelds

rr+t . . .ttn-r to the left obtaining

em-t.. . e¡+rr[r+t) . .. "Í'*t)"Í?, . .. rf)-rtt...at(-1)t"

and finally this may be rewritten as

lrn-t . . - ll+trl+t . . . Ím-Lt1 . .' rtfi " " lt

which demonstrates the lemma. t

As a corollary to the above lemma we have the following alternative form for

M:
¡n-l

M(r, s) : t | ø. (y,n-t-r) . . . ,þ. (yt )/(rt )

gertn(!,...,m-l) I:o

.rþ(r^-r)rþ" (y, -r) . ..tþ" (y--¡)(-1)' . (3.45)

V/e begin the proof of Theorem 3.3 by demonstrating (3.a2). By the use of

the abbreviations introduced above rve have, using (3.31),

rn- I

M(r,ùrþ. (z)- Ð Ð t-l)' r^-,... Em-ran-r ... ltst...Ím-t-tz
perm l=O

= !{-r)^-t r,n-t . . . t".-tt".-t ... yú(t+L)rÍ-tl .. . rÍ"-jJ-t

tn-2
I D I (-r)' rm-t...Ím-ru¡n-t.'.ut

perrn l=O

ty...îrn-I-26(" - rm-t-r) (3.46)

The first term in (3.46) is equal to

Ðr,^-, . . . Í,n-rz{')vÍ,jì . . . vl-t)t[-tl . . tÍ"-iì-,

: zt(-1)t "l:l . ,l^)),vl!,. . . vÍ-')"1-'l . ,l:l-,
- {. (z)M(-t) (ø, y)

- tþ* (z)M(r,y) 
"
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Consideration of the second term in (3.46) then gives ecluation (3.42).

Now the hermitean conjugate of (3.31) is

M" (r, t. . . t Ím-r,lr t . . . !n-t) - t(- l)' rþ. (r,n-t-r\ . . . r1,. (rt)rþ(yt) - - . rþ(y,"-r)

,þ" (r^-r) . . .rþ* ("*-r)

- M(ytt. . .4n-t¡t!¡.. . ,Í^-t) , (3-47)

where (3.45) has been used. We have now

lM(t,y),'þ(z)l- - - (lM. (", y), ú.(r)l-).

[M(y,r),ú" (")]-). (3.48)

and then (3.41) follows from (a.+2) and (3.48). t

In the case m:2, the commutation relations given in (3.41) and (3.a2)

evidently have other solutions apart from simply ^ = 2 modular field theory.

These are, of course, the higher order parafield theories. One might expect, there-

fore, that the relations (S.+t) and (3.a2) will have further solutions when m ) 2.

Whether this is so is, at present, unclear. In the special case of m:3 this author

has attempted without success to find other ansatz solutions. This suggests that

the above expectation may not be realized.

A further question deserving investigation is whether the new commutation

relations can serve as the fundamental defining relations for modular field theory"

This is of some interest since we have been unable to show that the original mod-

uiar relations (2.1) imply the Fock-condition (2.16), which selects out the ansatz

solution to these relations. The relations (3.+1) and (3.a2) may be stronger in this

regard.

3"3. Order restrictione

A classification of all strongly local observables remains an open question. In the

case of m - 2 the parafield classification applies (see [29] for details). In the more

general setting the follorving theorem is of some interest:

Theorem 3.4. For m ) 2 there are no strongly local observables which are of

second o¡der or less in modula¡ fields. For m ) 4 ühere are no sucå obse¡r'ab,les

which are fourth order or less.
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Proo!: Consideration of Theorem 3.1 shows that first and third order polynomials

are impossible for strongly local observables. We show now that second order

polynomials are impossible lor m > 2:

By Theorem 3.1 such polynomials must involve both a r/ and a ry'* and must

therefore have the form*

where ø and ö are functions of ø1 and ø2 which vanish when these variables are

not in V. By the use of (2.8) and (2.9) this may be rewritten as

Fr(v) - Ilr,,,(o-rt-r6¡6Ø(r1){(') þ"))arrdrr+ K (3.50)

where K is a c-number. When the notation of equation (3.8) in the proof of

Theorem 3.1 is used, we may rewrite this as

F,(v): / [tL-.' (o - n-oö)¡Íå)] d'xi'rz + K (3'5r)

IF2(v) - lorþ(rt)rþ. (rr) + btþ* (rr)rþ(rr)jdxldr2

Fo(ð) : Ð q\þr)d.(') þù .

(3.4e)

where lve have

r-t=o
(3.52)

(3.53)

It follows from the proof of Theorem 4.1 that

IFo (o-rt-oa¡rdi) -o u+0.

Evaluate now

o - F,ó@\ ("r) - no ö(-) þr)F, z G,-,

and then

Go-.6*@-o) (rr) + ,o-w 4*@-o) þ)G,-.

After these calculations are carried out, rve obtain the equation

a(z¡,22) - n-,b(21,22) : O u + O .

If u can take on more than one t'alue, as it can when m > 2, then this implies

that ø : b:0 which shows that Fz(I/) - O.

* Apart frorn the addition of a c-number, of course
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If m ) 4 it is clear from Theorem 4.1 that the only possible strongly local

observables of fourth order involve two r/ and two r/* fields. Some thought as to

the possible permuations of these fields leads us to conclude that such observables

must have the form*

f
Fn(V) - J 

axtd4dyfiy2lotrþ(rt)rþ("")ú. (yt )rþ. fur) * a2tþ(n1)Ú. (vt )rþ("r),þ. fur)

* asú* fur)rþ("t)rþþr)ú. @r) t a+tþ" (yr)ú("t)rþ" (yr)rþ("r)

+ øsú* (yr)ú. fur){(tt)ú(rr)l

dxdylb¡rþ(")ú- (y) + b"ú. @),þ(a)l , (3.54)

where øi and ö¡ are functions vanishing when their arguments lie outside V.

When (2.4), (2.5) and (2.8) are used, we can rewrite the terms in the first

bracket (apart from a c-number) as

t Â(rr, r2!tttr)ö(r') 1nr¡6ft") þ)6.t') @r)Ó.('") (vr)
17 rî2,rt Lt2

z (a'ss)

+ t Ð r"(t, ÐÓ(t) þ)þ-{') 1r '¡

rrt i'X'=l

where

À(rr, Tzttt ttz) = at - rf'-rL o'2 * qa*rt-'z az - lrl'tz-ÌLa'4 +'l'o o,
(3.56)

a:tt*tz-rL-r2

T" (r,t) : 6(oz - yr ) (o, + qt-'aq - q2(t-') øs)

T" (r,t) - -6(xt - yz)qt-'as
(3.57)

?tt (t, t) - -6(rz - yz)rf-'aq

T"(',ú) = ô(rr - Yr)(ot - qt-'a4\ '

By the use of a change of variables, the second integral in (3.54) can be combined

with the second term from (3.55) and we may write (3'5a) as

+ I

F4(v) - dr1dr2dy1dy2 D,,,t, Å(rr, rzttt tt)50') @r)ö(") (ør)¿*('r) @t)Ó.('") fur)

* D,,¿ Ð;,¡(Iii (r, ú)d(t)(ø¡)/.(')1rr¡ +K (3.58)

* We are using ,þ"(yt)rþ("t)rþ("r)rþ-(yr) - ,þ(rz)rþ"(y")rþ. (gt)r/("t), which fol-

I

lows from the lemma above
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Uii (r,t) - Tii (r,t) except when ; - i :1 , when
where

utt(r,ú) = T11(r,t) + br(xt,vr)- qt-'bz("r,yr) ;

and where K is a c-number.

By the use of a similar proof to the one used for second order observables

above, we may conclude, using the proof of Theorem 4.1, that

î
Jarrd,n2d,y¡d,y2rj[)-o 

a+o (3.5e)

with

¡'o(å) _ Ð tr6t,) þr)6G,) (r)6*tt) (y, )d.(",) (yr)
t¡!t2-r¡-r2=t

+ t luti6rt)1ør¡¿.(')(y¡) .

t-r=o ii

We introduce the following notation:

," = I¡ÍË)¿', 
dn2d,y¡d,y2

t.¡tuzfittz -trt¡t211r2 : À(r1 ,12rt1rt2)

where, in the second line, À is evaluated at ø1 ttzrlttlz.
Now when (3.59), (3.60) and (2.9) are used we obtain

o - 4(") þr)F, - t-o Foö(") 121)

(3.60)

- -r-"ll

I
= -n-o Gu*o

ttltz-r=vIo
t lli:i,\':' - n"-'Ai:f,T:ol

+

.6(t' ) þ r\ ö(r,l þr) 6. t) fu) dr, dæ2dy

g;i 6þt+a) þ)6(zy - g¡)d,r¡d,n2dy¡d,g2

u+0.

(3.61)

Similarly we have

o - ¿(u) ("r)Go+o I qb-o-o 
"o+oöþ\ 

(zz)

,t-'-"I I [Ai:r",f;"'-n"-u[i:i^":u'"'l
J ty1lt2=o¡a¡b

.6Q,) þt) öþ,) (x2) dr ¡ dn2

a+0.

87

: -fl-l-o Hu+ø+b

(3.62)



If we continue in this manner we obtain

0 - ¿.(c) ("")Ho+o+b - qolo*b-2" Ho+o+u6"k) þe)

,oto*b-2c I a"lniíf:,,', - n"-b Lií""í,", - ,c-d ¡1ï;zzzt

* qc * o- b- o L1àií,',f¿ ( ¿) 
( ø)

(3.65)

(3.63)

=-qdJ¿ d+c-ú-bf o,

where we have deflned d: u * ø * b - c. Finally taking the anticommutator of

J¿ with 4.@lþ) we obtain

Liiíì,""' - q"-b Liil:u",,, - q"-d Lid;izzzL * qc+a-b-d Ll,oll',", - o (3.64)

for d*c- a-b l0.Bytheuseof (3.56) andthenotation

we obtain the equation

alzzr -,o-b o43L2 -,c-d. o342L ¡ rc*o-b-d a,34t2

_ n"-b þt"r, _ alstz _ a3r+zr + olorr)

# t¡dIc-ø,-bqro-boa32t - ø43t2 - ,c*ø-b-da,342t + n"-OoTnt")

_ d+c-o-brc-b1oa32t _ ø43t2 _ ø3n+zt + o"nnrr)

| 42(d+c-o-b) 1oa32t -,o-b o43t2 - rc-do342t + rc*o-b-do3nt') - 0 (3.66)

when d+c-a-blO.
If wetake d,-a+b-c*l and d,=a+ó-c*2 andrememberthat m)3

then we may subtract the resulting equations obtaining:

o1"" = ø¡(z¿r23,22,z¡) ,

(z_, _ ,t_\ln"þ_b) a14r2 _ r2c_a_boln 
tl+ (z _ nr)lq"_oot""t

_ þt _ n2)n"-blalz2'- _ øf,srz _ af;+zr + olnrrl

+ þt' - q\lott"' - ,o-b oa3t21

_ h _ rz¡¡rzc-o-ba,342t - rz(c-b)oSotrl _ 0 .

- oâ"t'l

88

(3.67)



If we let @ : 0,1 and subtract the resulting equations we obtain

(z-t _ rt-r)þt-t _ t)qr"-bo3421 + (n _ qr)(t _ q)q-o ot"",

+(tl' -q4)(t- l)rl-ualzrz +(tl- q2)h-r -r\rf"-boSntt:0. (3.68)

I{ c - 0,1 is then substituted, subtraction of these equations gives

ølezrrr-t -n-2)+o?n"(rt -rt'\ -0. (3.69)

The above procedure may be repeated, in the case of m ) 3, with d - a*b- c-l
and d:ø*b-c* I in (3.66). Theresultingexpressionis

a1+zr rr-t - ?) + oln" (rt - q-r ) : o

or in otherwords oP.42r -- azr+zt . Substitution of this into (3.69) gives

oln" (rt-' - q-2 * q - q') -- o

or

øfa21(cos ff - cos*) - o .

If cos * : to. * *" have, using cos20 -- 2cos2 0 - l,

2cos2fr-cosff+t-o

which has solution cosZr- -- I,-t. This in turn has the solution 2r- -- ¿2r and

4 :'* *n?r which means that m : 1,3, which we have excluded. We therefore
fÌL .t

conclude that øfa2r - ølezr - 0. Substitution into (3.6s) gives also oå3'1 = 0'

Equations (3.67) and (3.06) flnally give

af,ezt _ a4st2 _ a3o+zt + ø3nar2 - O

(3.70)

ølzzr _ alen _ a|+zr * ø3zar2 _o .

By the use of the first equation of (2.1) and its hermitean conjugate the following

identity may be derived:

,þ(rr)rþ" (yt)rþ(tr)rþ" (sr) - ,þ(rr)rþ" (st)rþ("t)rþ. (yr) - ,þ(rt)'þ" (sr)'þ(az)'þ. (st)

+ ,þþz)rþ- (yr)rþ(nt)ú" (yt) = arþ(rt)Ú. (yt)rþ(rr)rþ. (yr)

- 36(a2 - s)rþ(rt)rþ. @r) f ô(ø1 - sz)rþ(rz)ú. (yt)

- 6(r, - yt)rþ(az)rþ. fuz) - 6(r, - yz)rþ(øt)Ú. (vt) . (3'71)
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If we multiply the left hand side by øz(rttÍ2tlt, y2) and integrate over the four

variables we may, after a change of variables in the final three integrals and use of

(3.70), conclude that the result is zero. Examination of the right hand side of the

identity will then show that the second term in (3.54) becomes a quadratic term.

A similar argument holds for the fourth term and so we conclude that Fa(V) must

be a second order polynomial and hence, from the first part of the proof, zero. I

3.4. Derivative û.elds

As a final topic in this section we consider the possibility of observables constructed

from the derivatives of field operators. Clearly such observables will be used in

constructing useful physical observables such as the energy-momentum operator

Pp

Firstly we have, as usual, the equal-time commutation relations

f 
o. t'l (21 ), 4r(t) (xr),t 

"] * 
: 6,u" (*, - *, ) 6*

where 6(')(r) are the Klein transformed fermi fields and the subscript ,u, is

understood to mean the covariant derivative with respect to (r2)u. The Klein

transformation of this equation gives

6*G) (xt)ó$\ (rù,u, +n'-'ö(t\ (rr),u, ¿*(r) (ør ) : 6,u" (*, - *, ) 6" . (3.72)

It is now demonstrated that Theorems 3.1-3.4 are true with replacements (in any

position) of tþþ¡), rþ*(r;) and 6(r;-E¡) by ,þ(r;),u,, ú*(r¡),,,' and 6,u, þ;-r¡)
or 6,u,u, @; - ,¡) respectively. It is clear from (3.72) that the proofs of these mod-

ified theorems will change only in that there may be a mixture of delta functions

and their derivatives rather than simply delta functions. This will only affect The-

orem 3.1 in that the rearrangement given in (3.5) may need the c¡o(r¡,r¡rt¡,!i)

modified. Obviously though, this does not affect the proof in any essential way.

In the case of Theorem 3.2, the collection of terms (3.36) and (3.37) whose sum

is shown to be invariant under u, will have the sanìe product of delta functions.

Hence if some are changed to derivatives of delta functions, the invariance under

u is unaffected, and so the proof goes through in the same way. In Theorem 3.3

delta functions make one appearance in both of the commutation relations and
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examination of the proof shows that no other use of delta functions is made, Thus

this proof also goes through in a similar \rvay if these delta functions are replaced

by the derivatives of delta functions.

Finally the proof of Theorem 3.4 needs more extensive modification. The

details are rather technical and may be found in Appendix C.
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4. Relationehip to a normal ñeld theory

In this section we use the Klein transformation developed in Appendix B to com-

pare modular quantization with a field theory which is quantized normally but

which has a "gauge" invariance.

4.1. úrtroduction

In order to introduce the techniques that are required for such a comparison we

briefly review the situation which applies in the parafield theory case. For the

purposes of clarity we shall restrict ourselves to the parafermi alternative.

In this case it has been shown [29] that observables satisfying the condition

of strong locality must be functions of the field polynomial

P (rr, rr) = l'û þt), ûþùl-

where

rþ(x) - rþ(x) or ú. (r) .

When equations (1.5), (8.2), (8.31), (8.32) and (8.37) are used P(4,r.2)

may be rewritten in terms of the fermi fields ô'1"¡ *
p

P(r, , rr) : f [ô'1", ), .ô'(", )]- .

(4.1)

(4.2)
r=1

The parafermi states may also be transformed into fermi states once the following

condition is imposed:

r,l) :l) . (4.3)

The transformation is possible for the following reasons: Theorem I.f from [51]

shows that the Fock-space for parafield theory is spanned by states of the form

M(bi",birr...å;")l), where M is a monomial of para creation operators. By use of

the ansatz equation and the Klein transformation (8.3), this may be rewritten as

p

t Mg7,øi\rr) .. . r-^oi!""))l) . ø.4)
f¡1..,¡f¡=l

When (8.2) is used, the Klein operators may be shifted to the right within M

until they all act upon the vacuum state. Usage of (8.6) and (a.3) allows us to

then conclude the desired result.
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We can see then that once a Fock representation is assumed, parafleld theory

is equivalent to a normal theory in which both the form of the observables and the

states, are restricted in some way.

An explanation for this restriction can be found through the notion of "gauge"

invariance. To explore this, we introduce the following transformation on the fermi

fields and vacuum: 
p

o'(r) ----- D snotþ)
t:t

p (4.5)
oG) ___-Ðgn o$)

ú=l

l) - l) ,

where the matrices g belong to a p-dimensional unitary representation of some

compact Lie group G. Norv, as is observed in [52], P(ø1,ø2) is invariant under

the group O(p)* and moreover this is the minimal group showing this invariance.

In addition to this invariance of observables, O(p) also leaves invariant the basic

fermi commutation relations and the Fock vacuum condition o(') l) : 0. Because

of this overall invariance we say that a theory with observables restricted in the

manner implied by (4.2) is O(p) gauge inuariant.

In [6] a stronger result is derived. It is shown that in an ordinary freld theory,

if we a priori require that the theory be gauge invariant under O(p) then our

observables are restricted precisely to those generated by P(ø1 ,rz). Thus in

parafield theory the requirement of strong localìty is the same as the requirement

of O(p) gauge invariance in the corresponding fermi field theory.

Vúe cannot, however, conclude from the above that the two theories are equiv-

alent since we have not considered the effect of the restriction of states implied by

parafield theory.

As we have seen, the transformation (a.S) is an automorphism. If we use this

property and the invariance of the Fock vacuum condition, it is straightforward

to show that all V.E.V.s are also left invariant. As is well known [53] this means

that the transformation (4.5) induces a continuous unitary representation of G on

the Fock-space of the ferrni quantization. As a consequence (see [S+]), tnis implies

* g obviously belonging to the fundamental representation of. O(p)
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that this representation is decomposable into a direct sum of finite-dimensional

irreducible representations of G and hence the Fock-space decomposes into a direct

sum of orthogonal flnite-dimensional subspaces, each of which carries an irreducible

representation of G.

Now within each subspace, a basis may be labelled using the generators of

the unitary operator implementing G. It is clear then that the Fock-space has a

basis of states of the form lß, r,dl, where R denotes the irreducible representa-

tion which acts on the vector; ø denotes the labelling by group generators which

specifies the "direction" rvithin its subspace; and d is another label which indicates

that there may be more than one subspace for each irreducible representation.

Now the quantities that are actually physically accessible, are the expectation

values of the observables. On the basis states mentioned above these have the form

Let U(g) be the unitary operators implementing the gauge grouP G, then the

invariance of the observables implies that

lR,r,dl.F'(Y)l^R, r,d) .

u-'(g)r(v)u(g) - F(v) Ys eG

lR, î, dl[ (V )lR, r, dJ - lR, r, dlU - | (s) F (v )u (s)lR, z, d\

= (8, y,dlF(V)lR,v,dl

(4.6)

(4.7)

(4.8)

and hence that

with

U(s)lR, r,d\ - lR,y,dl

This shows that all states within a particular irreducible subspace are physically

equivalent (since t/(g) acts transitively on irreducìble subspaces). Now it is possi-

ble [55] to label ínequiualenú representation subspaces of G using Casimir operators

constructed from the fleld algebra. Since these operators are invariant under the

gauge group it follows that they are potential observables and hence we conclude

that states coming from inequivalent subspaces are physically inequivalent.
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In parafield theory it may be shown [6] that if G - O(p) then the restriction

of states implied by the theory forbids the appearance of states belonging to most

of the irreducible representations of the gauge group. Given the discussion above,

this implies that the parafield theory is not physically equivalent to a normal field

theory with an O(p) gauge symmetry. In view of this negative result, one seeks to

alter the appropriate gauge group by restricting the possible form of observables-

this restriction being clearly above and beyond the requirement of strong locality.

Thus we require that observables be generated only by the following kind of

field polynomials:

Qþr,rr) = lú. þt),ú("r)l- . (4.e)

Upon Klein transformation this polynomial becomes

ì
Q(rr, rr) : f [O.' {"r ), Õ' ("r)]_ (4.10)

r=l

and such polynomials are easily shown to be invariant under the larger gauge group

u(p).

With this larger group, the commutation relations and Fock condition are stiil

invariant. Moreover one can show [52] once again that ¿ll observables invariant

under úr(p) can be generated from Q(øttaz). Thus with our restricted set of

observables, we can again regard U(p) as a gauge group.

The situation with regard to the restricted set of para states is more positive

in the case that t/(p) is the gauge group. In fact, one can show [6j, [12] that from

every irreducible representation subspace of U(p) in the Fock-space ol the normal

theory, there is exactly one state in the Fock-space of the para theory. Since all

states within an irreducible subspace are physically equivalent, it follows that the

para theory contains all states* physically relevant for a U(p) gauge invariant

normal field theory. Thus, with the restriction on observables mentioned above,

parafield theory becomes physically equivalent to a U(p) gauge theory since they

share the same set of observables and physically relevant states. The description

of such a, gauge theory with a parafleld theory might be regarded as convenient

since there are no physically redundant states in the latter theory.

* See the note at the end of the proof of theorem 4.3.
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4.2. Obsen¡ables

We turn now to the case of modular field theory and consider firstly the effect of

the Klein transformation on strongly local observables. We make the assumption

that this Klein transformation is given by (8.27) and (8.37). There are stiil unre-

solved questions concerning the equivalence of the representations of normal fields

obtained by different Klein transformations (see section 4 Chapter 1), however we

shall not go into these here.

If one takes an arbitrary product of modular fields then there is no guarantee

that after the tranformations (2.8) and (8.37) are applied, the resulting products

of fermi fieìds rvill not involve the non-local Klein operator. Certainly if modular

field theory is to be compared with a normal field theory then observables in the

two theories should coincide. The following result is therefore reassuring:

Theorem 4.1. After Klein transformation, strongly loca). obseruables involving

modular fre[ds consist of only normal lermi frelds and may be considered as strongly

Ioca| obseru¿bles in úåe fermì fre',/d theory"

Proof: As was seen in the proof of Theorem 3.1 strongly local observables may be

written as 
Fv) - [ nrr[B)¿", ...dvr.-. (4.')

J

where Fo(f) in't'olnes field polynomials of the form

¿("')(ø1)...d(")1ø,¡¿.(t')(yr).. .ó*('")(y*), (4.r2)

with f rd = tú¡ mod m; I- n:0 mod m; l+n even.

upon use of the transformation (8.37), such polynomials become

tlr-rrO" ("r) . . . t¿l-', ç'r (r¡)iÞ*¿'(yr)ut' iÞ*t'(yrr),rt'-l . (4.13)

The spatial analogs of (8.2) then allow us to write this as

¡u(-n-D"+Ðúi) o', (rr) . " . iÞ', (z¡)e*t, (yr) . .. Õ*t, (y*) , (4.t4)

where ,t is some phase factor involving the m'th primitive root of unity. Now be-

cause of the restrictions following (4.12) and the fact that tt^ : l, we have demon-

strated the first part of the theorem. The second part is trivial since any observable
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consisting of an even product of fermi ûelds is easily shown to be strongly local.

The third restriction following (4.12) requires this for strongly local observables.r

We turn now to the question of identifying'a suitable normal gauge theory with

which modular field theory may be compared. Since the classification problem for

strongly local observables is as yet incomplete, we obviously cannot, as has been

done in parafleld theory, identify a gauge group which will select out the strongly

local observables.

There may, moreover, be fundamental problems in this regard since Theo-

rem 3.4 appears* to rule out the possibility of observables of second degree when

m ) 2. Since the fundamental invariants of the simple Lie-groups are quadratic

the existence of a "selecting" gauge group appears problematical. One possible

solution to this difficulty lies in the area of non-linear representations [56]. Thus

one implements the gauge group not through (4.5) but through a non-linear Sener-

alization of it. One might hope that the linear part of the representation (namely

the stablity group of the related coset space) would be a group which selected out

certain invariant polynomials in the usual way and that the non-linear part of the

representation would leave only higher order linear invariants, invariant.

Naturally the above discussion is purely speculative and awaits further inves-

tigation for confirmation.

In view of the above difficulties we confine ourselves here to comparing mod-

ular field theory with a normal field theory having a U(m) gauge symmetry.

We choose such a gauge group for two reasons: Firstly it plays a central role in

parafield theory and secondly the physical applications of modular freld theory are

hoped [27] to lie primarily in the area of colour where the appropriate gauge theory

is unitary. As we shall see some progress is possible in the proposed comparison.

We begin by constructing strongly local observables which, when expressed

in terms of normal fermi fields, are invariant under U(^). In this regard we have

the following results:

Theorem 4.2. Obseru¿bles consú¡ucted from the following modular freld poly-

* There remains the peculiar possibility that the observables might be of higher

than second order in the modular fields but of second order only in the fermi fields.
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nomials are'strongly locil and when Klein transformed, are invariant under the

gauge group U(m):

(Ð C, d:, where

u¡¡ - Ð ú("o) .-.,þ(r^-r)
pertn(asr...r"- - t)

t C^(ro,.. . , r--r) .

perm(0,...,m- t)

(4.15)

(ii) For m = 3 úåe special case

M(rt¡rz¡lrrïz) = M(rt tÍ2tlrryz) i M(rrrÍttltrlz) . (4.17)

Proof: Consider firstly the case (i): When the ansatz (2.8) is used, õ- becom"s

(apart from a numerical factor)

(4.16)

(4.18)e ^: Ð t ¿('")(rq) ...¿('--.)("--r) .

¡n-L

pcrm ri=O

Considernowtheterms4('o)(ø6) ...6ti)("¡) ...6t*) ("r) ...6G^-')(r^-r) from

this sum. By use of the commutation relations (2.9a) the þki) (ø¡) and 6Gn)þ¡)

fields may be interchanged with the result

-qri-¡x¿("")(ze) ... p('n)("r) .. .6Gi) (r¡) .. .6G^-'\ (r--r) .

Thus if. r¡ - r¡ then this term will not be present in the sum (4.18) since this sum

extends over all permuations of the spatial indices. Hence it becomes

c^: D I dt'.)(ro) .. . qÞ^-') (r--r) (4"1e)
peî¡n lif Ìi

If we now apply the Klein transformation (8.37), we obtain

cr : D I .rt-'oo'o (ro) .. . ul-t--'Q'--' (rrr-r)
Pertn r¡t'7¡

- t D /(r0,...,r--r)Õ'o("0) "'Õ'--' (',n-r) "# (4.2o)
pertn ¡;f.r¡
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using (2.9c), the fact that rsr . ..ttm-L must be a permutation of 0,. .. , m - I

and where

Í(ro,. . .tt,.-r) = 7D't' 
rrr¡-f,i;'(i¡r)r; . (4.21)

Now (4.20) *ty be re-expressed as

t D ¡(r(01,1(l), ...,1(m - l))01(0) (""(o)) . .. ot(--1)(rr1--r¡)
perm(a6,...,"--t) 1

-m(m-1) (4.22\xt¿ 2

where 1 is an arbitrary permutation of 0,. . ., m - L. When the anticommuting

nature of the fermi fields is used, this becomes

rvhich implies that

and hence

/(r(o),

na- I ¡n-L tn-L

j=o r'=O j=0

D oo(ro) ... o--r("--t) ! sien(1)/(r(o), .. ., r(m - 1))

perm(rçr...r"-- t )

-nfm-l.lx u---i- . (4.23)

We show now that the sum to the right of the curly brackets is non-zero: Now it

is obvious that f[lt t(i) - DË;t i; and also that DË;t r2(i) : D[;t r'2; so

therefore we have

1

¡n-L

d=O

i>i

i>i

rn-L

D
i=0

d Ð, - t 1(d) Ð r(r) : D t'(,) +2!r(i)"r(i)

!r(i)rU) - Ðir
i¿i

(4.24)

If we call the first term on the right hand side 4", and remember that the deter-

minantof an mxm matrix /-{a;¡} is

.,1(m- t)) - ?D,t,ii-DL-"" * o-Dl;"'r(d) .

det(A) - Ð sisn(1)a¡r(o) ør.y(r) .

(4.25)

(4.26)

1
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then we can derive the result

1

where

Consider the matrix ,9;i : 7tr; we have

lsisn(1)/('y(o), ...,^t(m - l)) : n" det(S)
(4.27)

S;¡ -tt4

(Fs)r¡ - t qíkq-ki
lc=0

m-l

- D q$-i)k
lc=0

- *6;i

and so therefore det(S\ I O. The matrix ^9 was used in (2.7) and the matrix

hS is the so-called Syivester matrix [s7] and is unitary.

We may now rewrite (a.Za) as

m-l

Ð €ro..."--r(Þ'o("0)...ot^-'(s¡n-t) -nlm-lìf det(S)u-T (4.28)

fO,...rl. ñ- ¡

where det(S) I 0 and e is the completely antisymmetric tensor oL m'th order.

Let the quantity in brackets in (+.ZA) be called D-. This has been shown [6]

to transform a,s follows under U(m):

D,n+ | n^- (4.2g)' det(G)urr' '

where G is the matrix implementing U(m) through (4.5). If we take the hermitean

conjugate of (4.28), we may deduce that

e^d; - kD^D'i, (4.40)

where /c is a real constant. Now since G is unitary it follows that det(G) is a

phase factor and hence e, d; is left invariant by G. Finally Theorem 3.2 and

(4.16) show that d^d; can be written as asum of field polynomials which give

rise to strongly local observables and hence any observable constructed from it

will obviously also be strongly local. This completes the demonstration of the frrst

case.
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In the second case we have

TÍ_ t ,þ@rlrþþr)rþ. (yz),|,. (vt) - ú(rr)ú- (yr)ú. (vt)ú(t, )

perm(t1,t2lpern(s¡'s2l 
+rþ*fur)ú.(yr)ú(", \ú(rr). (4.31)

(2.5) allows us to rewrite this as

t2
M - I II EG) þt¡Et\ @z)ú*(') (yr){.(')(y')

perrn *=O

-ú(r")rþ.(y")6(rt - yr) +ú.(yz)rþ(r2)6(q - yr)

- ,¡,(z) þ){.(zl (v) 6(rr- or)l
I

r2

- t lltV,t'l(r1)r/(r) þ2\{.(') (yr)ú.(')(yt)- ç(')þ)ú.(')(yr) ó(", - yr)
perm\=o

l
* 6(12 - Yz\ 6(r, - r')l . Ø.32)

We show that the various order terms in this sum ate invariant under t/(3). The

scalar terms (6 functions) are obviously so. For the second order terms we have,

using (2.8) and (2"9c):

222

I,/t',(r)r/.(')(y) - å D f 7'("-¿16(')1r)/.(t)(y)
r=0 r=0 ¡,t=0

2

: 
Ð 

¿(,) 1r¡¿-(') (y) . (4.34)

Upon application of the Klein transformation (8.37) this becomes

o

! o'(")iÞ.'(y) (4.44)
¡=0

and, as is well known, this transforms as the fundamental invariant of t/(3).

Consider now the fourth order terms:
2

Ð Ð'¿,", (r¡)l¡(') þ)tþ.G) fuùrþ.('\ (yt)
perrn(aa,r.7) r=o
pern(g t,vzl

: r t É t or(c*t-t-w) 6(ù 1xr¡6rù þ)ö.(') (yr)ö.(,) (y, )- n 
,"rrn 1=o trtra,tD

- t Ð D 6G) þr¡6(t) þ)ö.(') (yr)ó.(,) (y, ) (4.45)- " ,rrrnr+t=rr+r,
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where we have used (2.8) and (2.9c) and the equivalence sign is modulo 3. Now

since the sum is over permutations of the z and y spatial indices, it follows

that we must have s t t and u I u within the summation. When the Klein

transformation is applied we obtain

å D D,rr-rga(ø1)ur-¿iÞ'(rr)Q"o(!")u"-'Õ*'(yr)uu-t (4.46)
pc"m t+t=t+w

et't ot'w

t t oc(t-t) uz-c-tçt (r, )Õ, ("r)o*o (yr)o.- (y, )
perrn tlt-olw

tt't tt'w

* uolw-2¡o(t-t)

The fact that the sum only extends over s tú : a+w and also (2.9c), means this

may be rewritten as

t D n'-u+t,o-"o"("r)o¿(ø2)iÞ.o (yr)þ"- (yr) . (4.48)

-!-3

(4.47)

3
peîm e+t=r+w

et't ot'w

Consider the possible'íalues for s and t in this sum: Clearly, apart from order,

these are 0,1 0,2 and 1,2. Given the restriction s *t: u*u mod 3, these values

must be matched by the same values (apart from order) for u and ur. When the

sum over spatial indices is taken into account, (4.48) becomes

å D D 
"(o, 

ö)iÞ"(ø1)@o (r")Q*o(yr)iÞ."(yr)
per¡n olb

F(arb)- 1 - nb-o - no-b + ro-b*b-o - g

and so therefore the sum is

Qo (rr)iÞö(ø2 )!Þ.u(yr)o." (yt ) .

The sum over permutations means that this becomes

Ð t ot(', )iÞi(r2)iÞ.'(yr)Q.t(yt )

ÐD
perrr øsb

pe?tTt t,J

- t ![ott",)iÞ.t(y,)e'(ø2)o-i (v"\

- 6(r, - yr)0'(tt)O.'(yr)l (4.4e)

pelfft trt
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which is manifestly invariant under Úr(3). Given (4.L7), M is, by Theorem 3.2,

strongly local. r
For future reference we express itZ in terms of the fermi fields. By use of

(4.32), (4.44) and (a.a9), we deduce that

2

M Ð f lot{"t)o.d(v,)iÞi(r2)o.i (vr) - 2 (r, - vr) iÞd(cr)iÞ.i(vr)

L¡t2
I rV2

í,i=o

* 6(x2 - vz) 6(rt - vr)l . (4.50)

A few comments are appropriate regarding Theorem 4.2: Firstly, in the case

that m : 2 we are dealing with parafield theory and so the field polynomial

[ú.(y),ú(")]- is strongly local and invariant under U(2). Secondly one might

expect that strongly local U(^\ invariant field polynomials could be constructed

from the polynomial M f.or arbitrary m. Whether this is so is not clear. We have,

however, the following conjecture:

Coqiecture: The polynomíal

M Ð Mþr¡-..¡t',.-t,gr,...,v--r) (4.51)

pertn(a y,... rø- - r )

ís strongly local and inw¿riant under U(^).

The proof of this conjecture appears to involve complicated algebraic compu-

tations and is not attempted here.

4.3. The non-relativietic states

Having shown that there exist appropriate observables invariant under U(^),

we now consider the properties of states with respect to this gauge group. In

particular we shall be interested in the question of whether the Fock-space of

modular quantization contains all the physically relevant states lor a U(m) gauge

theory. We begin by considering this question for what we shall term the "non-

relativistic sector" of the Fock-space. By this rve shall mean the subspace of

the relativistic Fock-space generated by linear combinations of states obtained by

applying a number o1. particle as opposed Io anti-particle creation operators to the

perm(a
pern(v

vacuum.
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To consider the decomposition of the non-relativistic sector into direct sums

of subspaces invariant under U(^), we consider the subalgebra of C obtained by

restricting the momentum indices to a finite set of lV values. The Fock-space ob-

tained by applying creation operators from the restricted set is finite-dimensional

and it is straightforward to show that the representation of the restricted algebra

on this space is imeducible.

In the same way as we introduced a unitary group on the upper indices of

elements from C , we may introduce another such group U(N) which acts on the

lV momentum indices of the restricted algebra C¡y :

-r(t) 
ÀI

,,,, - lfi af;) . (4.52)
j:1

Such a transformation leaves the commutation relations of Cr invariant and if we

assume that the group leaves the vacuum invariant, then we may use the argu-

ment given above for úr(m) to conclude that t/(lY) is implemented on î(C *) as

a continuous unitary representation and hence î(Cn) decomposes into finite-

dimensional irreducible subspaces of this group as well. Consider now the subspace

V" C î(C¡¡) which consists of states of the form

d;1") ... d;f")l) ,

where n 1 N. Given that non-zero distinct states of this forrn are orthogo-

nal, it follows from the usuai theory of the representations of the unitary group

(see Boerner [5S]) that states within the possible irreducible subspaces of the two

groups t/(iv) and U(rn) may be projected out by means of the so-called Young

symmetrizers. These antisymmetrize and symmetrize with respect to certain of

the 4 and fr; indices (depending on whether U(m) or U(I[) respectively is being

considered) according to a Young tableau. An example of such a tableau may be

seen in Figure l.

Into such a diagram one puts the integere 1,. . . , z in order to specify how

the Young symmetrizer is to operate. Thus the numbers in the diagram refer to

the indices to be symmetrized or antisymmetrized (l stands for fr1 or rr and so

on). One then antísymmetrizes with respect to all indices in the columns of the

tableau and then sgmmetriz¿s with respect to those in the rows (or vice versa).
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'(l )
T
vr
l.

Vr-t

r(u - l) - a(u) ---'¡

Figure 1. The Young tableau referred to in the text.

It is worth noting at this point that since the r; indices cannot take on more

than m values, any attempt to antisymmetrize with respect to more than m

indices will result in zero. As a consequence there are no irreducibie subspaces of

U(^) in V," corresponding to tableaux with columns of length more than m.

Consider now the operation of antisymmetrization with respect to a certain set

of momentum indices ftd,,, . . . , kr'o . By rearrangement of such an antisymmetriza-

tion it is easy to see, using the anticommuting nature of the fermi operators, that it

corresponds to a symmetrizøtion of the indices rítt...tÍic. Similarly symmetriza-

tion with respect to the momentum indices corresponds to antisymmetrization

rvith respect to the "gauge" indices.

It follows from the above that if we project into a particular irreducible sub-

space of U(If) specified by a particular Young tableau then we will also be in

an irreducible subspace of U(^) specified by the so-called coniugate tableau (the

transposed tableau). Norv it is straightforward to check that the actions of the

groups U(^) and ø(lV) commute on î(C y) . It follows that this space de-

composes into irreducible subspaces of the product group U(^) S U(¡f)' Given

the nature of such subspaces (see, for example, van der Waerden [59]), it follows

that the projection mentioned above is into a particular irreducible subspace of

u (^) s Lr(¡r)

We shall norv demonstrate that there cannot be trvo equivalent irreducible

l-
I
I
I
I
I
I
t
I

-l

I
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representations of U(^) S t/(/V) on Vo:

Suppose to the contrary that there were two such representations. Denote

the subspaces corresponding to these two representations by Ut and U2. Since

the representations are equivalent it is possible to construct bases for the two

subspaces which transform in the same way under A@) I Úr(lY). Thus

(I,n(gr)U N (gz) u! ¡ - t nf nlrl otn,

k,l
(4.53)

II, (sr)UN(sz)u?¡ - t n'f nlrtv2o, ,

h,¡

where url¡ and u!, 'are the desired bases vectors for LIl and U2 respectively;

lr1 and h2 are irreducible representations of U(^\ and U(il) respectively and

U,n(gr) eU(m), Uw(gr) € t/(ff). Define now the following linear operator on

î(C *\ :

Wali:- u?i
(4.54)

1ry wii - wíi

where uii are the bases vectors of all other irreducible subspaces of U(m)ø Ulf¡

in 7(C y) . It follows easily from (4.53) and (4.54) that W commutes with all

elements from úr(m) e U1f¡. In otherwords

U,^(gt)Un(gr)wUit þr)U;t (gt) -w . (4.55)

Now since the representation of C¡v on l(C¡y) is irreducible it follows that the

commutant of Cx consists of multiples of the identity (Schur's Lemma). As a con-

sequence the bicommutant C!! is equal to the set of linear operators on f(C¡¡) .

Now a very well known result (orginally due to Von Neumann, for a modern refer-

encesee[60]) tellsusthat C'!risequaltotheclosureof C¡¡ under,amongstothers,

the strong topology. Now the operators in Crv belong to a finite-dimensional space

since they are finite matrices. As is well known [61], all the relevant topologies are

eqiuvalent on such a topological vector space and as a result we deduce that W

is in the norm closure of Cry (the operator norms generate the unilorm topology

which is not covered in the bicommutant theorem). Now it has been sìrown in [62]

that if an element in the norm closure of a Clifford algebra is invariant under U(^)
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then it may be approximated in norm by invariant polynomials from the algebra.

It follows that W may be approximated in norm by polynomials of creation and

annihilation operators from 6¡¡ which are invariant under U(*). Now it is fur-

ther shown in [63] that the invariant polynomials of Crv must be polynomials in

the fundamental invariants oI U(m). In otherwords they must be polynomials in

Prt f ai(')¿(")
m-l

¡=0
(4.56)

(4.57)

(4.58)

Once the relation

[Pn,, dÍí)]- - -6*-dÍ')

is noted it becomes clear that the P¡¡ àre merely the generators for the group

U(N). Let fo(P¡r,) b" the sequence of invariant polynomiais which approximates

W in norm. It follows that

The last step follows from the fact that Ur is transformed into itself by U(JY) and

hence also by the generators of this group. F,quation (4.56) cannot hold because

u!¡ is linearly independent of Ul and so we have a contradiction.

We complete the description of the decomposition of I/. into irreducible sub-

spaces of U(m) S U(¡Ð by showing that every irreducible subspace characterized

by a Young tableau for U(lY) with rows of length less than or equal to m is, in fact

present: Into the tableau given in Figure l, we place integers sequentially across

the rows starting at the top left-hand corner. IVith reference to such a tableau we

consider the state

ll/o(Pr-¿) - Wll --+ 0 ar¡ I --+ oo

=+ ll(/o(Pr¡) - W)u,-!ll -* o as 9---+ oo

=+ ll Do,, o!t¡(q)ul, - uf¡ll - 0 as g --| oo .

d;l') d;:;li)-')¿ä111,*. d;l:Íll-')¿illl,,*,

. . .di!11,.,+r . o;t:l?ÏÌ, , . ..di\'þ)-') t) ,

with the fr¡ oll distinct. When the antisymmetrization process is carried out,

the anticommuting nature of the fermi operators ensures that the state is simply
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multiplied by an integer. After the symmetrization process is carried out we may

use the linear independence of distinct non-zero fermi states to conclude that the

result is non-zero.

The above decomposition of, Vo into irreducible subspaces of the groìrp

U(^) S U(/Y) has been considered in a slightly different context by Bracken and

Green [64].

We now consider the non-relativistic modular Fock space 7(A) for which we

have the following result:

Theorem. 4.3. Tåe modular Fock-space î(A) possesses aII phystcally rcIeuant

súaúes from the non-relativistic sector of a U(m\ gauge theory.

Proof: Since the subspaces V,, discussed above span l(C) it suffices* to show that

there is a state in 7(A) belonging to every irreducible subspace of. U(m\ in Vo.

Consider the subspace V{ C 1(A) generated by states of the form

øL,-..ø;" l) (4.5e)

where the fr; are allowed to take on the /V values of momenta present in the

states of Vn. Now by the Klein transformation (B.3), equation (2.15) and the

action of Klein operators on 7(A) given by equations (8.20), (8.29) and (a.7)

Chapter 2, we deduce fhat V{ C Vo. States within the imeducible subspaces of

U(^) S U(lY) may obviously now be obtained by applying Young symmetrizers

to the momentum indices of the states \n V{ " Suppose there is a state Ö; eVy
which belongs to a particular irreducible subspace oI U(m) 8úr(lY)" Now since

this group acts transitively on its irreducible subspaces, âny state {! within the

subspace may be written as

ö! = u,"(gr)uv(gr)ö; . (4.60)

It follows that there exists a state

ö'! : (I^(ef r)Cl - (In(sr)ö¡

* See the note at the end of this proof.
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which belongs to the same irreducible subspace of U(m) as {.{ does. Now since the

group U(il) acts on the momentum indices, it takes states within V,i' into other

states within the same subspace and as a result ö! evi. This demonstrates that

if there exists just one state in Vfr within a particular U(m) S t/(il) irreducible

subspace of Vo then there exist states from Vf which are in every irreducible

subspace oI U(m) within the úr(m) S t/(ff) irreducible subspace.

In the light of this and also the discussion about the possible irreducible

subspaces of U(m) S t/(iY) in Vo, it suffices to demonstrate that there is a state

ö evi such that

6ö + o (4.62)

with á being a Young symmetrizer acting on the momenturn indices and corre-

sponding to an arbitrary tableau with row lengths less than or equal to m. We

proceed now to a proof of this:

We write 6 as

6:10, (4.63)

where 4 symmetrizes with respect to all arguments within rows of the correspond-

ing tableau and á antisymmetrizes with respect to arguments within columns.

Now consider an arbitrary ö eVi which has ¿ll its momenta distinct.

By use of the Klein transformation we obtain

d - td;|")ürr-t d**k')u"-'...d.rY"),,'"-t¡¡ . (4'64)
ri

Now since the vacuum has grading 0 (see Appendix B) it follows that ,l) : l).

Usage of (8.2) and (B.27) now shows that

O =Ð î tr,. . ., r^)d.o\" ) . . . ¿;Í") l)
rí

with (4.65)

f tr,... ,rr) = oDt'{t-r)"-D'' i'i" '

Consider now a permutation 'y of the momentum indices of /. It is straightforward

to show that

1ö =f sien(1)/(trt,l,...,rz(o))d;1") ...d;Í")l) . (4.66)
ri
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It follows from the usual properties of fermi states that the states

d.k
(t.) d;l'")l) (4.67)

are non-zero and linearly independent for different choices of r1, ...tn,.. It there-

fore suffices to show that

o(/(0,.

The s(f ) and V¡ in equation (a.6a) refer to the notation used in Figure 1. Apply

now the antisymmetrizer d to the state in equation (4.68). Clearly this antisym-

metrization will apply only to arguments with equal values of r;. As a result,

equation (4.66) implies that the result will simply be a non-zero numerical multi-

ple of the original state. It is thus clear that the only non-trivial part of the proof

is the symmetrization. If we define

úÍ(rt,.. ., ro)) = srgz('y)/(t"(r),...,!1n)) r (4.6e)

then it is clear from equation (4.66) that we need only show that nU) * 0, where

/ has the form given in (4.68). Now rvith reference to the Young symmetrizer 6

and Figure 1, we may rewrite /(r1 ,.. .rro) as ?ø, with

,s(l) - 1,0,...,s(l) - 1,0,...,0,...,s(2) - 1,...,s(u) - l)
d;10) 4::Íl)-')oilll,., d;l:Íil-')¿illl,,*,

. . . dll.il,,,+r o;l:lil;.'1,,, . . dil'(")-')l)) + o .

e - D i [Uft(r + t* - r),;+c,* - Ðï[f.rri+rr¡?+c,*]

(4.68)

(4.70ö)

(4.71)

(4.72)

(a.70a)

t¡r : ltvr- vo-r)s(p) + rs(¡) ; vq = o

l=1 É=l
¡-1

P=L

When the symmetrizer q is applied to /(0,...,s(l) - 1,0,...,s(u) - l) we obtain

ttU
q(Í) = II il !sien(1¡)4s,*

I=I h:L 1t

r(I)-l

euc -- D tt + ú¡¡)'y¡(i) -
r(I)-t

t r¡U)rr(i) ,

¡':0
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where 1¡ permutes 0,. . . , s(l) - f . By use of arguments similar to those developed

in the proof of the first part of Theorem 4.2,it follows that the only part oT, (a.72)

not left invariant under 1¡ is the term

r(l) - I

I ¡r,(i).
d=0

From the form of (a.71) it clearly now suffices to show that

r(l)- t

!sisn('¡¡) II q¡''(ít #o . (4.73)

1l d=0

We deduce immediately that the left-hand side of (a.73) is the determinant of the

s(l) x s(l) Sytvester matrix ,S¡ which has components

(s')r¡ - qii . (4.74)

The determinant of this matrix is known [57], and is

r(l)- t
d.et(st) - II þt* - ,ti) . (4.75)

¡c>i>0

This will obviously be non-zero when s(l) < m. 11 s(¡) > m then we are dealing

with a Young tableau with a row of length greater than m. As we saw previously

such tableaux are not relevant to our considerations. The proof of Theorem 4.3 is

now complete. r
Additíonal note: The above proof is not quite complete for the following reason:

Although we have shown there is a state in 7(A) for a spanning set of irreducible

subspaces of U(m) in î(C), we have not shown that there are states in 1(A)

corresponding to surns of states from the irreducible subspaces. Let r/1 , úz e î(C)

belong to two different irreducible subspaces. We have shown that there are states

Öt, Óz e 1(A) such that U,"(gt)öt : 1þt and U- (gr)Ó, = tþz ' It is clear,

however, that r/1 +úz *U^(gs)(dr + Ör) io general, which shows that the state

ót * óz is not neccessarily physically equivalent to the state tþt * ú2. We indicate

a possible resolution of this difficultl':
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It has been observed in [6] that superselection rules operate between states

in 7(C) which belong to inequivalent irreducible subspaces of U(m). As a conse-

quence sums of states from inequivalent subspaces are not physical in the gauge

theory and hence need not be demonstrated to exist in 7(A). Now the irre-

ducible representations of U(^\ are such (see [58]) that any distinct standard

Young tableau specifies a distinct (up to equivalence) irreducible representation.

As a consequence all irreducible subspaces of a particular character must lie in the

union of the subspaces Vo discussed above (notice that this is not the case for the

gauge group SU(m)). It is clear from the decomposition of these subspaces that

by choosing the finite set of momenta appropriately (and hence ff large enough),

any finite sum X of states from the spanning U(^) subspaces can be placed in an

irreducible subspare of, U(m\ S t/(lY) and hence by the use of the argument at the

beginning of the proof of the last theorem, a state X¡n €. 1(Al can be found such

that ¡ - U^(ùX^ which demonstrates physical equivalence. Obviously infinite

sums of states need also to be considered and in order to do this the group t/(N)

needs to be exiended to the infinite unitary group rvhich acts on a countable set of

indices (the fult set of momentum values). It is conjectured that the results derived

at the beginning of the present subsection also hold in this case. The proofs given

there appear to require modification to deal with topological complications.

We have shown above that there is at least one state in the modular Fock-

space for a spanning set of irreducible subspaces of U(^) in the non-relativistic

sector of the gauge theory. In fact, there are in general more. Consider equation

(2.16), this may be rewritten as

(ol^ ... o;,1), o;^... o;,1)) = 6k,i,... 6k^i^ . (4.76)

Clearly this equation implies that any non-trivial permutation of the indices /r;

for the state cf, . . . úl^l) results in another non-zero, orthogonal, state (providing

that the È¡ are distinct). If we now consider the subspace of. Uo C Vf formed

by allorving permutations only of distínct /r¡ then it follows that for n 1 m,

dim(U*\ : nl. The orthogonality of the permuted states allows us then to define

a representation of the symmetric group .S," on Uo. The decomposition ol, Un

into irreducible subspaces of S,, in this instance is well known [65]: There are d¡
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of the d¡-dimensional subspaces which carry the I'th irreducible representation.

Each irreducible representation has the symmetry property of a Young tableau

with n boxes. Consequently states within each of the d¡-dimensional irreducible

subspaces of ,5r, also belong to the one irreducible subspace of U(^) I U(/V) in

vn.

Consider a state u within a particular d¡ -dimensional irreducible subspace.

In the light of previous discussion it may obviously be written as

,:D e(rt,...,t^)¿il")...¿;Í")l) . ø.77)
ri

Now it is clear from the action of the group U(/V) that a spanning set of states for

the t/(il) irreducible subspace of r,; may be obtained by allowing the momentum

indices in (4.77) to take on all possible ff values. If the new values are simply

a permutation of the original set then the new state will belong to the same

irreducible subspace of ,S* as did ar (in fact since the permutation of distinct

momentum indices is an operator belonging to U(il), these states will belong

to the same U(iY) ineducible subspace as ür). On the other hand, if the new

values are not such a permutation then clearly the state wili not belong to Uo .

The consequence of this is that states belonging to different irreducible subspaces

of equivalent representations of ,Srr, belong also to different irreducible subspaces

of U(rV) within the one irreducible subspace oI U(m) S U(fl). From this we

may deduce that within a different t/(il) irreducible subspace lies a state which

belongs both to Vff and to the same U(^) irreducible subspace as u. Given the

distinctness of the U(N) irreducible subspace for this other state, it is clear from

the transitivity of U(N) that this new state must be distinct from tu.

We now have the following conjecture:

Coqjecture: For n 1 m particle staúes, every U(^) l'rreducibJe subspace of

of î(C¡¡) contains d.¡ linearly independent statesfrom 7(A). Thenumber d¡ is

úåe di¡nen sion of tåe irreducible representation of So correspondíng to the Young

t¿bleau which characterizes the particular U (^) representation.

It is interesting to contrast this "degeneracy" of description with the situation

in parafield theory whe¡e there is only one state for every irreducible subspace of

U(p). The difference is caused by the fact that in parafleld theory states belonging
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to Uo are in general not linearly independent under the full group of permutations

(this is due to the relation (1.tb)). As a consequence the space úl'o has dimension

less than z! and in fact contains every representation of ^9' just once.

4.4. The relativietic states

We now extend the result of the previous subsection to states involving anti-

particles as well as particles. We shall prove that all physically relevant U(^)

states occur here as well. The relativistic extension is non-trivial because the anti-

particle operators transform according to the conjugate rather than fundamental

representation of U(^). The proof we shall give is close conceptually to the

corresponding proof for parafield theory [12].

Theorem 4.4. The modular Fock-space î(A) possesses aII* the physicaþ rel-

euant súaúes of a U(m\ gauge theory.

Proof: Consider a particular irreducible subspaceof. U(m) from a spanning set of

such subspaces in the Fock space î(C). The space will be spanned by states of

the form

ø = IÐt(r, ,...,ro\di,l",(*,)...d;^('")(k")l) , (4.2s)
¿ri

where the index io takes on the value 1 or -l to indicate that 4.t"'(ho) is a

particle or anti-particle creation operator respectively. rile shall show that the

subspace contains at least one state which belongs to 7(A), the modular Fock-

space.

Now the state / may contain factors that are invariant under U(^). These

will be products of the polynomials

n=5¿;t')1r¡a1l)(r) . (4.2e)
r=0

Such polynomials, when included in ö, may be rewritten in terms of modular

particle and anti-particle operators. This may be deduced from the following

lemma:

* The incompleteness of the proof of the non-relativistic case applies here as

well. The proof easily extends to finite sums of states such as /. It is conjectured

that the result also holds for infinite sums.
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Lemma 4.6. I'et ö' be a state in 7(C) wåicå consisús of pzrticles (or antï

partícles) of momenüum 11, ... rlo then

m-2

Mót = {
i=L

.alr(n¡) ...al-t(",))d' (4.80)

providingthe n; areall disúincú fromallthe l; and l. Tåe ci,(fr) and ato(fr) are

parttcle or anti-particle modular creation and annihilatíon operators.

Proof: For notational purposes let the quantity in braces on the left-hand side of

(4.80) be called M,nod.

Now the relations (2.57) from section 2 allow us to shift the operators G-r(ní)

to the right in Mr'.o¿, obtaining the expression

ill^o¿:øî (h)¿1r (t) + øi{-t) 1t¡oJr-t) 1t¡

m-2
+ t oi{') 1r¡o1(l) (¡)o-, (",) . . . c.-1 (r¡)oir("¡) .. . ø1r(nr).(4.81)

i=l

Consider now

The second term of the last line vanishes due to the condition that n¡ t' I¡ Yi.

Evidently the above argument can be extended until we conclude that

a-r(nr)...o-t(t¡)o1t("¡)...air(nr)ó' :ë' . (4.82)

When (4.82) is combined with (4.81), we obtain

ìt[,no¿ö,: 
Þ_ 

o;(')1r¡øl(i)(¡)d, . (4.88)

With the use of equations (2.55) and (2.53), this becomes

[oî (fr), a1, (l)]- + t a-r (nr ) . . . o-r ("¡)oi (Ë)41, (l)

ø-r (nr) . ..o-t (z¡)ai1("¡) . . .a\Jr.a)ö'

: 
{o-r(rrr) . . . E-y(n¡-r)a* r(n¡-r) ... ai1(n1)

+ (-1)'a-r (nr) . . . &-1(n¡-r)"1i)('¡) .. . o1¡11",)og'| @¡)\ö' .

I
m t D n"(,-¿)6.(t)1fr)e.(') (t)d,

¡¿-L tn-L

r=0 ¡rt=0
m-l

- Ð ö'-(')(ft)e.(')(l)d' (4.84)

e:0
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When use is made of the Klein transformations (8.3) and (8.35) this becomes

Ð d:(í) (Ë)d:(í) (t)d'
m-L

¡=O

(4.85)

which is what was required. r
As an obvious extension to the above lemma, if we have .lltr .. . MtÓt then this

may be replaced by ltl,"¿ ...M1*ö' providing the n; from different .M["¿ are

distinct.

The consequence of the above discussion is that we can write invariant factors

in { in terms of modular fields. It suffices therefore to consider the "lowest config-

uration" corresponding to the particular irreducible representation (in otherwords

one not involving invariant factors). As was observed in [12] in such a situation

the state / is homogenous in ai(')(ft) and ¿1íl(f) seperately. This means that

we may write

ø:Dr(rr,...,r*)dî(")(É,)...a;(',1(Ào)¿11"*')(&o*,)...d:(í")(t,)l) (4.86)
ri

withpandnfixed.

Consider now the following state:

úi,¡i

I
(rzr - l)!

D "r.r,...r- 
e"¡...r--,', d1l') (lc"¡a[t') Ur) . - . dÍt-)(l--r)

.di("--') U^-r) . . . a.("') 1¡r¡¡¡

: 
# rÌ "rrrr... 

t^ êct...¿^-rr, 6ú-'--1 6ún-1r--z ". . ftzrrdlÍ') (kr)l)

D rr rrr..., ^ 
€t 2...t ^r nd:(Í' 

) (k" ) l)
tr

- Ð 6r,,^d!l'l (k.)l)
t¡

- d1l")(fr")l) 
"

(4.87)

We may therefore replace the latter state by the former. Norv as we saw at the end

of section 2 the operator ø1r(,t) acts algebraicallylike ø1(k) apart from a degree

of freedom associated with being an anti-particle. Consider now the operator õ-
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from Theorem 4.2. When the momentum analog of this operator is considered rve

may use the proof of this theorem, in particular equation (4.2S), to show that

D ar(kr)..'or(k-) = r. Ð r,....,-a[")1tr)...d['-)(k-)u=s9Ð
perm(le¡,.,.Ê-) r¡¡""16

and hence that

d,n= D oi¡(ft1)o,(kr) ...4r(k-)
germ(h¡,...,k^)

-- c. D €,,...,-d1í')(e,)dÍ")(Ër) ...dÍ'^)(fr-)u=P . (4.88)
l¡ r. .. t t'¿

When (4.87) and (a.88) are combined, we conclude that

d:(í")(fr,)l) - c'QÐ",,...,--,,.dT('-^-')(r;-,)...a;(")Ur)l) (4.89)
úi

where Ç involves the momenta koritr...ri^-t rather than those in (a.8S). If

the momenta j¡ r...ri^-r are chosen to be distinct from rt1 t...¡k¡n-r then in

(4.86) we may shift the operator di to the left.

If the above process is repeated for all the anti-particle operators in /, we

may eventually rewrite it as a product oI n-p G- factors and p +(m- t)("-p)
particle creation operators. Now given tn"t ¿1(í) (fr) transforms under t/(m) in

the same way as a[") 1f¡ , it follows from (4.29) that the G- transform as singlets

under U(^). In otherlvords, they acquire phase factors upon transformation. In

addition they can be lvritten in terms of modular fields. The remaining particle

creation operators applied to the vacuum belong to an irreducible representation

subspace oI U(m) in the non-relativistic sector of the Fock-space. As Theorem 4.3

has shown, it is always possible to produce a state from such a subspace by applying

only modular particle creation operators to the vacuum. We have therefore shown

that the irreducible subspace containing / also contains a state which belongs to

the modular Fock-space. I
In summay, we can conclude that modular field theory is essentially equiva-

lent to a normal field theory with a U(f) gauge symmetry in which the observables

have been further restricted by some, as yet unknown, requirement. Furthermore

modular field theory lies between a normal field theory and parafield theory with

respect to degeneracy of physically relevant states.
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5. The ene¡glf-momentum operator

One of the very basic equations of second quantization is the expresssion of Heisen-

berg's principle [66]:

lPr,úþ)l-: -iú,p(x) . (5.1)

This simply expresses the fact that the energy-momentum operator generates

space-time translations of the fields in the theory.

In modular field theory, as Green [27] has pointed out, it is possible construct

a Pu satisfying this condition. It has the form

(5.2)

A short calculation using equation (2.5) confirms that this indeed satisfies (5.1).

Notice that when m :2 this operator is precisely the same as the Pu introduced

for parafield theory in equation (1.3). The parallel is, in fact, stronger: If the fields

in (5.2) are Klein transformed then we obtain

(5.3)

which is precisely the expression obtained when (1.3) is also Klein transformed. It

is also easy to see that (5.3) is invariant under U(^) and so, as an observable, P,

is consistent with the discussion of the previous section. It would appear that if a

free freld theory is desired then (5.2) is the correct choice for Pr. This expression

is, however, undesirable in one respect: apparently it cannot be written purely in

terms of the modular fields and the use of the Klein operator u would appear to

be mandatory.

To see why this is likely to be so, observe firstly that since (5.2) is invariant

under u and consists of operators of the form {*(')d(t) th"o by Theorem 3.1 its

local form*

ptv = | n,a',(Þ__j irþ*t) (ø¡et'r1,¡) (5.4)

* This will correspond to an energy-momentum operator for the region V

Pt, = I 0",

Pt,: I 0,,(ã Õ*'(ø)o,," ,",)

(Þi i,þ*t) þ)Er,),,,,,)
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is strongly local (a desirable feature naturally). The proof of Theorem 3.4 then

tells us that for m ) 2 the density

tn-L
Tnr(r) - Ð ç-(") 1ø¡9(") 1ø¡

¡:o

cannot be written as a quadratic expression in r/(ø) and so the same applies to

Pu. There is still the rather unlikely possibility mentioned in the footnote on page

in which it may be possible to write Touþ\ as a higher order polynomial in r/(ø)

and r/* (r).

In view of the above remarks it would appear that interacting field theories

may be a more appropriate setting for modular field theory. Such theories are non-

renormalizable when their Lagrangians, and hence energy-momentum operators,

are greater than fourth order in the fields. It is desirable therefore to avoid such

operators. If one further requires that the local energy-momentum operator be

strongly local then Theorem 3.4 would appear to rule out the cases m > 4.

F\rrthermore if one also requires that Pu be invariant under U(^) then the only

suitable candidate discovered by this author is given in equations (3.a0) and (a.17)

and these apply only in the case that m - 3. One might, therefore, consider a Pu

containing terms such as*

,þ* (r)rþ* (r)lrþ,u, ú(r)l+

- tþ,p(r)ú" (")rþ. (")ú(")

- rþ(r)rþ. (")rþ. (r)rþ,, (r)

* bþ,u þ),rþ(r)l+rþ. (r),þ. (")\ (5.5)

which is invariant under U(3). It is rather fortuitous that possibilities such as

(5.5) occur when the gauge group is, apart from a U(l) summand, precisely the

group usually used to describe colour. One might expect in such a theory that

the equations of motion would be obtained by the requirement that P, satisfy

Heisenbergs principle.

The above discussion is naturally only tentative and is presented only to

indicate possible future avenues of enquiry.

* There may also be terms involving gauge fields.

PL: I 0""{
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CEAPTER 4

a GENERALTZÄ.TrON OF MODULAR QUANTTZATTON

1. Introduction

There is evidently much scope for generalization of the quantizations which have

been considered to date. The form of the ansatz solutions for both para and

modular quantizations suggest that it should be possible to consider arbitrary

ansatz solutions. More expìicitly, one could consider fields constructed from the

ansatz 
Jv

,þ(r) : I C{') (ø) (l.r)
r=l

where the fields 4(")(ø) are elements from some arbitrary colour algebra. Given

this large mathematical diversity it seems likely that suitable qtantizations could

only be identifred on the basis of physical criteria. One might hope that such

criteria could rule out certain possiblities and render others equivalent. A "classi-

fication" such as this is, however, beyond the scope of this thesis.

A further generalization can be considered by allowing several flelds rather

than the single ú(t)'
¡f.

ú"(,)-Døf'l(r) . (1.2)
r=l

Once again the fields may be assumed to be elements of a colour algebra. Such a

generalization has been considered by Ohnuki and Kamefuchi [67] in the case that

the individual ry'" (r) are parafields. In this chapter we consider a particular gen-

eralization in which the individual fields are modular. We shall content ourselves

with a fairly introductory discussion and shall not go into the details of the com-

parison with an ordinary gauge theory (this has been done for the paraÊeld case

in [67]). In addition we shall consider a possible application of this generalization

to the rishon model.
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2. Geue¡alized modular ffeldg

We introduce this generalization by considering a generalization of the colour

algebra of ansatz fields for modular field theory (the fields given by equation (2.7)

Chapter 3).

Consider the fields þ1"",'" with r¡ - 0,. ..ttrli - I and l: l,...rn (we are

omitting the spatial index for clarity). Let them satisfy the relations

ö

*fIr...rln
I

î Lr'..r7 
^

T ó';' ,.,ú, * nt 
t, 

n;'öt;,...,r^ öT',

,ì" + ql, q;rt órot,...tta 6*rtt

rln 
- 

r'l

trn 
- $rt¡tt .. -$r.ntn

.6q¿6(x¡ -xq) ,

(2.r )

(2.2)

ó ÓT,,

where q¡ is the m¡'th primitive root of unity.

Such an algebra is a colour algebra: The appropriate grading group is

| : (Z^, @ Z^,) g .. . @ (Z^^ @ Z^^) g Z, (2.3)

and one assigns gradings as follows:

þl''"''r" .---- (rr,orl2r0,'..,r¡r 1r...,r,n,0, 1)

Ó1"'"'''." 
- 

(-rr ror-r2r0,..., -\t-Lt...,-ro,0,1) (2.4)

I ------+ (0, . . . ,0) .

With such gradings the commutation factor implicit in equations (2.1) and (2.2)

becomes

e(a, þ) - tf'Þz-oz?t . . . qazn-tÞz'n-ü2ñfl2^-L(-1)û2"+rÉ2"4r
(2.5)

o : (ot td2t... to.27.-to.z¡.to.z7.+t) .

The above equations apply to the case of fermi-like fields. In order to obtain

the bose case one changes the * signs in (2.1) and (2.2) and also drops the Zz

summand at the end of f . We make no further comment on the bose case.

To obtain the Klein transformations of the / fields into fermi iÞ fields, we

need to define a o factor (see Appendix B and Chapter 2 section 4). We choose

this to be a straightforward generalization of the one chosen in the modular case

(see equation (B.29)):

o(ar þ) - q\þr-Þ,)a¡ r(Þt-Þt)x . . .ríf""-9zn-t)o2n-¡ . (2.6)
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It is easily confirmed that e (a, É) : (- t)azn+tþzn+to(a, B)o-r (þ, a), which is what

is required in the fermi case.

In terms of the indices r; and I we may use (2.4) to show that

o(trl,t, g) = ,-tt'rr rtzrz qtL-t'¡'' . q;'^'^ (2.7)

In view of (8.2), the Klein operators for the fields Sl'""''" satisfy

K.tö''""'''n = o-L (t, q, t, I)ö'î'"'"^ K¿ . (2.8)

If we now define the operators 5¡ as satisfying

S;t 6;'""'" S¡ : qlt 6"'""'"
(S¡)-' = t (2.9)

[S¡, So]- = 0

then a short calculation using (2.7)-(2.9) will show that the operators Krl and

,9r-"5-r' . . .,5¡-tt . . .S;t" have the same commutation relations with respect to

the fields þl'""''". If it is assumed that 
^91 

are unitary then we may conclude that

the latter operators are suitable Klein operators.

We can now define generalized modular fields through the following ansatz:

rþt - Ð Ql""'''.^
tl r...tl.ñ

(2.10)

The summation over the 4 extends over all possible values.

If we now make the definition

g!","','"¡ = (S¡)-" (Sr)-'r . .. (S,")-."ú,1,so¡'. .. . (Sr)', (Sr)'., (2.11)

then it is easily shown, using (2.1), (2.2), (2.9) and (2.10), that these ancilliary

frelds satisfy

tþf,r,.--,,0,.-.,r^) rþtr,...,tr,...,t.) * {f;r,...,tt-1,...,t.1çGt,...,r0+1,...,r.) - 0

r¡lG t, "',' 0, "',' ^) rþ(t r,...,t¡,...,t' )

* ty'(¿t,...,t¡*1,...,t' ) E*(rt"",rt*1,""r.) = frrtr . . . 6rntn 6¡n 6(x¡ - xo)

(2.12)
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These relations generalize the relations (2.5) in Chapter 2.

As was indicated in the introduction we shall not attempt to carry out a

comparison of this generalized theory with an ordinary gauge theory. We simply

point out that deciding on the appropriate gauge theory for comparison may be

a little less straightforward than in the modular case: After Klein transformation

the flelds Sl''"'''" become

iÞfr'"''r" = Sl' . . .Si'-t .. . S;" ól'""''^ (2.13)

which are the fermi fields for the ordinary gauge theory. One must now decide

which way such fields are to transform under the gauge group. An obvious candi-

date for such a group is

G - U(mt) øU(m2) @... O U(^") . (2.t4)

The indices r; would then transform according to m¡-dimensional representations

of the group U(^;\. There are however, two m¡-dimensional representations of

such a group, namely the fundamental and its conjugate. Obviously one could en-

visage various mixtures of such representations. Deciding on the "correct" trans-

formation properties of the fermi frelds would probably be governed by the kind

of application one was looking at.

As a final comment we observe that it is possible to construct an energ'y-

momentum operator for free fields which satisfies the Heisenberg principle. This

has the form

pt,=; Ia", I Ðt;,"""''")rl,Í"'"'''n),,, (2.15)' J ,t-*rn I

and like its modular counterpart appears to require Klein operators for its expres-

sion. By use of the relations (2.12) one can easily verify that this satisfies the

equation

lPu'rþtl-- -irltt,p. (2.16)
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3. The Rishon model

We study here a possible application of the generalized modular quantization to

the Rishon hypothesis [30]. In this it is proposed to unify leptons and quarks

by assuming that they are both composed of two different kinds of fundamental

particles T and V which are called rishons. The T is assumed to have charge one

third and the V is assumed to be neutral. Both particles are assumed to carry

spin one half. Quarks and leptons are then built up as certain combinations of

the T and V. Thus the positron becomes TTT and the z"-neutrino becomes VVV.

In addition combinations such as TTV become u-quarks while combinations such

as TVV become d-antiquarks. One of the interesting hypotheses made by Harari

is that the particular order of the T and V within quarks indicates the colour of

that quark. Thus TTV, TVT and VTT give three different colours to the u-quark.

This ordering effect strongly suggests the application of a generalized quantization

as it is obviously not possible rvhen T and V are fermions.

A number of criticisms have been leveled at the original Harari-Shupe model

(see Lyons [68]). Apart from the above mentioned problem with ordinary statistics,

there are a number of others. Two of these, which are of interest here, are

(i) Why are combinations of rishons such as TT, VVV and so on, never observed?

(ii) Why are quarks confined but leptons not, when both have similar substruc-

tures consisting of three quarks?

A possible solution to the above problems was proposed by Jarvis and Green [69].

In their model the rishons T and V were modular fields of order three when

considered seperately. The algebraic relations satisfred between the two different

rishons required the introduction of the Z-metacyclic group Cs x Ds (see [70]) In

this section we introduce these relations from a different perspective- namely as

an example of the generalized modular fields of the previous section.

If the T and V particles are both required to be modular fields of order three,

then the generalization of section 2 forces the fields (which we call r/1(ø) and

,þz(")) to satisfy the relations

,þl','\ (ùrþ!f,'\ (y) + fy-r,") (y)'/Í''"*t) (ø) - 0

,þî(,,'\ (ùrþt,'l (y) + fy+t,"\ (y),þä('"*')(r) - o .

(3.r)

(3.2)
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Now up until the present, only bosons and fermions have been observed as free par-

ticles. This suggests that only "modules" of the fields r/1 and r/2 which commute

or anticommute should be allowed as free particles. Naturally this requirement

does not explain the mec.hanism by which non-modules are never observed as free

particles. This is the well-known dynamical problem of confinement which has

not, as yet, even been resolved within ordinary field theory. The requirement is,

however, suggestive and it is possible that it may point in the direction of a correct

dynamical theory.

We shall now demonstrate a collection of modules which commute or anti-

commute amongst themselves. We shall also demonstrate that this collection is

maximal in the sense that any other product of fields fails to commute or anti-

commute with at least one kind of module.

This collection consists of "conglomerates" of ûelds in which the number of

particle fields of type i minus the number of antiparticle fields of the same type is

equal to zero modulo 3.

Particle and anti-particle fields arise from the splitting of the relativistic fields

into positive and negative frequency parts:

,þ¡(") -,þ!("1 + úi"o("). (3.3)

As was observed at the end of section 2 in Chapter 3, if the anti-particle freld

,þio(") satisfies the same algebraic relations as the particle field r/lp(z) (apart

from the extra degree of freedom associated with being an anti-particle) then the

relativistic field r/¡(z) will satisfy the same algebraic relations (namely (3.1) and

(3.2)) as its non-relativistic (or "particle") counterpart.

Consider products of operators which create particle and anti-particle fields:

p : ,þi!'þ.),þi!, þ") . . .,þ;:" (',,) , (8.4)

where f¡ = p or øp and r¡ = 1,2. Now by use of relation (2.12) and the comments

concerning anti-particles above, we deduce that if P is a module in the sense

described above, then

,þ;o P - (-t)' p(t,o)E*n ,1.'i, P - (-t)" p(-t'o\r¡,*oo

,þ;o P - (-1)' p(o't)r¡,,*n ,þ;"o P - (-1)' 2(o'-L)r¡,*ot . 
(3'5)
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We have defined

p(r,tl - sr' s;' P s[¿ sl' . (8.6)

It is reasonably clear now from the relations (3.5) that different modules will either

commute or anticommute with each other. In addition if we consider products Q

of tlre fields, which do not satisfy the conditions imposed on modules above we

shall have the relations

QP = (-l)'" Pþ''\Q . (3.7)

In (3.7) I is the numberof fields inQ;r is the difference (modulo 3) in the number

of particles and anti-particles for type 1 fields and t is the same thing for type 2

fields. In general the requirement for a module does not imply that

p(r,t\-p forr,t*O. (8.8)

This may be demonstrated by considering the simple module

Po - ,þiP @),þi'fu)úio (r) (3.e)

By the use of arguments similar to those used in the proof of Theorem 3.1 Chapter

3 one can show, with (2.9) and (2.10), that

^9r-t Po,Sr I Po * s2 | Posz (3.10)

which shows that (3.S) must be false in general.

In view of the above construction of modules we may conclude that objects

such as TTT, VVV, TVVVTVVVT and TVTVTV are allowable as free particles

whereas objects such as TT, VVV and TTV are not. In otherwords objects iden-

tified by Harari as positrons, neutrinos, baryons and lV-particles are observable as

free particles whereas exotic rishon combinations and more importantly, quarks,

are not.

One possible problem with this proposal concerns colour. As was mentioned

above, Harari originally proposed that colour be dealt with through the ordering

of rishons within quarks (and other coloured particles). Consider now a baryon

state constructed from three quarks:

(rrv)(rvr)(vrr)l) .
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One might at first conclude that the state consisted of quarks of three colours.

This is not quite clear however, if one considers that the order in which the quarks

are applied to the vacuum is also important in our proposal. Thus the state

(rvr)(rrv)(vrr)l)

is not neccessarily a numerical multiple of the original baryon state. Another

problem with interpreting ordering as a colour effect lies with the W-particle.

It is clearly possible to obtain different orderings of rishons in its construction:

TVTVTV and VTVTVT are two. Despite this, lY-particles are assumed usually

to be colourless. This latter difficulty has already been pointed out by other

authors [04] in the context of the original Harari-Shupe model.

A resolution of the above problems will probably require a careful comparison

with a normal g¿uge theory: The appropriate gauge group would appear to be

U(3) x U(3) (consider (2.10) and (2.13)). It is interesting to note in this regard

that a dynamical rishon model based upon almost the same gauge group (Stl(3)x

Str(3) x U(t)) has been proposed by Harari and Seiberg [7t]. In this model the

groups denote colour, hypercolour and electromagnetism, and particles such as

quarks, leptons and lV-particles are hypercolour singlets (the latter two are also

colour singlets).

Whether the proposal made here can be shown to be equivalent, at the global

gauge symmetry level, to the Harari-Seiberg model is not straightforward.

In order to see this, consider, for instance, the neutrino which in the Harari-

Seiberg model is a colour and hypercolour singlet. Within the context of the

present proposal it may be written as combinations of states of the form

,þio (r r) rþä' (r r) úi' þ t)l)

When use is made of equation (2.t0) this becomes

I ö*r'r, (n1)6"t't, (x2)þ"sttz ("r) l)

(3.1l)

(3.12)
t'¡,t¡,!;

(we are dropping the particle labels for notational ease). Now if the superscripts of

the fields in (3.12) are interpreted in the obvious \.vay then they would transform
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as the colour and hypercolour indices. It is unclear then how to obtain colour and

hypercolour singlets from linear combinations of states such as (3.11). The only

possibility would appear to be permutations of the fields in (3.11). As was noted

above the rþ2 fields act like modular fields of order three amongst themselves. In

particular relations (2.1) show that only the second index of the þi fields play a role

in the commutation relations. One can therefore construct a singlet with respect

to the group acting on the second index (see (+.tS) in Chapter 3) by permutations

of flelds. The first index remains however, problematical. Similar considerations

with respect to the electron will show that it is possible there to construct singlets

with respect to the ¡1rsú index only. The above comments indicate that the present

proposal may not be compatible with the Harari-Seiberg model and its notion of

hypercolour.
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APPENDTK A

P¡oof of Proposition 2.3, Chapter 2.

Consider the usual fermi-bose creation and annihilation algebra:

øia¡ ta¡ai = $;¡

a¡0.¡ I aiøi: øia] +. ala! - g (A'1)

where the indices belong to an arbitrary finite set. We create a colour algebra with

grading group I as follows: Take an arbitrary non-zero a € l; if e (a, a) : I ,

select a bose aj' and o,i oÌ if e(4,û) : -1, select afermi oi and c¡. Now if

(i) 2a * 0 then assign ø] the grading a and ø¡ the grading -a.
(ii) 2a = 0 then assign pi - a; + øi the grading c.

Now rewrite the ajra¡ or pi * oä,¿¿-û or po. Repeat the above procedure for

the other elements of I unlesd -c has been considered previously, in which case

make no assignment. Finally assign the identity the grading 0 and delete any

surplus creation or annihilation operators.

It is clear that the constructed colour algebra is a canonical superalgebra and

has an associated colour algebra coloured by < I, e ) F\rthermore for every

a € f there is a unique element in the algebra.

Consider now the Fock representation of (A.l) and consider the states ob-

tained by applying the alrø-o and po to the vacuum: That is, states of the

form

(ol)t' (o_o)t, . . . (o.p)i' (r_p)i, (p^,)*. . . (pr),1) .

If we assign such states the grading

ira - i2a* ...+ jtþ - izþ * kt*...+ ¡6

and let the operators of,, d-a or po act only on linear combinations of such states,

then it follows fi'om (A.f ) and the assignments of gradings, that these operators,

when applied to the above states, will satisfy the fundamental equation (1.9) from

Chapter 2. We have therefore defined a colour algebra representation for our
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canonical superalgebra. Moreover it is clear from the usual Fock construction [63],

that any product of two elements of our algebra will be represented by a non-zero

operator emept aLaL ot a-aa-o, where the creation and annihilation operators

concerned are fermi.

By the results of section 4, Chapter 2, there exists a Klein transformation

on our graded vector space which converts the representation of the canonical

superalgebra into a representation of the associated colour algebra coloured by

( I, e ) . The Klein transforms of the øLrd-o and po we denote by ö1, ä-o and

qo respectively. They satisfy the relations

blb-p - €(o, -þlb-ebL - 6oþ

QaQg - e(a, þ)qpqo = 26o,þ(l - e(a, B))

bobp - e(a, p)bpb, - bLb"þ - e(a, P)b.pbL - O

qobp - e(a, B)bpqo = g.'b*p - e(a, þ)b.pq" - O .

(.A'.2a)

(A.2b)

(4.2c)

(A.2d)

F\rrthermore the non-zero nature of the Klein transformation will ensure that the

product property mentioned above will remain true. Now if the algebra given by

(4.2) is coloured by < I',d ) as well as ( I, ê) , then since there is only one

element of (4.2) for each element of I, it follows that there must be a well-defined

map h between I and f'.
Now since we require the operator algebra (4.2) to also be a representation

when coloured by ( I', d ), then (4.2) together with the non-zero product

property, imply that

e(a,þ) - e'(/¿(a), h(p))

unless o: þ and 2a I 0 when the product property fails in (4.2c). In this event,

we consider (4.2a) with a - p and deduce that

e(a, -o) - e'(l¿(c),lr(-")) .

Now since the identity commutes with all the other elements of the algebra, we

have

e'(ä(0),h(r)) -l V'yeI (4.3)
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and so
e(4, a) : €(0' -a)

- /(h(a), r,(-"))

- t(h(a),tù(0) - å("))

- e'(l¿(c), -lz(a))/(n(a), å(o))

- /(å(a), r'(")) .

In the above we have used å,(a) + ä(-c) - t¿(0) which we can deduce from (4.2a)

with a - B and from (i) in the definition of colouring. We have also used (4.3)

to get the last step. t

131



APPENDD( B

Klein transformations in ffeld theory

In this appendix we consider Klein transformations independently of the colour

algebra formalism developed in Chapter 2. Despite this, we show below that

nothing extra is gained. The formalism developed here, however, proves more

convenient for considering a number of applications in generalized quantizations.

We shall be interested in creation-annihilation rings satìsfying the relations

dç) d$) + af)aj:) _ o

¿\G) ¿ft) + dP d*.G) - 6¡n6,t
(8.1)

(8.2)

(8.4)

The j and ,t refer to a denumerably infinite momentum set, while the r and ú

take on a finitex number /V of integral values. For our purpose, only the latter

set of indices are relevant ancl so for convenience we rewrite djl) æ d, and so on.

The Klein operators K,. and K¡ will be assumed to commute and also to

satisfy the following quite general relations:

o(trr)K,dt = dtK,

o(t,r)K,d| -- d;K,

o(t,i)K7da - dtK;

o(1,r)K7di = diK¡ ,

where o is an arbitrøry non-zero mapping of our index set into the complex num-

bers.

The Klein transformation is then given through the equations

br: Krd, b|: K¡di (8.3)

The ö, and öi shall be required to satisfy the relations

b"U+e(r,t)b¡b,-O

b:U +. e (r, ú)ö¿öi = 6,t ,

* Generalizations to an infinite number of values are no doubt possible but are

not central to this thesis.
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with e being a non-zero map into C which can be determined fron o. To make this

determination, we substitute (8.3) into (B.a) and use (8.2) and (B.l) to conclude

that

e (u, u) = o(u, u)o-t (u, ,) , (8.5)

with u = t,t and u = r,7. In addition to this, the second equation of (B.a) leads

to the requirement that

K¡K, = o-L (¡, t) . (8.6)

This ensures that the right-hand side of the equation is ôr¿ after the application

of the Klein transformation.

Thus given the equations (B.t), (8.2), (B.B), (B.S) and (8.6) then (B.a)

follows. We therefore adopt these first five equations as our definition of the

Klein transformation. A number of consequences for ø can be deduced from these

equations. Firstly, if we multiply the first equation of (8.2) on the left by ff¡ and

then use the second equation in conjunction with (B.G), we conclude* that

o(t,r)o(t,r) =t, (B.Z)

and in a similar way that

o(t,r)o(t,F) :t. (B.s)

Consider now the second of (8.1) with r: t and i = k:

diúrd"d:-r.

If we multiply on the left by K, and use (8.2) we can deduce that

o(l,r)o(t,r)K, - l{, ;

and when (8.6) is used this becomes

o(1,,r)o(t,r) :1. (8.9)

Similarly we deduce that

o(î,r)o(t,F) - I . (8.10)

* we are assuming that d,, * 0; this follows from the second of (B.l) with

i:k,r:t.
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It is now possible to show that (B.l) and (B.a) define colour algebras; that e

defines a commutation factor and frnally that the Klein operators introduced here

are just special cases of the ones introduced in section 4 of Chapter 2.

To carry out this program, our first step is to grade the elements d", d| and

b,,b: with the gradinggroup* lz=ZeZ @...@ Z (N copies):

d. b, .---+ (0,0,...,0,1,0,...,0) r'th place

d;,b;-(0,0,...,0,-1,0,...,0) " (8.11)

l 
-r 

(0,0,...,0) .

Now let arþ € fs have the form (tt,...,rrv) and (ú1,...,úry) respectively. We

induce a o '.l s xl2 ---+ C as follows: 

ff
o(a, þ) - II [o(', i)]'", (8.r2)

d,i

where a(i, j) are the ø defined previously. If the index set is mapped into 17 in

the obvious way, namely

a(r) - (0,...,1,...,0) r'th place

a(r) -(0,...,-1,...,0) ",

it is clear from (8.12) and (8.7)-(8.10) that

o(a(u),a(u)) - o(u,a) . (8.13)

Moreover we can induce an e from (B.tZ):

ff

e(a,B) - o(c,tþ)r-'(þ,o) - II lo(i,i)l"" lo-t(i,t)]""
lr!

ff

- II e(i, ¡¡';ti , (8.r4)
lrt

which consequently satisfies

e(c(u), "(r)) - e(u, u) , (8.15)

* It is to be observed that such a choice of grading group is not, in general,

unique.

134



and, as a result of (8.5) and (8.14), also satisfies the commutation factor rules

(l.B) of Chapter 2. It is clear now that (B.a) is a colour algebra*. Finally we

can identify the K,, K7 with the unscaled Ki of section 4, Chapter 2. This

identification is

K, = Ki la(r)) K¡ - Ki (+a(r¡¡ . (8.16)

To see this, firstly observe that the form of (8.12) ensures that ø(a,B) satisfies

(4.4), chapter 2 and ø(4,0) - ø(0.4) - l. secondly with the help of these

relations lor o, together with equation (8.13), equations (8.2) become special

cases of equation (4.3), Chapter 2. Thirdly we deduce from (4.2), Chapter 2 and

(8.6), that the r o1 Ki need only satisfy

r(a(r), -a(r)) : o-r (1, r) . (8.17)

when r is decomposed into its trivial form r-r(o)t-t(þ)r(" +B) we see that

(8.17) amounts to the restriction

r(-a(r)) - r(0)r-r (a(r))ø-r (r, r) ; (B.18)

so, providing our scaling set r(a) satisfy this relation, the Klein operators defined

through (8.16) wilt satisfy equation (4.2), Chapter 2. Finally we can induce the

full set of Klein operators Ki (P) through the equation

il
Ki @ = r-1@) II [r(sren(t;) a(i))Ki þisn(t;)a(t))llúrl

d=1

ff
: r-r (B) fl [r(sien(t;)c(¡))Kd]l¿rl (B.le)

i=1

which can be shown, in a straightforward manner, to agree with (8.t6) and more

importanily to satisly ( .2), Chapter 2.

We now examine the question of representations. Fock representations of the

relations (B.l) have been explicitly constructed by, amongst others, Berezin [63]

and we use these here.

In the fermi case the commutation factor for such a colour algebra is actually*

-€
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An interesting feature of such representations is that they may be graded by

an arbitrary grading group f . More specifically we assign gradings from I fior d,

and di as follows:

di 
- -c(r)

d, 
- 

+a(r) (8.20)

1--+0,

where o(r) is an aró¿trary map of the index set into f . Products of elements

from (8.20) will have gradings that are sums of the gradings of the elements in

the product. Consider now the Fock-space and observe that any state dl), with

d an arbitrary element of the ring C associated with d" and d|, can be easily

rewritten,withtheaidof (8.1), r. d'l) where d'consistsonlyof sumsof products

of creation operators. Now as we have seen in the discussion preceding (2.32),

Chapter 3, it is possible to choose an orthogonal set of states d;j"')...d;j'")l),
each being non-zero, which will span the set of states d'l). Now since such a set

is dense in the Fock-space we conclude, as we have done before, that an arbitrary

state in this space may be written as a linear combination of the above orthogonal

states. Now if we assign d;:"')...d;t")¡¡ tn" grading -ÐLra(r¿) then it is

clear that l(C) has been graded according to (1.1), Chapter 2. It remains to

be shown that the grading assignments made for C respect those of î(C) (see

equation (1.9), Chapter 2).

A little thought shows that it suffices to consider the action of d*.(') and dj.')

on the state di(", . . . 4'",l) . The first has the result ¿".(') ¿*(") . . .d;:'") l) which

has grading -a(r) - DL, a(r¡) which is what we require. The second has the

result aflal!"1 ...4'"'l), which when the second of (B.l) is used repeatedly,

becomes 
tL

Dt-l)'*'6", 0,,,t|') .. .o:,!:',-)d;1ï') . .. d;;('")l) . (8.21)
l=l

Now a term in (8.21) will only be non-zero if a(r) - a(r¿) and so it follows that

the state (8.21) has grading a(r) - DL, a(rr) . This completes the demonstration

that C has a graded representation for arbitrary grading group l.
Given this fact and the fact that the Klein operators considered above are just

examples of those considered in section 4, Chapter 2, it follows from that section
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that these Klein operators have a representation on 1(C). An interesting feature

of this representation is that the Klein operators turn out to be unitary and the

o lactor a phase factor. To see this we firstly rewrite the second of (8.3) using

(8.2):

b| - o-t (1,r)d;K7 (8.22)

and now taking the hermitean conjugate of both sides and using the first o{ (8.3)

together with (B.8), we have

K,d, - o* (t,r)Kid, (8.23)

or, multiplying through by K¡ and using (8.6)

d, - lo(1,r)12 K7Kid, . (8.24)

Now consider an arbitrary basis state ô o1 î(C\ given by d - d;:")...d;.j'")l).

By choosing r f r; and j t' i; Ior all i, we deduce, by use of (B.l), that

¿Ç)¿|/I)q -- +ö (notice that this argument holds for { - l)). It follows now

from (B.24) and (8.7) that

K¡Kiö - lo(r, r)12 þ

or

K¡Ki - lo(r,r)12 . (8.25)

If we take the hermitean conjugate of the second of (8.3) and use (8.2) on the

first of (8.3), we obtain

d,K; : d,K,o- t (t, t) '

If this is multiplied through on the right by K7 and \rye use the fact that it

commutes with both Kf and K, (due to (8.25)), then we obtain, with the use of

(8.25), (8.6) and (B.e),

d,lo(r,t)lt = d,o-r(i,r)ùr(r,r) - d, ,

which implies that o is a phase factor and that K7 is unitary by (B.25). If we

multiply this latter equation on the left by K, and use (8.6) then we may deduce

that

o-'(r,r)Kl - l{,, (8.26)
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and since ø is a phase factor and Ki unitary, it follows that K, is also unitary.

We now consider the Klein operators which allow a transformation to the para

and modular ansatz algebras. This allows us to demonstrate the existence of the

usual Fock representations of para and modular quantization.

In the modular case we choose ø to have the form

o(r,t) - O(t-t)" (8.27)

and because of (8.5) this results in e having the forms

e(r, ú) - q'-t e(r, t) - nt-' (8"28)

which means (B.4) agrees with (2.14) of Chapter 3.

Consider now the u operator of section 2, Chapter 3. A little calculation

using the commutation relations (2.14) and the expression (8.27) Ior o, will show

that the operators ur-' and K,. obey the same commutation rules with respect

to d, and d]. Since the Fock representation of C is irreducible [63], they are

therefore numerical multiples of each other. It is clear then how the operator u

may be defined on our representation, moreover it will be unitary providing the

numerical factor is a phase factor.

The index set can be graded in this case by the finite group Zy @ ZN(@22)

(contrast this with the f s grading above) as was done in equation (2.10) of Chap-

ter 3. With this grading the o map becomes

o(a, þ) - q(1'-ltla1 (8.2e)

and this leads to

e(a, þ) - no'þ"-o"þt . (8.30)

In the para case we choose o to have the following form

o(s, r) - /¿(r - s) s even

-h(r-s-l) sodd

å,(ú) -a1 r>o

--l ú<0.
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It is easily confirmed then that e(r, s) has the form

e(r,s) =26rr-1,

which is the correct commutation factor for the para algebra (c.f. (1.8) of Chap-

ter 2). An interesting feature of the choice made in (8.31) is that for r odd,

K," and Kr+r satisfy the same commutation relations with respect to d¿ and di;

hence, as before, they are numerical factors of each other. If we make the choice

K, - -iK¡+t, then (8.26) and (8.31) combine to show that Ki - K;. It is also

apparent from (B.31), (8.7) and (B.8) that K¡ and K, satisfy the same commu-

tation relations and are therefore multiples of each other. If we choose them to be

equal, we may conclude that

K K;- K;-K; I (8.32)r

If one assumes that the grading is as it was in the equations following (l.S),

Chapter 2 then it easily checked that the ø map may be written as

c(a, B) - (-t¡ú @, þ)

,þ(o, þ)- t a;þ¡ *f o"o-rB"o-,
d<j lc= I

r=pfT forpeven

=(p+L)lz forpodd.

(8.33)

This then leads to the following expression for e :

e(a, þ\ - 1-t¡X, *io'þi (8.34)

Finally we turn our attention to the extension of the above discussion to the

relativistic case.

To do this, we introduce another copy of the fermi operators d' and di. We

shall call these further fermi operators g, and gi. Instead of grading these as we

did in (8.20) for d, and d], we grade g,. with -o(r) and 9| with a(r).

Since g, and gi both anticommute with d, and d;, it follows that the ar-

guments following (8.20) will generalize. In otherwords, the extended ring which
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includes g, and gi will have a graded Fock representation and ùhis grading may

be with an arbitrary grouP.

The Klein transformations for g, and gi are determined by their gradings,

equation (4.5) of Chapter 2 and equation (B.3). Thus we have

e, -- K¡g, ei -- Krgi . (8.35)

In otherworcls, the g, transforms as d| and the gi as dr'

Consider now a spinor spatial fermi field iÞr(r) [48]. We may write it in terms

of the d, and the 9i:

,i (L.x- E r o) D?=, u¿ (h) df (h )

* ,r'(k.x*8".) Dt. u¿ (k)9|t (k) (8.36)

where, as in section 2 of Chapter 3, ut are the Dirac spin components and V is

the volume in which the field theory is being considered. It is clear now that as

a result of (8.3) and (8.35), a consistent Klein transformation is possible for the

relativistic spinor frelds. This is simply given by

ö,(r) - K,Q,(nl . (B.37)

The possibility for such consistency flows directly from our choice of gradings for

g, and gi.

We consider now the special cases of the modular and para ansatz algebras.

It is clear in the former case that the relations (8.2), (8.27) and (8.35) will lead

to the relations (2.53) and (2.5a) of Chapter 3. These were the relations which

were needed to construct a solution to the modular quantization relations (2.1)

in the relativistic case. In the para case the extension to the relativistic case is

trivial since by (8.32) we may choose K, - K¡ which means that d', d|, g, and

g| all Klein transform in the same way. As a result the addition of the latter two

operators is no different from simply adding an extra label for anti-particles to

the d, and d| operators. This situation appears to derive from the fact that the

gradings for the para-ansatz algebra satisfy c(r) - -a(r) or 2o(r) - 0.

,(r)o
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APPENDD( C

Proof of Theorem 8.4, Chapter I fo¡ derir¡ative flelds.

We consider here the case in which possibly one field ,þ(rrl is replaced by ú(tr ),u..

The extension to the more general case involves no essential difficulties.

In the case o{ Fr(V) we have the more general possible form:

Fr(V) - | Dt:"lorrl,'þr)rþ. (rr) + b;rþí(r¡)l d,r¡d,x2 (C.1)

with
út(rt) = rþ("t) r - 0

=tþ(rt),p, d-1.

By the use of the same arguments as those presented in the restricted proof, we

may deduce that Lor u f O,

Fo = | trD,-¿=o 6;@þr¡¿.(r) þr)(o; -q-aä;) -o . (c.2)

Introduce now the following operator:

u(fl=*rlIføÐL;'d.(')(,)d('11ø)aø] . (c.B)

By the use of (3.13), (3.72)* and the properties of both the delta and derivative

delta function, we may conclucle that

U-t (Í)ó(')(r,)¿¡(/) - eit("') ö(t)(ø1)

U-r 6)ö,(ù þr)u 6) - e-ít'(",\ 6t1t¡("r ) . 
(c'4)

Upon calculation of U-r (l)F"t/(/) with an appropriate choice o't f (that is, one

with eif (c') ¡ ¿-;l'("')), we obtain two equations one of which we have considered

in the restricted proof and which leads to the conclusion (for m ) 2) that oe -
åo :0. The other equation is

D,_¿:o çt(t)þr¡p.(') þr)(o, - n-o ór) : O . (C.5)

* Equation numbers in this appendix refer to those in Chapter 3.

r:= I
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If we cãrry out the calculations Fjl(')þù -qoÔ('\þ"\Fl t Go-- and then

Go-rö"(.-o)("r)+ ?o-' 6t$o-o)("r)Go-., we may conclude, in the same way as

the restricted proof (using the properties of the derivative delta function), that for

m)2
øLtpL= ót,pr:O (C.6)

where rp¡ trow means + This equation implies that at(zt,z2) and b¡(z¡rz2)
ozLp

are not functions of, z¡. We now evaluate

o = Go-- 
| 

ton-t ("rr)ô*(--o) þ1)dz1u

* qo-' I ton-t ("rr)Ô"(--o) (z¡)dz¡uGo-. P.7)

and obtain the equations

(c.8)

Since the ø1lrrr"r) and ö1 (rtr"r) do not depend on their first variable and since

the rest of the integrands above are positive it follows that or = ór - 0.

In the case of Fo(V) the form of the possible observables is modified in a

way exactly analogous to (C.2). Application of the argument above involving the

operator U(/) allows us to reduce the problem to one in which each term in the

observable has a ú'(rt).Followìng the argument given in the restricted proof we

obtain equations analogous to (3.66) except with, for example, aft^n replaced by

ofl n 
run (the second subscript has the same meaning as the subscripts in (C.t)).

By use of the argument following this, we conclude that øflr*' ,øt{" and øf¡r-* do

not depend on their first variable. The proof given ¿bove for F2(V) is then easily

modified to show that these functions are in fact zero. For the coefficient s orli""

and øf¡r-o we again have equations (3.70), with the two coefficients replaced by

4f,?n ,u* and a\{',p^. When the identity (3.7t) is modified by replacing Ú(51) by

ú(nt),u, and similarly the appropriate delta functions replaced by derivative delta

functions, the argument below (3.71) will hold with the modified (3.70) showing

that the right hand side of the integrated expression is zero. This allows us again

to reduce the Fa(V) to a F2(y) t we did in the restricted proof.

I##*,-o
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