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ABSTRACT

An important solution of the paracommutation relations is the so-called Green
ansatz. Recently it was observed that this may be constructed from an algebra
which shall be termed in this thesis, a colour algebra. Colour algebras are natural
generalizations of the better known superalgebras. Their generality suggests they

may be the key to exploring further forms of quantization.

In Chapter 2 colour algebras are studied in their own right. It is observed
that a colour algebra can be described by an abelian grading group and a complex
valued commutation factor defined on this group. It is further observed that these
two objects are, in general, not fixed for a particular colour algebra and in fact, a

unique canonical pair may be found.

Another aspect of the classification problem for colour algebras is considered
in section 3, where it is shown that there is an abstract algebraic map between
colour algebras and ”canonical” superalgebras. In section 4 it is shown how this
abstract map may be implemented by a Klein transformation and how this allows
one to show that a representation of a colour algebra can be obtained in a simple

manner from a representation of its ”canonical” superalgebra.

In Chapter 3 another method of quantization called modular quantization
is examined. This is shown also to have a colour algebra ansatz solution— the
relevant colour algebra being different to that for paraquantization. The unique-
ness of this solution for Fock representations is examined and an algebraic vacuum
condition (being a generalization of a similar paraquantization condition) is found
which implies the solution. It is further shown that the only ansatz type solution

is the one given. Relativistic complications are also examined.

In section 3 the question of suitable observables is discussed. A condition
known as strong locality is imposed and a set of observables is demonstrated to sat-
isfy the condition. Moreover these observables are shown to satisfy commutation
relations that are a generalization of the paracommutation relations. Restrictions

on the algebraic order of strongly local observables are then discussed.
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Section 4 contains a comparison of a modular field theory and a normal field
theory with a hidden U(m) global gauge symmetry. This comparison is made
possible by the Klein transfomation.

Finally in Chapter 4, a generalization of the modular quantization is exam-

ined.
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CHAPTER 1

INTRODUCTION

It is well known that observable particles may be divided according to their statis-
tics into the two categories of bosons and fermions. Although there is no reason
to suspect any other kind of particle statistics, it is not possible to rule out such
possibilities mathematically. In fact, it was realized around 1950 by Wigner and
others [1] that the Heisenberg equations of motion for quantum field theory do not

neccessarily imply the usual bose and fermi equal-time commutation relations.

Somewhat later Green 2] showed that there are more general commutation
relations which also satisfy the equations of motion. There is one set of relations
for fermi-like spinor particles and one set for bose-like tensor particles. The two
kinds of particles are referred to as parafermions and parabosons respectively.
The relations have become known as the para commutation relations and the
resulting field theory is usually referred to as parafield theory. While the para
commutation relations are satisfied by the usual fermi and bose relations, Green
also demonstrated the existence of further solutions. These are referred to as
the ansatz solutions and are constructed by letting the parafields be sums of a
certain number of ansatz fields which satisfy anomolous fermi or bose commutation
relations. The number of such fields in each sum is then referred to as the order

of parafield theory. In particular, the usual fermi and bose cases are of order one.

This scheme of generalized quantization remained of somewhat academic in-
terest until 1964 (see however [3]) when Greenberg (4] made the suggestion that
it be applied to the newly proposed quark model. The reason for this suggestion
lay in the apparently anomolous statistics satisfied by the spin one half quarks
within the baryon. They appeared to be symmetric wifh respect to interchange
whereas their spin indicated that a fermionic antisymmetry should have been ob-
served. By treating the quarks as parafermions of order three, Greenberg was able
to construct, with the aid of Green’s ansatz, a baryon state of three quarks which

was symmetric with respect to interchange.
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It was later shown [5], [6] that the Greenberg model was essentially equivalent
to another suggestion made to overcome the above problem. This latter sugges-
tion is the well-known colour model (7] which involves the introduction of the
SU(3) colour group as a further particle symmetry. The symmetry of the baryon
state is then ensured by postulating that all observed particles are colour singlets.
The baryonic colour singlet can then be shown by group theoretical means to be
symmetric.

The possible physical relevance of parafield theory then stimulated a gréater
analysis of the subject. In 1965 Greenberg and Messiah [8] demonstrated that
in the case of Fock representations, the only solutions to the para commutation
i‘elations are those given by Green’s ansatz. Although non Fock representations
have also been considered by several authors [9], even in these studies the ansatz
fields still play a cental role. This indicates that the ansatz fields are of interest in
their own right. We pursue this idea below.

In the late 1960s the properties of the Fock-space of parafield theory with re-
spect to the symmetric group S, were investigated by Landshoff and Stapp [10].
If this group is implemented by particle permutations (permutations of the mo-
~ mentum or spatial indices of the fields), it is well known that only the trivial
representation of the group occurs for bosons and fermions. In the case of higher
order parafermions (parabosons) however, Ohnuki and Kamefuchi [11] were able
to demonstrate that for n-particle states exactly one representation of S, occurs
for each Young tableau with rows (columns) of length no more than p, where p
is the order of the parafields.

This result was important because it allowed Driihl, Haag and Roberts [6] to
demonstrate that parafield theory with a Fock representation is esséntially equiv-
alent to an ordinary field theory with a U(p) symmetry. The proof given by these
authors applied only to a non-relativistic theory in the sense that no consideration
was given anti-particle states. The extension to anti-particle states was provided
by Ohnuki and Kamefuchi [12].

The comparison with an ordinary theory was made possible by means of the
Klein transformation {13], which enabled the authors to transform the ansatz fields,

which satisfy anomolous commutation relations, into ordinary fermi or bose fields.
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The notion that parafield theory is equivalent to a U(p) global gauge theory
was reinforced by Gray [14] who showed that the cluster decomposition principle
is satisfied by parafield theory only if the observables of the theory are those
which are left invariant under U(p) in the corresponding normal theory. This
conclusion was disputed however, by Ohnuki and Kamefuchi [15] who claimed
that the cluster decomposition principle places no restriction on observables and
that it is only conditions of locality which impose constraints on the theory. The
differing conclusions appear to this author to be due to differences in how the
theory should be physically interpreted.

The U(p) symmetry of Driihl et al is, as was noted above, only a global gauge
symmetry. Now since the colour group used in elementary particle theory has be-
come a local gauge symmetry with the advent of Quantum Chromodynamics [16],
one might hope that a similar extension of symmetry may be possible within the
framework of parafield theory. In 1976 this problem was tackled by Freund [17]
who concluded that it was impossible to construct the Yukawa term of an SU(p)
local gauge theory using parafields. Freund did acknowledge, however, that there is
a possibility of constructing an SO(3) theory using parafermions and parabosons
of order three. This suggestion was made by Greenberg, and later Govorkov (18]
explicitly constructed such a theory by means of the quarternions.

This lack of success in introducing the usual gauge fields led to a number of
modified parafield theories. One of the first of these involved the introduction of
octonions [19], which are a non-associative generalization of quarternions. In this
theory the spinor fields are the the sum of three ansatz fields which are the products
of ordinary fermi fields and certain complex octonion units. Gauge fields for an
SU(3) theory can then be introduced because the Lie algebra of derivations for
the octonions contains SU(3) as a subalgebra (the full algebra is the exceptional
G3). One of the difficulties involved in considering such a theory is the non-
associativity of the octonions. This means that fields can no longer be considered as
operators on an ordinary Hilbert space and the latter must be generalized to what
is called an octonionic Hilbert space [20]. Another feature of such models which
has not been sufficiently explored, is the problems involved in the “bracketing” of

operators. This is obviously only a feature of non-associative theories, as in the

3



usual formulation the composition of operators is unambiguous. The bracketing
problem may have physical consequences as it appears to produce a profusion of
new states, just as the non-commutative nature of parafields produces more states
than the commuting and anti-commuting bose and fermi fields.

A further attempt at using a non-associative algebra in the context of ansatz
constructions was made by Domokos et al [21]. In this approach the bracket-
ing problem was resolved for states by assuming a fixed pattern. This was the
“composition” bracketing, namely (ay(az(as(...(and)...))).

It is interesting to examine the consequences of such bracketing in the case of
the octonion theory mentioned above. If we consider the octonionic Hilbert space
to be the direct product of an ordinary Hilbert space and the eight dimensional
octonion algebra, then the above bracketing allows operators on states to be re-
placed by an associative algebra of operators acting on the direct product of the
ordinary Hilbert space and an eight dimensional vector space. In this formulation,
the octonion units in the ansatz are replaced by matrices corresponding to the “left
multiplication” operators of the octonions [22]. In this reference, it is shown that
these matrices form the complex Clifford algebra which has three pairs of starred
and unstarred elements. It should be emphasized that the above conversion to an
associative algebra is applicable only to the formation of states and the formation
of observables still requires investigation.

In the light of the above discussion, it is interesting to note that Greenberg
and Macrae [23] have considered ansatz fields which are products of ordinary fermi
(or bose) fields and elements from a Clifford algebra. In the case of a real Clifford
complex algebra however, a slightly modified theory results. The Clifford elements
from the ansatz transform according to the fundamental (and conjugate in the
complex case) representation of the groups SO(p) in the real case and SU(p)
in the complex case. The transformation is implemented by quadratic Clifford
elements which are then used to define gauge fields. A local gauge theory in the
respective groups can then be constructed.
of bose fields and quadratic elements from the Clifford algebra.

All of the approaches to modifying parafield theory discussed above have as

their central feature a modification of the ansatz solution to Green’s original com-
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mutation relations. In view of this, it is of some interest to study the ansatz from
a mathematical point of view. Now the ansatz “algebra” contains commutators
and anti-commutators and one might at first sight conclude that it was an ex-
ample of a superalgebra [24]. This is not the case however, and Rittenberg and
Wyler [25] have demonstrated that it is an example of what they term a colour
(super)algebra. This class of algebras is in fact, a generalization of the class of
superalgebras.

Such algebras are graded by an arbitrary abelian group while superalgebras
need only be graded by the cyclic group Z;. In addition the commutation relations
in colour algebras are described by a complex valued commutation factor and thus
need not be restricted to commutators and anti-commutators.

In 1979 Scheunert [26] analysed colour algebras in more detail and concluded
that there is a “canonical” superalgebra for every colour algebra. In Chapter 2
of this thesis we continue the analysis initiated by Scheunert. It is shown that
in certain cases, a grading group and commutation factor may be replaced or
“covered” by a new such group and factor. This means that any colour algebra
having the original grading group and commutation factor may also be considered
as a colour algebra with the new group and factor. With the use of a particular
kind of replacement called a covering homomorphism, it is shown that there exists
a “canonical” set of grading groups and commutation factors. The canonical factor
is almost determined by its canonical grading group. It is further shown that for
a particular grading group and commutation factor there is a unique minimal
replacement grading group and commutation factor from the canonical set. The
word minimal means in this context, that no smaller grading group can cover the
original group.

Klein transformations are also introduced within the general framework of
colour algebra theory. It is shown that they allow the explicit transformation of
colour algebras into their canonical superalgebras. This result is shown to have
important implications for the representation theory of colour algebras.

As well as considering Klein transformations within the context of colour
algebra theory, in Appendix B we consider them purely within the framework of

ansatz algebras. Although the Klein transformations derived are no more general
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than their colour algebra counterparts, they are more convenient for the purposes

of field theory.

It is interesting to compare the colour algebra ansatz solution of parafield
theory with the modified ansatz constructions considered above. In the former
case the fields are sums of products of ordinary fermi or bose fields and Klein
operators which commute among themselves but not with the fields (they acquire
numerical factors when “taken through” the fields). In the latter case the fields
are again sums of products of ordinary fields and certain operators, however these
latter operators commute with the fields and form a non-trivial algebra amongst

themselves.

In 1975 Green [27] considered a further kind of generalized quantization which
he termed “modular” quantization. The commutation relations satisfied by the
modular fields are a generalization of a set of commutation relations discovered
for parafield theory of order two (see Green [2] and Volkov (3]). By means of a
unitary “permutation” operator* Green was able to derive a particularly simple
billinear set of commutation relations for the modular fields. This operator was
also used to demonstrate the existence of an energy-momentum operator satisfying
the Heisenberg principle. In Chapter 3 a detailed analysis of modular quantization
is undertaken. It is shown that the introduction of the permutation operator is
equivalent to considering an ansatz solution of the original commutation relations.
The modular ansatz fields form a colour algebra of a different kind to that of
the parafield ansatz algebra. Given the interest in the literature in generalizing
parafield theory and also in developing the mathematical theory of colour algebras,
it is of some interest to study the implications of modular field theory. This is
particularly so since, as far as this author is aware, modular field theory is the
first example since parafield theory of a field theory with a colour algebra ansatz

solution.

The permutation operator introduced by Green is shown to fit into the frame-

work of colour algebra theory also, since it generates the Klein operators for the

* Such an operator had already been introduced by Carey [28] in the context

of parafield theory of order two.



modular ansatz fields.

The similarity in the solutions for modular and parafield theory suggests that
an analysis of the former along the lines described above for parafield theory may
prove useful. This philosophy motivates the remainder of Chapter 3.

It is shown firstly that there is a condition on the Fock vacuum, involving
modular creation and annihilation operators, which allows us to deduce the ansatz
solution from the original modular commutation relations. It is not known whether
such a condition can be derived from the commutation relations and the Fock-space
properties, as it can be in parafield theory. It is shown, however, that the particular
ansatz solution is the only such one. Relativistic complications are then considered
and it is observed that anti-particle operators of modular field theories appear to
be algebraically different to their particle counterparts. This is a situation not
holding in parafield theory.

In the next section, the question of observables is considered and following
Ohnuki and Kamefuchi [29], two notions of locality, strong and weak, are intro-
duced. A neccessary and sufficient condition is derived for strongly local modular
observables and a set of such observables are then derived. The algebraic form of
such observables is far from trivial and may prove of interest in further develop-
ments of modular field theory (particularly in the area of interacting field theory).
“The fact that such observables are strongly local allows us to then introduce a
new set of commutation relations for modular field theory. These relations are a
generalization of the basic para commutation relations. It is possible that these
relations may be more useful than the original relations although this question is
not explored. Finally it is demonstrated that for modular field theories of order
three or more, there are no quadratic strongly local observables while for order
greater than four, it is shown that there are no such observables of order four or
less. This latter observation is important because it may have consequences for
constructing renormalizable interacting field theories.

In section 4, modular field theory is compared with an ordinary U (m) gauge
theory (m being the order of the modular field theory). It is firstly observed
that it appears likely in modular field theory that not all the observables for the

gauge theory can be constructed. Despite this, a number of observables which are
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invariant under U(m) are constructed.

The states of the two theories are then compared and it is shown that all
physically relevant states for the gauge theory are included in the modular theories’
Fock-space. It is observed that in the modular case, the redundancy of these states
is intermediate between the gauge theory and parafield theory (where there is no
redundancy).

The conclusion of the above is that modular field theory is essentially equiva-
lent to a U(m) gauge theory which has some further restriction (apart from global
gauge invariance) placed on its observables. This contrasts with parafield theory
where there is no additional restriction. The mathematical and physical nature of
this restriction awaits further investigation.

Finally in section 5, the question of the energy-momentum operator is consid-
ered. Various reasons are advanced as to why an interacting field theory may be
a more natural setting for modular quantization. The most promising candidate
in this regard is modular field theory of order three.

In the final chapter of the thesis a generalization of modular field theory is
considered. This is introduced by considering a generalization of the modular
ansatz algebra to a more general colour algebra. A possible application of the
generalization to the rishon model of subconstituents [30] is then considered.

The major original results in this thesis are as follows:

Theorems 2.4 and 2.11 in Chapter 2, where a unique minimal commutation factor,
grading group pair is demonstrated for all colour algebras graded by finite abelian
groups.

Theorem 2.1 in Chapter 3 where a vacuum condition is shown to imply the ansatz
solution for modular ficld theory.

Theorems 3.2 and 3.4 in Chapter 3 where the algebraic form of strongly local
observables in modular field theory is explored.

Theorems 4.3 and 4.4 in Chapter 3 where it is shown that the usual modular field

theory possesses all states relevant for a U (m) gauge theory.



CHAPTER 2

COLOUR ALGEBRAS

The simplest non-trivial example of a colour algebra is the so-called Lie superal-
gebra. The study of superalgebras began, in mathematical physics at least, in the
1970s [31] when they were used to describe a postulated symmetry between bosons
and fermions (supersymmetry). The idea behind such an algebra was that anti-
commutation as well as the usual Lie commutation relations should be included

in the one algebra.

In order to make such objects tractable one first supposes that the algebra
is graded by Zs : If a, and b are elements of the algebra and o and B are

elements of Z; then

ag0bg =cayp,

where o is the product of the algebra. In addition a generalized symmetry of the
product, together with a generalized Jacobi identity, are assumed to be satisfied.
These algebras have been studied fairly intensively over the past decade and a
classification analogous to the semi-simple classification of Cartan for Lie algebras

has been obtained by Kac [24].

The object of this chapter is to study a further generalization of superalgebras
to colour algebras*, which were introduced by Rittenberg and Wyler [25]. These
will be defined more precisely below, but essentially all one does is extend the
grading group Z; of superalgebras to a finitely generated (usually finite) abelian
group. The symmetry property and the Jacobi identity are generalized in an
obvious way and the anti-commutation and commutation relations are generalized

by means of a complex-valued commutation factor.

For any particular colour algebra the grading group and commutation factor

are not unique. This phenomenon is explored in section 2, where it is shown that

* These are also known in the literature as generalized Lie algebras. We adopt

the name colour algebra in the the interests of brevity.
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“canonical” forms are possible for these two objects. It is further shown that these
are, in some sense, unique.

An important property of colour algebras was discovered by Scheunert [26]
who showed that to every colour algebra there corresponds a “canonical” superal-
gebra. In section 3, proofs of this correspondence are given while in section 4, the
correspondence is made more concrete by means of a generalization of a transfor-
mation due to Klein [13]. The usefulness of this transformation will become clear
when we study the application of colour algebras to modular quantization in the

next chapter.

1. Definitions and Examples

A vector space V is said to be graded by the abelian group I' if it may be decom-
posed as a direct sum of subspaces each labelled by elements of I'. Symbolically

we write

v=EV.. (1.1)

a€rl
We say further that an algebra A is graded by I' if, as well as being graded as a

vector space, its elements and product satisfy
AaAﬁ _C_ Aa-}-ﬂ . (1.2)

In order that this graded algebra becomes a colour algebra we need to impose
further algebraic constraints.
Central to these extra conditions is the notion of the commutation factor.

This is a mapping €: ' x I' > C which satisfies the conditions

€(a, Be(f,a) =1
e(a, B+ 7) = e(a; (e, ) (1.3)

e(a+B,7) = el 7)e(By7) -
One now defines a colour algebra as satisfying {1.2) together with the two condi-
tions
aqxbpg = —¢€(a, B)bgaq (1.4a)
(7, a)aq(bgcy)t+e(a, Bba(cyaa) + €(B,7)cy(aabs) = 0. (1.4b)

10



The second of these conditions is a generalized form of the Jacobi identity.

One can thus think of a colour algebra as a graded algebra and a commutation
factor. In the special case of a Lie algebra the grading group is trivial and the
commutation factor is always 1 while in the case of a superalgebra the grading
group is Z, and the commutation factor is (-1)** «,8 € Zz = {0,1}.

A few trivial consequences of (1.3) which prove useful below, are

e(a,a) = £1
€(a,0) = €(0,a) =1 (1.5)

e(a, np) = €*(a, f) = e(nax, f) -

0 is the identity of ' and nf =+ B+ ...+ f (n times).
Associated with a T' graded colour algebra is a natural Z; grading. This is

obtained by the homomorphic mapping ¢ : I' = Z; as follows

¢(a) =0 if ela,a) =1
(1.6)
¢(a) =1 if  ela,a)=-1.

This map is well defined because of the first of (1.5), and is homomorphic due to

(1.3). A “canonical” commutation factor ¢ may now be defined on I':
eo(a, B) = (-1)#(*¢0P) (1.7)

The fact that ¢, is a commutation factor follows from the homomorphic nature of

¢ . This grading and commutation factor will play a central role in sections 3 and

4 below.

As our first example of a colour algebra we consider the “ansatz” algebra of
parastatistics [2]. This consists of N creation operators, N annihilation operators

and the identity and satisfies the relations

lai 0}]- = lai,a5]- = [of,a5l-=0  i#j-
lai, ail+ = [a],a{]+ =0 (1.8)
lai,ai]l+ = 1.
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The grading group for this algebra is taken to be Z; ® Z2 @ ... ® Z; (N factors)

and the elements of the algebra are assigned the gradings

a;,af — (0,0,...,0,1,0,...,0) (i’th place)

1 — (0,0,...,0).

With this assignment the commutation factor takes the form
e, B) = (-1)*(>P)

with ¢(a, f) = Zf;l a;B; and where we are using the notation
a=(a,00...,an) .

The product of the colour algebra is taken to be the brackets in (1.8). We shall
meet another ansatz algebra with a similar interpretation in the next chapter.
Another simple example is the so-called generalized Clifford algebra of Ra-

makrishnan [32]. This consists of m elements a; satisfying
a;oa; = a;a; — n'._"a_,,-a,,- =0

where 5 is the m’th primitive root of unity. The algebra is graded by Z,, & Zp,

as follows

a; — (’) 1) ’

and the commutation factor is simply
e, ) = n¥*P)

with ¢(a, B) = a1 f2 — a2f:.

Perhaps one of the most important examples of a colour algebra is the algebra
denoted by gl(V,¢). This is the set of graded linear maps on the graded vector
space V, with € being the commutation factor with which they are turned into a

colour algebra. More specifically they satisfy

G (Vﬁ) C Va+ﬂ Vga € gl(V1 €) ) (1'9)

12



and are turned into a colour algebra by the product

ga9 = 9a©°9p — e(a, ﬁ)gﬂ O Ja » (1-10)

where o is the composition of maps product. The associativity of composition
maps, together with the axioms (1.3) for €, ensure that the conditions (1.4) hold.

In perfect analogy with Lie algebra theory we are able to define a represen-
tation of a colour algebra A as a homomorphic mapping of A into gl(V, €} which
preserves the grading of the elements of A and e obviously must be the same in

both A and gl(V,€).
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2. Commutation factors

The major result of this section shall concern finite abelian groups however the

preliminary results shall apply equally well to finitely generated abelian groups.

2.1. Introduction
The fundamental result [33] concerning finitely generated abelian groups is that

they possess a unique (up to isomorphism) decomposition given by
r=r,,el,,e...el, 86Z0...07, (2.1)

where ['p, are abelian p;-groups (with the p; being distinct primes) and Z is the
integers. The T'p, have a further unique (up to isomorphism) decomposition into

cyclic groups given by
Tp, =Z[(pa) @ Z[(pi)]®...© Z[(p:)"™"] , (2.2)

where Z [(p;)™/] is a cyclic group of order (p;)™ .
If one confines oneself to finite groups then the copies of Z in (2.1) are omitted.
We begin by deriving a couple of basic results concerning commutation factors
on finitely generated abelian groups. Firstly let us denote the generators* of the
cyclic groups in the decompositions (2.1) and (2.2) by ¢;. In otherwords g; either
generates Z [(p;)™] or Z (the fact that I’ is finitely generated means the 4 ranges

‘over a finite number of values). We now define

Ei; = €(gi,95) #0 . (2.3)

When use is made of (2.1) and (2.2) we can write an arbitrary a €I as

M
tl:z}:ﬁHQi, (ZA)
1=1
where M is the number of cyclic summands in the unique decomposition. We can
now deduce from (1.3) and (1.5) that an arbitrary commutation factor may be
written as

M
e(a, f) = [] (B)™™ ] (Bje)™™ ™™ . (2.5)

=1 i<k
where

* These need not be unique.
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VR
B=) mig
i=1

and where (1.5) shows that

E;=+1. (2.6)

A simple consequence of (2.5) which we will have cause to use in the next section
is the following: For every e satisfying e(a,f) = 1 thereexistsa o : I'xI' = C

which is non-zero and satisfies the relations

e(a, f) = o(e, B)o" (B, )
o{a, B+ 1) = o(e,fo(a, ) (2.7)

o(a+p,7) =a(x,7)0(B,7) -

It is simply given by
ola, f) = [T (Bae)™™ , (2:8)

i<k
where the notation is the same as that of (2.5). The results expressed in equations
(2.5), (2.7) and (2.8) are due to Scheunert [26].
The E;; are not arbitrary and, by using (1.5), it is straightforward to see that

(Eij)" = (By)' =1, (2.9)

where r and s are the order of the cyclic groups generated by g¢; and g¢; respec-
tively (we take the order of Z to be zero for convenience). It immediately follows
that if  and s are different prime powers then E;; = 1 whereas if they are powers

of the same prime then E;; is a v’th root of unity, where
v = min(r,s) . (2.10).

We now impose the restriction that T' be finite in order to get a convenient de-
composition of commutation factors. By use of the remarks following (2.9), and

(2.5), we deduce that a commutation factor may be written as

e(a, B) = e1(ar,P1)ez(az, P2) . . - €nlan, fn) , (2.11)
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where the ¢; are commutation factors on the abelian p;-groups of (2.1) and o4, §;
are the projections of @ and B onto these groups. Notice that if we had allowed
copies of the integers in T’ then we could have cross terms between the integer
groups and the p;-groups (consider (2.9) with r =0).

Now let the cyclic groups in (2.2) be generated by the elements s;,82,...,8m.

We can write then

a;p = Ek{sj i = Zl{sj ) (2.12)
7=1 1=1

and by using (2.5), together with the remarks preceding (2.10), we can write the

commutation factors ¢; as

(o, ) = nf(*7)
with

(s, i) = kiM,); . (2.13)

i1 is the primitive (p;)"™* root of unity; the k; and 1; are vectors of length m
with elements {k”} and {lf} respectively and M; is an m X m matrix of integers

modulo (p;)™ .

2.2. Covering
We now consider the central question of this section: The non-uniqueness of the
commutation factor and grading group of a colour algebra.

Consider the class Cpe of colour algebras with commutation factor € and
grading group I'. We say that < T',€ > covers < T, e > if every member of Cr,
is also a member of Cr/es and any representation of an algebra in Cr. is also a
representation of the algebra when considered as a member of Crses. Notice that
this relation is not neccessarily symmetric and in fact is a partial ordering which
is inherited from the class containment relation.

In order to use this relation we need a more technical definition of a colour
algebra than that given in section 1: Suppose we have an algebra A whose elements
we denote by a* (i belonging to some set (1) then we may define this algebra

through its structure constants C,';j.* In otherwords the product on A is defined

* We assume for simplicity that these are complex.
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through the equation
@' oa’ =CJd*, (2.14)

where summation over {1 is implied by the repeated index. We now say that A is
a colour algebra with abelian grading group I' and commutation factor €, or more
briefly A is coloured by < T,e>, if
(i) There exists a map ¢ : 0 — T’ such that whenever C,';" # 0 then
B(i) + 6(7) = $(k).
(ii) € is a commutation factor in the sense of (1.2).
(i) CF =—-e(p(),8()CF  Vijkel.

(iv) X Se(dk),d()CECF=0 VijkmeQ.
cycl(i,7,k) 1

It is clear from this definition that A will also be a colour algebra with grading
group I and commutation factor € if there exists a map ¢’ : ) — I' satisfying

condition (i), and if

€(¢(1),4(7)) =€ (¢'(3),4'(7)) VYV ije. (2.15)

Upon consideration of (1.10), (2.15) also implies that any representation of A with
< T,e > will be a representation with < I',€ >.
A very general situation where < I'', € > covers < I', € > is when there exists
what we shall term a covering-homomorphism between I' and I".
We say h:T' — I is a covering-homomorphism if
(i) it is a homomorphism,

(ii) € and €' satisfy the relation

e(a, B) = € (h(a),h(B)) VYa,feT. (2.16)

To show that < I'',e > covers < I',e > we observe that given any algebra A
with a colouring < T',€ > we can obtain a colouring by < I'/,¢’ > with the new

grading map ¢’ given by
$=hoo.

This satisfies condition (i) of the colour algebra definition because h is a homo-

morphism. Finally, equation (2.15) follows directly from (2.16).
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If we suppose that h is onto and satisfies the relation
acker(h) = ¢€a,pf)=1 Vpel, (2.17)

then € will be tnduced from € via (2.16). This is the case since if h is onto then
(2.16) will define €¢'. This definition will make sense since if there is a v # a such
that h(a) = h(q) then a—v € ker(h) and so e(a—1,F) =1 or €(a, B) = €(1, B).
A similar argument holds for the second argument of €. Finally it is easy to
establish that € will be a commutation factor on I'': The first equation of (1.3)
follows from (2.16) and the fact that € is a commutation factor. The other two
also follow this way with the additional use of the homomorphic property of h.
Notice that if A were an isomorphism, that is 1: 1 as well as onto, condition
(2.17) is fulfilled trivially because ker(h) = {0} and so (2.17) follows from (1.5).
It should be observed at this point that Scheunert {26} has considered what he
terms equivalence of commutation factors. Thus two commutation factors e and
¢, defined on the same I', are termed equivalent if there exists an automorphism

g: I' = T such that
e(a, B) = e(g(a), 9(B)) - (2.18)

It is clear that in this case we can conclude that g is a covering-homomorphism,
as is g—!. Thus in our terminology < I';e > covers < I',¢’ > and vice-versa.

It is an interesting question as to whether a covering-homomorphism between
' and T is neccessarily implied when < I',;¢ > covers < I';e >. We shall
provide a partial answer to this question in Theorem 2.2 below. Before this result
is proved we need a preliminary definition and lemma:

We say that < I',e > is reduced if
efa,f)=1 Vel = a=0.

Lemma 2.1. There always exists an onto covering-homomorphism between I
and a I'", where < I'",e" > is reduced.

Proof: We define T'y, the e-trivial subgroup of I', as follows:

lo={a€l: €a,9)=1 Vyel}. (2.19)
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To see that it 1s a subgroup of T’ suppose a,8 € I’y then

e(a - ﬁ) '7) = e(a, 7)6(—[?) '7)
= (e, 7)e ' (B, )

=1 Vqyel.

We identify the I'" with I'/T'¢ and choose the homomorphism g : I' — I'/T'y to be
the natural homomorphism (Fuchs {34]) which is onto and has kernel I'y and thus
by (2.17) is a covering-homomorphism. As we have seen this means there is an
induced €". Finally < I'", € > is reduced since suppose g(a) €I'" is an arbitrary

element of I'" then

€(g(a),7")=1 V7 €l
= ¢€(g(a),g(y) =1 Vy€eT
= €la,y)=1 VqeTl

= a€cly

= g(a)=0. |

Theorem 2.2. Suppose < I',¢’ > covers < I',e > then there exists a subgroup
T* C T' such that there is a covering-homomorphism between I' and the reduced
Ik /Tk (T} being the € -trivial subgroup of I'*).

Proof: The proof depends mainly on the following proposition:

Proposition 2.3. There exists a well defined mapping h: T' — I'' satisfying

e(a, B) = € (h(a), h(B)) -

The proof of this is somewhat technical and may be found in Appendix A.

We define T* to be the subgroup of I' generated by h(I'). The covering-
homomorphism we require is just the composition of the map h and the onto
covering-homomorphism k : T'* — I'*/T'% given by Lemma 2.1. To see this, firstly

we observe that

e(a, B) = € (h{a), h(B)) = € (kh(a), kh(B)) ,
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using Lemma 2.1 and proposition 2.3 and where € is the induced commutation
factor on I'*/T'%. It remains to be shown that kh is, in fact, a homomorphism. If

we define
l(a, B) = kh(a + B) — kh(a) — kh(B)
then

e (I, B), kh(7)) = €(0,7) =1 Vyel.
Now I'® /T consists of elements of the form

k(Cmnth(es) = Sin'kh(e) o €T
but

¢ (ie B), Lin'kh(e) = [ € (e B), kh(a))]™ = 1.

Now since T'* /T? is reduced this means that (e, 8) = 0 which in turn means that

kh must be homomorphic. [

2.3. Canonical Forms

We consider now a canonical set of pairs < I'¢, €. > which cover all possible pairs
<T,e>.

Theorem 2.4. Every colour algebra A which can be coloured by < I'ye >,

where T is a finite group, can also be coloured by a < I'c,e; >. The I'; are of

the following form

=Ty, @el'p,®...0T,,, (2.19)

where the p; are distinct primes and each p;-group I'p,, with p; # 2, is of the

form
Tp.=Z((p)"], @ Z[(p)"],®...0 Z[(pi)"];, @ Z [(i)"], @ ...
4 [(p")'lzlzj2 ®..027 [(p,')r"‘]zjm ; (2.20)

where Z [(p;)™], means the u’th copy of the cyclic group of order (p;)™ . For
pi = 2 the group has the same form except that an odd number of copies of Z,
are allowed. The ¢, defined on the T', have the decomposition given by (2.11)

€c = €1€3...€n
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with ¢; defined on the I'y,. The ¢; are unique in the case p; # 2, and are given

by

ei(a, B) = nip(anbilpbalenfs)  gbm(amfn) (2.21)

with n;, being the primitive (p;)™ root of unity; o, and f, the projections of
a and B onto the copies of Z|(ps)™] in T'p,; and ty(ay,By) is the following

antisymmetric bilinear form defined on copies of Z |(p;)™]

Jv
Yolaw,Bu) = D [K212F — E20025-1] (2.22)

i=1

The k and | are as in (2.12). In the case of p; = 2 the ¢; has the form
eila, B) = nlr(evP) | p¥m(ambn) (_pyele’.F) (2.23)

where the %y, ¥y, @, and B, are the same as before with the restriction that
ro # 0. ¢ is defined on the copies of Zy (o' and B' being the projections of «

and B onto these copies) and has two possible forms. The first is

q
p(a!,B) =D K1" (2.24a)
—
with ¢ being the number of copies of Z in I';. The second is the antisymmetric
form
q/2 - . . -
(P(a’,ﬂ') — Z [kl2z—llr2: _ kmlm—l] ] (2.24[))

i=1

Notice that in this case ¢ must be even.

Proof: We shall show that a < T'¢,e. > covers an arbitrary < I',e > by considering
a sequence of covering-homomorphisms between I' and I'¢. It shall be sufficient to
restrict the covering-homomorphisms to a particular p;-group with commutation
factor obtained from the decomposition (2.11). It is obvious that these restricted
covering-homomorphisms extend to the whole group— just set the action on the
other p;-groups to the identity.

Let us write the p;-group of I' as

Zip)", @ Z[p)" @ 0 Z[(p) ], @ Z[(p:)7], @
©Z((pi)?),,® . - ®Z([(pi) "], » (2.25)
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where ry > ro > ... > rm. With respect to this basis of the p-group* the matrix
M of (2.13), which determines the commutation factor on the p-group, can be

written as
M, M, ... My,

My, M ... M
M=| . o o (2.26)
My, M ... Mpnm
where the My are the submatrices of dimension n; x ng. By use of (2.10) we

deduce that these submatrices have the form
My = pr—minteiro) R, (2.27)

where the Rj is an arbitrary nj X nx matrix of integers modulo p™ . In the same
manner as M, we can decompose the k and 1 of (2.13) into subvectors k; and 1;,
where j runs from 1 to m.

Shoda [35] has shown that the automorphisms on the p-group have the fol-

lowing expression through the k:
m
k; = ZPiJ'kj ) (2.28)
Jj=1

where the P;; have the following form: For ¢ > j the entries of the matrix F;;
are integers modulo p™, while for ¢+ < j P;; = p"~TiQ,; with Q; having the
form of P;; when 1 > j. Finally det(P;;) is required not to be a multiple of p.
This is to ensure that the homomorphism is 1: 1 and onto.

Now given a commutation factor € on our p-group the automorphism of (2.28)

induces a new commutation factor € via (2.18). This is given by

é(a, B) = e(a’, p') = nf P
with

¥(c’,B') = (Pk)' M (P]) = k! (P'MP)1. (2.29)
In otherwords the M is transformed to M’ given by

M' = P'MP. (2.30)

* We drop the subscript ¢+ for notational ease.
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As is usual in reduction problems of this kind we shall be interested in particular
types of P which correspond to column and row operations on M. From the form
of (2.30) it is clear that a given row operation must always be followed by the
corresponding column operation. The conditions on P outlined above mean that
there are restrictions on the row (and corresponding column) operations allowed.
These are easily seen to be the following: |
(i) Let us denote the addition of a multiple of a row to another row by sr;+rg =
rh and suppose r; belongs to the #’th block row (M,-)J- = M;; and ry to the
k’th block row (Mk)j = My ;. We then have the restriction that if ¢ < k,
then s must be a multiple of p™~ 7. If ¢+ > k then s is not restricted.
(ii) The multiplication of a row by a constant s has the restriction that s may
not be divisible by p. This is a result of det (P;;) not being a multiple of p.
(i) The interchange of two rows is only possible when they belong to the same
block row.
Apart from the above automorphisms we shall also be interested in the follow-
ing non-automorphic covering-homomorphism: Suppose the m’th row in the first
block row (Mi); = My; is a multiple of p, then there is a covering-homomorphism
¢ which maps the Z [(p;)"™],, summand of (2.25) into a Z [(p)™*~!] summand and
leaves all other summands unaffected. The map ¢ is defined as follows: We can
write any element of Z [(p;)™]

m uniquely as

kp 41, (2.31)

with k < p and [ not divisible by p™~1. Clearly ! corresponds to an element of
Z [(p)r~!] and then ¢ is simply given by

(kp™ "+ 1) =1. (2.32)

To show that ¢ is a covering-homomorphism, we observe firstly that it is obviously
an onto homomorphism by its definition. Secondly the kernel of ¢ just consists

of elements of the form kp™~! from Z |[(p;)™],, and zeros from all the other

m
summands in (2.25). Given now that the m’th row of the first block row is a

multiple of p, it is clear from (2.13) that if a € ker¢ then k*M is a vector which

23



is a multiple of p™ and so e(a,f) =1 V g € I'. This demonstrates that ¢
satisfies (2.17) and hence that it is a covering homomorphism.
We now use the above covering-homomorphisms to reduce M;;. We consider

firstly the case p # 2 for which (2.5) gives

0 a2 ... Qin,
—Qai9 0 cos Qap,
M,=| %3 —6a3 ... G3n, | (2.33)
—Qin, —a2p; - 0

Consider now the first column: Two possibilities arise, either it is a multiple of
p or else there exists an a;; not a multiple of p. In the first case we apply the
covering-homomorphism ¢ of (2.32) to the summand Z [(p;)"], converting it to a
Z [(p)'l'l] summand and then relegate the column (and row) to the second block
column (or row). Note that it may or may not be a new block column (or row)
depending on whether ro = ry — 1. We then restart the analysis with a smaller
(ny — 1) X (ny — 1) matrix Mj;. In the second case we multiply the the column
by the inverse of a;; (which exists and is not a multiple of p because a,; is not a
multiple of p) and then interchange the second and j’th row. Mj; has now been

reduced to the following form

U !
0 1 Gy ... Gpg,
] !
_‘l 0' a.23 e a'znl
e ' -—
M, =] "%s ~93 0 ... 0 | (2.34)
! ! U
—‘alnl —0.2"1 —aanl e 0

We now eliminate all other elements in the first column {and row) by multiplying
the second row by a} ; and subtracting it from the j’th row. We can then multiply
the first row by a'zj and add it to the j’th row, thus eliminating all but the 1

from the second column. M;; now becomes

( 0 1 0 0 0 \
- 0 0 0 0
0 0 0 by ... bsn,
" __
11 = 0 0 —bs, 0 oo bap,
\ 0 0 —bsn, —bsn, ... O /
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It is obvious that the above analysis can be applied to the third column and so on

and we therefore conclude that M;; may be reduced to the form

0 1 0 0 0
-1 0 0 0 0
o 0 0 1 0

Mi=]1 0 0 -1 o0 ol »
0 0 0 0 ... 0

which is of dimension n} X n} with n} <n,.

We can now use a row operation of type (i) to eliminate all elements in M, .
This is because, by (2.27), elements in Mj; (and thus M7, ) have the form kp™ ="/,
and the restriction (i) allows us to multiply a row from Mj; by a number of this
form and add it to a row in M7, . It is to be noted that such an elimination would
not have been possible in general, if we had not allowed the non-automorphic
covering-homomorphism (consider the extreme example of when Mf, consists
entirely of zeros and hence all the rows in the first block row are multiples of

p)-
We have now reduced M to M" with

M, 0 ... 0
0

M= . — : (2.35)
X M
0
Clearly now we can regard M as determining a commutation factor on a group
with cyclic summands of order strictly less than p™. We may now repeat the
analysis of above on this M without affecting the decomposition in (2.35). The
only complication with continuing the analysis iteratively is at the end where
there may be rows (and columns) of zeros left. It is fairly obvious that the cyclic
summands corresponding to these rows (and columns) may be mapped into the
trivial group with a covering-homomorphism. Equations (2.21) and (2.22) are now
clear.
In the case that p = 2, (2.5) shows that we may get diagonal elements in M

and this will interfere with the reduction process outlined above. The approach

we shall follow will be governed by the nature of these diagonal elements. Firstly
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if there are no such elements then clearly we may pursue the previous reduction.

Secondly if there exists an a € I such that*
e(a,a) = —1
and (2.36)
ela,y) =1 Vqyerl,

then we shall show that there exists an onto covering-homomorphism between I
and a T';. Thirdly if there exist elements satisfying the first equation of {2.36), but
none of them satisfy the second, then we shall demonstrate a non-onto covering-
homomorphism between I' and a I',. We proceed now to prove the second case.

Firstly we observe that if there is a § € T’ satisfying (2.36) then § cannot

have the form 27, since in this case

—1=¢(8,B) = €(27,27) = €*(1, )

which means that €%, ) # %1 and this contradicts (1.5). We conclude therefore,
that § must have the form

B=e +2Mey+...+ 27" e, ,

where the e; are the generators of the cyclic summands of I'. Consider now the

covering-homomorphism ¢, given by Lemma 2.1, onto a reduced I'". It is clear

that
€ (9(8),q") for arbitrary v" €I'"

= €"(g(B), 9(7)) for some y €T
= €(f,7) = %1 .

Now since I'" is reduced and

€(29(8),7") =1 VAo €I,

* T shall be understood to be the 2-subgroup and € the commutation factor

restricted to this subgroup of the grading group.
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it follows that g(f) has order 2. Furthermore

€ (9(8), 9(8)) = €(B,8) = -1

and so

g(B) =€l +2"ex + ... +2° ey,
with

o(e]) = o0(2%2e}) =... = 0(2°"'ey,) =2

and where the e are generators for the cyclic subgroups of I'".
From the form of the isomorphisms given by (2.28) it follows that there exists
an isomorphism f mapping g(f) into e]. Now consider any e with o(e]) > 2

and €"(ef,ef) = —1 then apply the following isomorphism k& to the e :

k(el) =€} +e]

but
€ (k(ef), k(ef)) =€ (ef +el,ef +ej)=—-11l.—-1=1,

which means that there are no diagonal elements in the reduced M" except those
in the final Z, block. We can now apply the iterative process used in the case of
p # 2 (which consists only of onto covering-homomorphisms) until we are left only
with a sub-block corresponding to the Z; summands. The proof is now completed
by use of a theorem of Scheunert [26].

In the third case mentioned above, consider an e; (notation as in the second

case) with least order such that e(e;,e;) = —1. Now let the other e satisfying
€(ex, ex) = —1 have the following isomorphism applied to them:
e = ex + € .

It is fairly clear that after such transformations only e; will contribute a diagonal
element to M. As we shall see later this diagonal element cannot be removed to
the Z, sub-block by means of an onto covering-homomorphism and instead we

put it there by the following non-onto covering-homomorphism: Let e; generate
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a Z[2"]; cyclic summand then we map Z [27].

; into Z3 @ Z[27] as follows: It

is clear that any element of Z (2] can be written as 2k +{ with { =0,1. The

covering-homomorphism hk is then given by
h(2k +1) = (1,2k + 1) (2.37)

and the new commutation factor on the expanded I'' has a new M’ which is the
same as M except that all diagonal entries not in the Z2 sub-block are zero. In
addition there is 2 new Z; summand in I’ whose effect on M is to introduce a
single diagonal element 27*~!; all new off diagonal elements are zeros.

It is obvious that (2.37) describes a homomorphic map and a little thought
then shows that the new commutation factor we have defined satisfies the condition
(2.16). We can now repeat the comments that applied for the final reduction in

the second case and obtain the stated result. m

2.4. Uniqueness Results

Another important question to be considered is the uniqueness or otherwise of the
canonical < I'¢, €, > for a particular colour algebra. A little thought will show that
if <Ty,ep > covers <T',e> and if ', C T, then it may be possible in general, to
extend €, to a commutation factor on I'; and then obviously < @'y, e, > covers
< T',e >. Clearly then, what we may hope for is that there is a unique smallest
< T',,e. > covering < I';e >. More precisely, what we shall prove is that there
exists a < I';,e. > covering < I',e > such that any other < I',, e, > covering
< T',e > satisfies I'; C T',. Further we shall give criterion to determine what this
minimal < I, €, > is.

In order to prove the above result we need to introduce a little machinery from
elementary abelian group theory. This shall differ somewhat from the standard
treatment (see Fuchs [33]) and so we shall be forced to prove a number of basic
results in this field.

Firstly we define two notions of linear independence. We say that the set {a;}

of elements of T is p-linearly independent if o(a;) is a power of p and if
Zn"a.- =0 (2.38)
)
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implies that for all 4, n® =0 mod p. Secondly we say the set {a;} is p-linearly

independent with respect to € if again o(oy) is a power of p, and if
e(ICnfai,y) =1 Vel (2.39)

means that for all 4, n* =0 mod p.

From these two definitions we are further able to define two notions of rank.
We say the p* -rank of T is the maximal number of p-linearly independent elements
in p*T". A similar definition holds for p* -rank with respect to €. In the interests
of brevity, we use rank when we wish to refer to p®-rank and Li. when we wish to

talk of p-linear independence.
Lemma 2.5. The rank of Z,- is one.

Proof: Let 0 # a,b € Z,- and let e generate the group. It follows easily that
a=gne b=gme (2.40)

with (m, n) = 1. This means that one of m or n is non-zero mod p. Also (2.40)
implies that
ma —nb=0
which shows that a and b are linearly dependent. =
Lemma 2.6. If {a;} is linearly dependent then there exists an 1 such that
a5 = Z njaJ-.
J#s

Proof: {a;} linearly dependent means that 3 m* # 0 mod p such that
Y mia;=0 (2.41)
F

= (m',o(eg)) =1 = 3 r,s€Z such that

rm' + so(og) = 1
=  rmia; + so(a;)a; = a;

= o=rmo;=— E rmla; . u
J#E
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Proposition 2.7. rank(A & B)=rank(A)+rank(B)

Proof: Let {a;} and {b;} be maximal sets of L.i. elements from A and B respec-

tively. We show firstly that {a;,b:} is an Li. set. If
Znia; + Emij- =0
' 3
= Zn"a,- = Em-"b_.,- =0,

J

where we have used the definition of the direct sum, namely AN B = {0};
= n'=0 and M =0 modp Vi,j
which is what we require and shows
rank(A ® B) > rank(A) + rank(B) .

The following lemma is useful in demonstrating equality:
Lemma 2.8. If {a;} is Li. then {ay +} ;5 k*a;,az,...} is Li

Proof: Let us suppose that
m (a1 + Zblk‘a;) + Z mia; =0
i>1
= ma +Z(mk"+m")a.-=0
i>1

= m=0 and mk'+m'=0 modp Vi

= m=0 modp Vi. [

Now let {c;} be an Li. set in A® B, then we can write ¢; uniquely as a;+b;. Let
us further assume that there are k > m-+n elements in {c;}, where m = rank(A)
and n = rank(B). We show, to begin with, that m > 1:

We deduce firstly that either there is a b = 0, in which case we are done, or
else the b; must be linearly dependent. In the latter case, select an 1 such that

the statement of Lemma 2.6 holds. In otherwords we have

b= kib;. (2.42)

iy
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Now transform the set {c;} to the set {c;} with the same number of elements:

cg- =c¢j JF#1
ch=c¢i— Zk"‘cj
I#
J#e

where (2.42) is being used for the last step. This new set is l.i. by Lemma 2.8
which means that a’ is Li. (non zero) since any subset of an Li. set is obviously Li.
We conclude that m > 1 and the proposition is demonstrated if, in fact, m = 0.
We now show that m > 2:

The set {b}} has at most k — 1 non-zero elements since b; = 0. If there are

less than k — 1 non-zero elements then clearly we are done. Now
k—-1>m+n—-12n

since we have already shown that m > 1. It therefore follows that if {¥%} has

k — 1 non-zero elements they must be linearly dependent. Therefore from Lemma

2.6, there exists a k # 1 such that

L= 1. (2.43)
J#d
T#k

We redefine our {c}} as follows

n

cf=ci=c; jAiandj#k

n__ 0 _
Cl'-—C"—a'

cp=cp— Z vel

J#s

J#k

Z l’a =aj €

J#s

#k
By Lemma 2.8 this new set of k elements is Li. and so a} = a} and aj are li,
which means that m > 2. The proposition has now been shown for m = 0 or

1. Obviously the above argument can be repeated until we finally conclude that

m = k which contradicts our assumption that k > m+n. ]
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The following corollary is used in a major way in Theorem 2.11 below:
Corollary. A finite abelian group is uniquely determined by its p* -ranks.
Proof: Lemma 2.5 and Proposition 2.7 imply that the rank of a p-group I’ is
equal to the number of cyclic summands in its unique decomposition (2.2). Now
the rank of pI', is the same as that for I'p less the number of Z, summands in I'p.
This argument extends in an obvious way to the rank of ka‘,, which is equal to the
p*—1-rank less the number of Z,« cyclic summands in I'y,. We therefore conclude
that I'p is uniquely specified by its p*-ranks. To extend this result to an arbitrary
finite T' it is sufficient to observe that, by the definition of p-linear independence,
elements of non-prime power order do not contribute to the p*-ranks of I'. Hence
the p¥-ranks of I' determine uniquely, the unique p-groups making up the total
group. ]

We now examine the connection between rank and rank w.r.t. e:

Proposition 2.9. The p*-rank of I' is at least as large as its p*-rank w.r.t. e.

Equality holds when T' is reduced.

Proof: Let a; € p*T" and suppose ).; m‘a; = 0. Further suppose that {a;} is Li.

w.r.t. €
= e(X;m'e,7)=1 Vel

= m'=0 modp Vi

which means that {a;} is Li.. For the second part of the proposition, suppose that

' is reduced and that {a;} is Li. If

e(35;miai,y) =1 Vel

then because I is reduced

= Z m"a,- =0
.
= m'=0 modp Vi,
which means that {a;} is Li. w.r.t. €. o

The reason for the usefulness, from our point of view, of rank w.rt. € is

contained in the following:
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Proposition 2.10. The p*-rank w.r.t. € is preserved by an onto covering-

homomorphism.

Proof: Suppose h: I' = I is the onto covering-homomorphism and suppose that

h(a;) € T' are Li. w.r.t. €. If
e(3; miai,q) =1 Vqerl
= ¢ (h(X;ma) k(7)) =1 Vq€T,
which implies, since h is onto, that
¢ (T;mih(a;),¥) =1 Y+ el
= m'=0 modp Vi

and this therefore means that {a;} is L.i. w.r.t. €.

Conversely suppose that {a;} is Li. wr.t. €. If

e(};m'h(a;),y) =1 V4 el
= ¢ (h(Z;mia), k(7)) =1 Vrel
= e(zim"a,-,'y)zl VyeTl
= m=0 modp Vi
and so we conclude that {h(a;)} is Li. w.r.t. €. ]

Having dispensed with the algebraic preliminaries, we are now able to prove

the second major result of this section:

Theorem 2.11. There exists a unique canonical < I';,€e, > covering < T',e >
such that if another canonical < T, €, > also covers < I',e > then I'. C T.

Furthermore the p*-rank of T', is equal to the p*-rank w.r.t. € of ' unless

there exist B € T such that €(8,8) = —1 and none of these ( satisfy

e(f,7) =+1 Vrel. (2.44)

In this latter case the 2°-rank of T'; is one greater than the 2°-rank w.r.t. € of
' but all other p*-ranks are identical. Finally the unique < I'c,€. > for every
< T',e > is the one achieved in the proof of Theorem 2.4.

Proof: We begin with the following essential Lemma:

33



Lemma 2.12. If T, C T, then the p*-rank w.r.t. ¢, of I'y is no greater than
the corresponding rank of 'y (providing, of course, that €, and €, agree on I'y )

The same result holds for the p*-ranks of T'; and T.

Proof: Suppose a; € p*T'5. Since p*T C p*Tp this means that the a; are also in
p*Ty. Further suppose that {a;} isLi. w.rt. €5 in I'g. If

& (I, mai,7) =1 VyeT,
= & (1;mia,y)=1 VY €rl,

= m=0 modp Vi,

which shows that {a;} C p*Tp is Li. w.r.t. €. The second part of the lemma
follows from the obvious observation that an Li. set in p*T'; C p*T'y is still one in
p*Ts. ]

Now if < I',€e > covers < I',e > , then Theorem 2.2 tells us that the reduced
I'* /Th contains the image of a covering-homomorphism from I'. Lemma 2.12 and
Proposition 2.10 then show that this quotient group must have p*-ranks w.r.t. €
at least as large as the corresponding ranks of I' w.r.t. €. By Lemma 2.1, T* /T
is the image of a covering-homomorphism from T'* and so, by Proposition 2.12 the
p*-ranks w.r.t. € of the former group equal the p*-ranks w.r.t. € of the latter
group. Finally since T* C I, we deduce from Lemma 2.12 that the p*-ranks
w.r.t. € of IV are at least as great as the corresponding ranks w.r.t. € of I'. We

also have the following:
Lemma 2.13. Any canonical < T¢,¢; > is reduced.
Proof: Let a €', satisfy
ec(aiq) =1 Vqel,
and for a p; # 2, let s_‘,- be the generator of Z [(p;)"/],. We now deduce, using

(2.21) and (2.22), that

1k!F
= e(a, 83) = Gi(a, sg) . 171.1. d

where kfs® is the projection of a onto Z[(pi)"/], and the depends on whether

t is odd or even (t even gives the +). It follows immediately that k% =0 mod py
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and so k;-s_f’- = 0. Since this holds for all 7 and ¢t we conclude that a can have no
components in p;-subgroups of I'c. For p; = 2 the argument is identical except
in the case that copies of Z; have the form (2.24a) defined on them, in which case
we get the simpler equation (—l)’cl =1 V¢, where k!st is the projection onto
the t’th copy of Z; in I';. Again this implies that ktst = 0 and so we conclude
that a = 0. [

Proposition 2.9 and Lemma 2.13 now allow us to conclude that the p*-rank
of any covering I'. must be at least as large as the pF-ranks w.r.t. € of I'. Now
by the Corollary to Proposition 2.7, the p*-ranks of a group determine it uniquely
and so there must be a unique minimal canonical I']* with pF-ranks equal to the
p¥-ranks w.r.t. € of T'. Clearly then, any < I'c,¢, > covering < I';e >, must
satisfy I'* C I',.

Except in the pathological case outlined in the statement of the theorem, the
proof of Theorem 2.4 has shown that there exists an onto covering-homomorphism
between T' and a T';. Proposition 2.10 therefore shows that this must be in fact

rm.

In the pathological case we have seen in the proof of Theorem 2.4 that there
exists onto covering-homomorphisms at all but one place in the reduction— where
we are forced to append an extra Z; summand. It follows, again from Proposition
2.10, that a reduction to I'™ @ Z; is possible. Finally we complete the proof by
showing that, in the pathological case, if I'¢ has 2% -ranks equal to those of I'™
then it cannot cover I'. A little thought will show that this implies that any T,
covering ' must satisfy ' @ Z; C T'..

Let us assume that a I'; with 2¥-ranks equal to those of I'"* does cover T'.
The covering of T' implies the existence of a covering-homomorphism f : I' —
I'*/Th with T* C T,; also there is an onto covering-homomorphism k : k-
I'* /T? . Consider now the 2-subgroups of T', I'*/T? T* and I';; denote them by
I's, Q2, Tk, and Iy, respectively. Now by [33] the covering-homomorphisms f
and k restrict to covering-homomorphisms I's — @2 and Ik, — Q@ respectively;
moreover it is easily seen that the latter must be onto. Denote by r(I') and (T, ¢)

the 2%-rank and 2%-rank w.r.t. € of I' respectively. We have, by the use of the
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technical lemmas and propositions above, the following inequalities

r(T2,€) =r(f(T2), &) < r(Q2, &) = r(The,€c) <
T(Fan €c) = T(F‘L’c) = T(F2,€) (2.47)
which shows that equality must hold amongst all of them. Now we have seen that

I'* /T% is reduced and we now show that this implies that Q2 C T* /T4 is reduced.

Suppose a € @, satisfies

e,.(a,'y)=1 V7€Q21

then it is quite clear from (2.11) that
er(a,y)=1 V¥ €D*/rh

and so @ = 0, which shows that Q2 is reduced. We have thus r(I's;) = r(Q2,¢) =
r(Q2) and hence

I'2e = Q3. (2.48)

A further set of inequalities are the following:

r(f(T2),e) < r(f(T2)) < r(Q2) (2.49)

which, when (2.47) and (2.48) are considered, become equalities and lead to the

conclusion that
f(l2) = Q2

and combining f with the isomorphism (2.48) leads one to conclude that there is
an onto covering-homomorphism g between I'; and I';..

We define a diagonal element 8 to be one satisfying €(8,8) = —1; such an
element must exist in the pathological case. Now I' = I'; & I'* with T’ being a
direct sum of p # 2 groups. The diagonal f € I' must be able, therefore, to be
written as f = a + 4 with a €T3 and 7€ T*. Now

—1=¢€(f,0) = ela+ v, +7) = €(a, a)e(7,7) = (e, ) (2.50)

where the last step follows from the results of section 2. Clearly then, a € I'g is

diagonal which implies, from the definition of the covering-homomorphism, that
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g(I'z) = 'y, possesses a diagonal element also. Examination of (2.24) then shows
that this diagonal element must satisfy (2.44), but since I';. is the image of a
covering-homorphisms from I'; it follows that this latter group must also contain
a diagonal element satisfying (2.44). This however, contradicts the assumption
that T is pathological and so we are done. |

It is an obvious step now to extend the above results to the case where I' is
finitely-generated. This should not prove too difficult; however the result (2.11)
will not now hold, and as a number of the proofs depend on this result, some
reworking may be required. The concept of the covering-homomorphism should

still, however, play a central role.

37



3. The canonical superalgebra

In this section we basically follow the work of Scheunert [26], however we provide
proofs for a number of results stated by him and provide greater detail in the
derivation of the main results.

The basic concept we shall require is the o map which converts an € colour
algebra with grading group T' into an € colour algebra with the same grading
group. This new algebra will be the same set-theoretically as far as the grading
is concerned, but will have a different bracket defined on it. We define this new

bracket as
< aq,88 >o=0(a,f) < aq,ag > (3.1)
where o : I' x ' — C is a non-zero valued map. Our first main result concerns

the conditions that o needs to satisfy in order that this new bracket still defines

a colour algebra.

Proposition 3.1. If o is a multiplier [36] on I, that is, it satisfies

o(a+B8,9)o(e, B) =0(a, B +7)0(B,7) Ve,BnerT, (3.2)

then the map given by (3.1) defines a map from a € colour algebra to a € colour

algebra where
€ (a,f) = o(a, f)o™" (B, a)e(a, B) (3.3)

Proof: In order to show this result we need to show firstly that € is a commutation
factor and secondly that the bracket defined by (3.1) satisfies the conditions (1.4)
required by a € colour algebra.

For convenience we define the maps

L(a,B,7) = o(v, e+ B)o~ (v, )0 (7, B)

(3.4)
R(a,8,7) =o(a+ 8,10 a, 1)o7 (B,7) ,

which satisfy the identities

L(a’ ﬂ’q) = L(ﬂ,a!’Y)
R(a, ,7) = R(f, ;") -
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It is now trivial to observe that the multiplier condition (3.2) is equivalent to

L(B, 1, o) = R(a, 8,7) - (3.6)
By the use of (3.5) and (3.6) we conclude that

R(alﬁiq) = L(ﬁ:": a) . L("sﬂ:a)

(3.7)
= R(e, 7, ) = R(%, @, 8) = L(e, B,7) -
In particular (3.4) and (3.7) show that
o(a+ B, (&,  (B,7) =o(na+ o (v a)o T (1,8) . (38)

Consider now €' defined by (3.3), clearly it satisfies

e'(a,ﬁ)e'(ﬂ,a) =1,
if € does. In addition we have

e (a+B,7) = ela, Ve(B, Nole + B, 7)o" (v, + )
= ¢(ar, Ne(f, Moo Vo~ (1, )o (B, W™ (1, 8)
from (3.8) and (1.3). However this is just equal to €'(a,7)€'(8,7), using (3.3).
A similar argument shows that €(c, 8+ 7) = €(a, 8)€'(, 7) and so we conclude

that € is a commutation factor.

We now use (1.4) for the e bracket to conclude that
< Gaybp >0 =0(, f) < 8a,bp >
= —a(a,ﬂ)e(a,ﬂ) < bﬂ7aa >
= —O'(Q,ﬂ)O'_l (8, a)e(e, B) < b, 84 >4
= _E’(a)ﬂ) < bﬂ)aa >a

It remains therefore, to show that <,>, satisfies the generalised Jacobi identity

(1.4b). In otherwords we need to show that

Z (v, a) <aq,<bg,cqy >6>6 =0 (3.9)
eycl(a,8,7)
or
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Ze’(q, a)o(B,7)o(a, B+ 1) < aa,< bg,cqy >>=0. (3.10)
cycl

By the use of (3.3) we see that this will hold if

a(v, @)oo, 1)o (B, Vo(a, B+ )
= [o(7, @)o{a, B)o(B, 7)) 07 e, 7)o" (2, B)o (e, B+ 7)

is invariant under a cyclic permutation of &, and 4. It is now easy to see that
this is equivalent to L(8,7,a) being invariant under cyclic permutations (this is
because o(v, a)a(a, B)o(B, ) is). The invariance of L under cyclic permutations
is an easy consequence of (3.7) and (3.6) and so the proof is complete. |

The converse of the above proposition is not true as we can see from the
following counter-example:

Let A be an algebra with grading group Z; and three elements a;,a2 and
ao satisfying

<ay,a3 >=—<4az,6, >=0ao,

and with all other brackets zero. A is a colour algebra since (1.4) will hold if
€(1,2) = 1; also the Jacobi identity is satisfied trivially.

If we allow ¢ to be symmetric in its arguments then (3.8) will hold and as a
consequence the new bracket <,>, will have the required symmetry property of
(1.4); the Jacobi identity will obviously hold, again trivially. Thus the new bracket
also defines a colour algebra. Now if we put ¢ = f# =1 and v = 2 in (3.2) we

obtain

¢(2,2)0(1,1) = o(1,0)0(1,2) .

Evidently by a suitable choice of o this may be violated and hence we have our
counter-example to the converse of proposition 3.1.
The following result is one of the more important results in colour algebra

theory:

Proposition 3.2. Let I' be finitely-generated then there exists a unique (up to
isomorphism) “canonical” superalgebra associated with each colour algebra by the

o mapping of (3.1). The commutation factor is the one given by equation (1.7)
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in section 1. We denote it by €, and the commutation factor from which it was

derived by €.

Proof: Firstly it is straightforward to observe that €0€~ ! is a commutation factor
n which satisfies

na,a)=1 Vael.

Section 2 now shows that there exists a ¢ satisfying (2.7), (providing I’ is finitely-

generated) such that
(e, B)o (B, @) = n(e, B) -

It is easy to see that conditions (2.7) imply that o is a multiplier in the sense of
(3.2) and so <, >, is a colour algebra with commutation factor o, in otherwords
it is a superalgebra. It remains now to be shown that this superalgebra does not
depend on a particular choice of o.

Now any superalgebra produced by the o mapping of (3.1) must have ¢ as its
commutation factor. This is because commutation factors ¢ on superalgebras are
determined by the values €(a,a) = 1 since these values determine the grading

on the algebra. The result now follows from the equalities

afa, a) = ofa, a)a_l (o, c)e(a, cx)

=e¢(a,a) = ela,a) .

From this we conclude that any two o and o; producing a superalgebra, must

satisfy

o(a, B)o~ (B, @) = or(e, B)o " (B, )

or

o(a, B)oi (@, B) = o (B, a)o " (B )

In otherwords, the multiplier 7 given by

7(a, f) = o(a, oy " (e, B),

must be symmetric. We now prove the following lemma which holds on finitely-

generated grading groups I':
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Lemma 3.3. On finitely generated abelian groups all symmetric multipliers are

trivial. That is, they satisfy

7(c, ) = 87" (e)s™" (B)s(ax + B) (3.11)
where s is some map I' = C'.

Proof: Substituting a = # =0 into (3.2) we see that
7(0,7) = 7(7,0) = constant  Vyel .

Thus a simple rescaling of the multipliers allows us to set this constant to 1 and
prove (3.11). We can then rescale the s to get our original unscaled multiplier.

We now have
Lemma. If T is generated by one element then 7 is trivial.

Proof: Denote the generator by 1 then we define

) = H n>2, (3.12)
where n has its obvious meaning as an element of I';
s(—n) = 7 (n,—n)s™(n); (3.13)

and s(1),s(0) are arbitrary. We now show that (3.11) holds:
Let n > m > 2 then

s n)s71{m)s(n + m) H (1, k) HT

=r(L,n+m-1) || 7(1,1+m - 1)1 (L))

=r(l,n+m—1) [ r(m - 1,1+ 1) (m -1,
=1(im-Ln)r t(m-11)r(l,n+m—1)
= r(m,n) , (3.14)
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where we have used the fact that 7 is a symmetric multiplier to derive lines 4 and

6. Consider next the following:

n—1 m—1 n—m—1
s~ (n)s~ ! (=m)s(n —m) = 7(m,—m) [[ 72,8 [ r,0) [T ~(1,%)
k=1 =1 k=1
= 1{m, —m) 1:[ (1, k) I_I 7(1,1)
k=n—m =1
m—1
=71(m,—-m)r (1,n—1) II ™ H1,k+(n+m—1))
k=1
7(1, k)
=r(m,-m)r }(l,n— l)ﬁ i k+1L,n—m—1)
k=1
T(kyn—m—1)

(l,n=m—1)7r" (mn—m—1)r(m,—m)r ! (L,n—1)

7(n, —m) ['r"1 (n—1,-m)r~{m,n—m—1)7(m, —m)]

I
-3

(n,—m) , (3.15)
where again we have used the fact that 7 is a symmetric multiplier to derive lines
4, 6 and 7. In addition, 7(0,n — 1) = 1 was used in the last line. Consider now
arbitrary p,q € I' and suppose we have
7(p,q) = s (p)sT (Q)s(p+9)

then using (3.13) we have

s7H-p)s™! (—g)s(-p — q)

= s(p)s(g)s™ (p + @)7(p, —P)7(%, —9) 7 (P + @, —P —9)

=1 Y(p,q)7(p, —p)7(q, —)T (P + 9, —P— 9)

p+¢,-p— 97 g, —p-q7(g, )7 (p+9,-p—9)

T(_Q) _p)

7(—p, —q) -

Where we have used the symmetry and multiplier nature of 7 repeatedly. When
this result is applied to (3.14) and (3.15) we see that only the cases n =1 or 0
remain to be shown. These are fairly easy consequences of the defining relations

(3.12) and (3.13). Thus the proof is complete. ]
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Lemma. Suppose 7 is trivial on I'y and I's, then it is trivial on their direct sum

r=r,erl,.

Proof: Suppose that

(a,B) = s (@)s7 (B)s1(a+B) Ve,feT,

and

1(7,6) = s3'(7)s5" (6)sz(v+6) Vv6€ls,
then we shall show that an appropriate trivial factor s for I is given by
sfa+q) =1(a,7)s1(a)s2(y) Va€ly Vyels.

This is consistent since T is a direct sum of I'; and I';. Consider now a,8 €'y

and 7,68 € Iy, then it follows that

sTHe+ 7)™ (B +8)s([a + B+ [v+ 6])
=17 (o, 1)yt ()55 (M) (B8, 6)s7 ' (B)s3 " (6)
x 8y(a+ B)sa(y+8)r(a+B,7+6)
=17 (o, 1) 7(e, BYr (B, 6)7(v, 8)7(a + B, v + 6)
=1(a+7,B8)r  (va+B)r(B+ 67 (B,6 +)7(a + B, +6)
=r(a+ 787 (1 a+B)r(e, Nr(a + 78 +6)
X ™o, B+ 7+ 8)7(a, B+ 7+ 8) 7 o, B)

=r{a+",8+6),

where we are repeatedly using the fact that 7 is a symmetric multiplier on I'. The
proof is now complete. n

The main result (Lemma 3.3) now follows in a straightforward way from the
above two lemmas. [

We now complete the proof of Proposition 3.2 by showing that if Ua,‘l is
trivial then the brackets <, >, and <, >,, define isomorphic superalgebras on the
bracketless abstract vector-space A (which consists of elements from the colour

algebra).
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Denote the elements of (A, <>,) by I and those of (A, <>4,) by (%, where

a

a refers to the grading on A. We define the map ¢ : (A, <>5) = (A, <>q,) by
pz) = s ()i
where we have from Lemma 3.3 that
o(a, B)oy H(a, ) = s7(a)s™ (B)s(a + B) . (3.16)

We now show that ¢ is an isomorphism:
Firstly it is trivial to observe that ¢ is, by its definition, one to one and onto.

Secondly from (3.1), (3.15) and (3.16) we have that

#(< 15,15 >0) = ¢ (s7H(@)s ™ (B)s(a+ Ae (< 12,15 >0,))
= s_l(a)s—l (B) < IZ',IZ' >a

=< ¢(I3), o(13) >,

where e : (A, <>, ) — (A,<>,) is given by e(l%) = 1. Proposition 3.2 now

follows immediately. |
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4. Klein transformations

The above correspondence is rather abstract and not very well suited to the ap-
plications we shall later study. For this reason we study what we shall term Klein
transformations. These generalize the original Klein transformations [13], intro-
duced some years ago to change commutation relations to anti-commutation rela-
tions. As we shall see the transformations play a central role in the representation
theory of colour algebras.

Consider firstly a graded algebra A with an associative product. As we saw
in section 1, in a different context, this may be turned into a colour algebra by

defining a bracket as
< q,88 >= aqag — €(a, B)agaq . (4.1)

The closure of the associative product, the grading of the algebra and the fact that
€ is a commutation factor ensure that with this bracket, A is a colour algebra.

The Klein operators KZ are a set of commuting operators with grading 0

which extend A. They satisfy

K (o)K7 (8) = 1(e, B)K7(a +p) ; K7(0)=1 (4.2)
K?(a)ag = o(B,a)ag K] (a) , (4.3)

where the notation implies a unique Klein operator for each a € I'. Also ¢ is a
non-zero map I' xI' — C, satisfying o(a, 0) = 1 for consistency between (4.2) and
(4.3). The confusion of notation with the & of the previous section is deliberate as
will become clearer below. 7, on the other hand, can easily be shown to be firstly
symmetric and secondly, by the use of the law of associativity, a multiplier. As we
have seen in section 3 this implies that if I' is finitely-generated, then 7 must be

trivial. In otherwords (4.2) becomes

r(a) K7 (o)r(B) K7 (B) = r(a + ) K (a + f)

(4.2a)
7(0y f) = r~ (&)r (B)r(a + B)
which shows we can rescale our KZ to a new set K7 which satisfy
K’ (a)K?(f) = K°(a+B) . (4.2b)
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For the rest of this section we consider the K? only. We shall have cause to
consider the original K? again in Appendix B.
Consider now the factor o, we can use (4.2), (4.3) together with the graded

nature of A to show that in general* we must have the following relations
o(a+B,7) = o(e, 7)o(B,7)
(4.4)
o(a, B + 1) = ola, flo(e,7) ,

which imply, as we have seen before, that o is a multiplier in the sense of (3.2).
The Klein transformation A° of the algebra A is a subalgebra of the above

extended algebra and is defined elementwise from K? and A:
af = K°(—a)aq Va, €EA. (4.5)

Notice that if we had used K? here, all we would obtain would be a rescaling of
the a? .
The usefulness of the Klein transformation becomes apparent when one com-
bines (4.1), (4.2), (4.3) and (4.5) obtaining
K% (o + Blagip =< 6a,a8 >
= K’(a)al K7 (B)ag — e(a, ) K7 (B)ap K (a)ag
= K%(a + f) [0'—1 (o, B)agag — €(a, B)a~ (B, a)agag] .

(We are assuming here that < aq,a3 >= aa4g). In otherwords we have the

interesting relation

o(a, f)ag,p = 0(a, B) < da,ap >7= aZaf — (o, f)o(e, f)o™" (B, a)agag . (4.6)

We can see from this that A° is again a colour algebra with commutation factor
given by equation (3.3). In fact, it is evident that the Klein transformation is
just implementing the ¢ map of section 3. This follows since the colour algebra

bracket <,>, for A? is given by

< Gg,a}’; DA O'(Cl,ﬂ) < g, a8 >7 ’

* In certain special cases we may be able to avoid (4.4) — see the example

following Proposition 3.1 for the kind of pathologies which may arise.
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which is just (3.1), when one remembers that in section 3 the two colour algebras
were identified set-theoretically whereas here they are different algebraic objects.
In a more general sense, if we restrict our transformations (3.1) to those
for which ¢ is a multiplier, then the Klein transformation (4.5) will produce all
such transformations (up to isomorphism), providing we assume that T' is finitely-
generated.
This statement follows because for ¢ a multiplier on a finitely-generated T,

we have seen in section 2 that there will exist another o satisfying (4.4), such

that
o1, B)oy (B, a) = o(a, B)o™ e, B) -

Then the final two results of section 3 show that two multipliers satisfying this
relationship will produce isomorphic algebras under (3.1) (providing again that T’

is finitely-generated).
As a result of the above remarks we shall, for the rest of the section, restrict

ourselves to the K7 satisfying (4.4).

We now consider representations of colour algebras and it is here that the

Klein transformation proves its usefulness.

Proposition 4.1. Suppose we have a representation of a colour algebra A, then it
is possible to imbed this representation in a representation of the extended algebra

< A,K? >. In otherwords, the representation for A can provide a representation

for K° as well.

Proof: Let V be the graded vector-space upon which the representation r{A) of

A acts. Now we define r{K?) as follows
r(K7(8))va = ola, f)va Yvga€eV. (4.7)
From this it follows that

r(ag)r(K°(7))va = ola, 7)r(ap)va
and
r(K?(7))r(ap)va = o(B + o, 7)r{ag)va
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because r(ag)vq has grading a + . We therefore conclude using (4.4) that

r(K’(7))r(ag) = o(B,7)r(ap)r(K’ (7)) .
Also from above

r(K?(0))va = o(a,0)vy = Vg ,

and
r(K?(a))r(K? (B))vy = o (1, @)o(r, B)vy
= oy, a+ B)vy
= r(K(a+ B))v,
which demonstrates the proposition. =

The concept of frreducibility of representations of colour algbras is the usual
one for algebras: A representation is irreducible if the graded vector-space V' upon
which the representation r(A) is defined contains no non-trivial proper subspace

U such that r(A)U C U. The following lemma now follows easily:

Lemma 4.2. The Klein transformation of a representation of a colour algebra

given by Proposition 4.1, preserves irreducibility.

Proof: Suppose the Klein transformation of an irreducible representation was re-

ducible. Then it follows that there exists a non-trivial U C V such that
r(K°(—a))r(ae)UCU Vas€A.
It then follows from the definition of r(X°) and the non-zero nature of o that
r(ag JUCU Vaa €A

which is a contradiction. ]
Schur’s lemma holds for superalgebras (see Kac [24]) and we can now conclude

that it holds for arbitrary colour algebras:

Lemma 4.3. Let r(A) be a finite-dimensional irreducible representation of the
colour algebra A acting on the graded vector-space V and suppose s is a homo-
morphism V — V satisfying

(1) s(Va) CVa Vaa €A

(11) sr(aa) =r(ag)s Vag €A,
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then s is a multiple of the identity.*

Proof: By the results of section 3 there exists a ¢ such that r(K?)r(A) forms
a finite-dimensional representation of a superalgebra which, according to Lemma
4.2, is irreducible. Furthermore the definition of r(K?) together with condition

(i) ensures that sr(K?) = r(K?)s which means, by condition (ii), that
sr(K?(—a))r(aa) = r(K°(—a))r(aqa)s .

Hence using Schur’s lemma for superalgebras we have the desired result. u

We can now deduce the following result:

Proposition 4.4. Every representation of a colour algebra A is given by a
Klein transformation of a representation of a superalgebra. Furthermore when the
representation is irreducible and finite-dimensional this transformation is unique

(up to a scalar multiple).

Proof: Let r(aq) be a representation of the colour algebra then, as in the proof
of Lemma 4.3, there exists a o such that r(K?(—a))r(aq) is a representation of
a superalgebra. Now defining r(K® (a)) = r(K°(—a)) we have that o'(a,f) =
o(a, —pB) and so by (4.4), o' is a multiplier. It follows trivially that r{K° (a))
are Klein operators for the representation of the superalgebra and furthermore the

Klein transformation of this representation is, using (4.2), just
(K% (—a))r(K? (—a))r(aa) = r(aa)

or, in otherwords, the original representation of the colour algebra.

For the second part let r(K°) and r(L°) be two different representations
of Klein operators, with the same multiplier, on a finite-dimensional irreducible
representation of a superalgebra. By the use of the definition of Klein operators

(4.2) and (4.3) we have

r(K?(a))r(ap) = o(B, a)r(ap)r(K"(a))

and

* A more general result, with sq(vs) C Vatp, may be possible — see Kac [24]

for the superalgebra case.
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r(L7(a))r{ag) = o(B, a)r(ag)r(L7(a)) ,

r(L? (—a))r(ag) = o(B, —a)r(ag)r(L (-a))

= o~ }B, a)r{ap)r(L° (—a))
when (4.4) is used,;

= r(L7(—a))r(K7(a))r(ag) = r(ag)r(L°(—a))r(K° () .
Since Klein operators have grading 0, we can apply Lemma 4.3 and conclude that
r(K°(a)) =k x r(L° (a)) keC,

which concludes the proof of the proposition. [
It should be noted that the correspondence between representations given

here by Klein tansformations has also been given by Scheunert [26] in a different

way.
In the case where finite-dimensional representations are being considered, we
have two possibilities.

(i) The representation is completely reducible, in which case Schur’s lemma may
be applied to each irreducible component of the representation and so Klein
transformations may differ by scalar multiples on each component.

(ii) The representation is incompletely reducible. This situation applies only when
the canonical superalgebra has a non-trivial Z, grading (see, for example,
Scheunert [37] ). The question of the uniqueness of the Klein transformation
(up to equivalence) is open in this case because Schur’s lemma is of no help.

There is another notion of uniqueness that is broader than the one we have con-

sidered here. Let us suppose that we have two sets of Klein operators K’(a) and

K° '(a). As we have seen in section 3 and the beginning of this section, if go’~1 is

trivial as a multiplier then the two Klein transformations will give rise to isomor-

phic colour algebras. On the assumption that this is the case here, we now consider
representations of a colour algebra and the two sets of Klein operators. The two
different Klein transformations will produce different representations of the same
colour algebra. It is of interest then to know whether these representations are

equivalent or not.
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This question remains at present unsolved however the answer appears likely
to be affirmative for the following reasons:

Consider a basis for our representations which has all its elements with a
definite grading. This is certainly possible due to equation (1.1). It is clear that the
only graded elements of the untransformed colour algebra with non-zero diagonal
elements are those with grading O (this is a consequence of (1.9)).

Now due to the second equation of (4.2) and (4.5) these elements will be
left invariant by both Klein transformations. In the case of finite-dimensional
representations this implies that the characters of all elements in the transformed
colour algebra will be the same in both representations.

On the assumption that the usual character theory for algebras [38] can be
adapted to colour algebras, we can use the result that equal characters imply
equivalent representations to derive the required result.

Obviously the above argument is incomplete and intuitive. It would be useful
to prove it in the general situation without resort to character theory which applies

usefully only in the case of finite-dimensional representations.
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CHAPTER 3

MODULAR FIELD THEORY

In this chapter it is proposed to study a scheme of quantization introduced by
Green in 1975 [27]. As was mentioned in the introduction, such a scheme is of
interest because, like its parafield counterpart, it has an ansatz solution with the
ansatz fields forming a colour algebra. We begin the chapter with a brief review
of the basic features of the best known form of generalized quantization, namely

parafield theory.

1. Basics of parafield theory

The parafield () is assumed to satisfy the following equal-time* commutation

relations:

[\ba(m), [KbE(Iz)a'Pq(Ia)];]_ = 26(x; — X2)8ap¥(z3) (1.1a)
[Yalen), [¥p(22), ¥a(2s)] | =0 (1.18)

The subscripts refer to either spinor or vector indices and are omitted in the case
of a scalar field. The F indicates two different kinds of quantization known as
parafermi and parabose quantization respectively.

The motivation behind (1.1a) lies in the Heisenberg principle which states

that the energy-momentum operator P, must satisfy

[Py Ya(z)] - = —ita,u(2) - (1.2)

If one sets the energy-momentum operator equal to

Po=i [ £, W3(o) banlollp &'z (13)

then equation (1.1a) can be used to derive (1.2).

* In future bold face spatial indices within a delta function will imply that we

are considering equal times
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As one might expect the usual fermi and bose commutation relations are
solutions to the parafermi and parabose relations respectively. A more general
class of solutions can be given with the aid of the so-called Green ansatz [2]. This
involves introducing an ancilliary set of ansatz fields ¢S,')(a:) (r=1,...,p) which

satisfy the following anomolous commutation relations:

[¢;(r)(51),¢,(3r)(52]]i = 8apb(x1 — %3)

(1.
[6:0(21), 80 2)]_ = [60) (@), 85 (52)]_ = [#0(2), 65 (22)], =0 H

where r # s and the upper signs refer to parafermions and the lower signs to para-
bosons. Compare these relations with the colour algebra given by (1.5) Chapter 1;
these are the relations satisfied by the creation and annihilation operators in the
discrete momentum representation of ¢g)(:z:). The ansatz solution then involves

setting
P

Va(z) =)0 (2) . (1.5)

r=1

It is a straightforward matter to confirm that (1.4) and (1.5) imply (1.1). The

index p in (1.5) is referred to as the order of paraquantization and it is easy to

see that for p =1 (1.4) and (1.5) give the normal bose and fermi quantizations.
The significance of the ansatz solution becomes apparent when one considers

Fock representations for (1.1). In this case Greenberg and Messiah [8] have shown

that the ansatz provides all solutions to the relation (1.1). In fact, the order p of

the paraquantization can be obtained independently of the ansatz via the relation

akaj|) = bupl} (1.6)

which holds in all Fock representations (the ax and af are the annihilation and
creation operators respectively).
For the case p = 2 a self-contained set of commutation relations are possible

for the paraquantization:
Ya(21)P5(22) ¥y (T3) £ ¥ (23) Y5 (22) Yalz1)

= 26(x; — X2)8ap¥y(73) £ 26(x2 — X3)8py Ya(z1)
Vo (21)9p(22) Py (23) £ P (2a) Pp(2) ¥5 (21) = 26(x1 — X2)8apt(23)
Ya(21)¥s(%2) ¥ (23) £V, (23)Yp(z2) ¥y (21) =0 .

94



These relations can easily be shown to imply (1.1). In addition the hermitian con-
jugate of the first of the equations, when written in the momentum representation,
yields

ayaia,, * ay,a1a; = 26 may =+ 26ka;, . (1.8)

When this is applied to the vacuum state, (1.6) implies that p = 2.

Consider now an arbitrary state

ax,ax, ---ax, |) (1.9)

in order 2 paraquantization. The hermitian conjugate of the third equation of

(1.7), when written in the momentum representation, is
aya;ary, = Fama; oy . (1.10)

When this is applied to (1.9) one concludes that there are two different species of
particles in the state (1.9) which are fermions or bosons (depending on whether
parafermi or parabose relations are under consideration) amongst themselves. The
particles with momentum k,, k3, ... belong to one species and those with kg, ks, . ..
belong to the other. Unfortunately the above interpretation of paraquantization
does not extend to higher order quantizations. In these cases the relations cor-
- responding to (1.7) become quite complicated [39] thus precluding such a simple
interpretation. This is part of the motivation for modular quantization, whose
commutation relations are an obvious generalization of (1.7). We now examine

this quantization.
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2. Basics of modular field theory

2.1. Introduction
The basic commutation relations we shall adopt for modular quantization of order

m are

Vo (Z1)¥p(22) ¥y (%3) £ ¥y (3)¥5(22) Yalz1)
= 6(x1 — X3)0ap¥s(23) £ 6(x2 — X3)6pyYa(z1)

Vo (20)%as (72) - - Vamir (Zma1) £ Pas(23) - Yamis (Emt1) Ve, (32) Y5, (21)
= 6(x1 — X2)00, 0, Y0 (Z3) - - - Yorys (Tma1)

Yo, (T1) -+ Yampr (Tmt1) & Pamys (Tmi1)¥a, (22) - - Ya,. (Tm)¥a, (z1) =0 .
(2.1)

Apart from a factor of V2 it is clear that the commutation relations for modular
quantization of order two are identical with those for paraquantization of the same
order {equations (1.7)). For the case m =1, (2.1) reduces to the usual fermi and
bose commutation relations with the first equation then being redundant. It is

also clear that the third equation of (2.1) implies that
ay Gk, - - Gk, k..., = Fak_ . 0k, --- Ok, Ok, (2.2)

which shows that modular quantization provides a generalization of the two species
interpretation of paraquantization of order two and we miay interpret modular
quantization of order m as describing m different species of particles which are
fermions or bosons amongst themselves.

Another way of introducing modular quantization (and the way initially cho-

sen by Green [27]) is to introduce a unitary operator u satisfying
u™ =1 (2.3)
and then define a superscript on the ¥4(z) via
YP (2) = vt Pa(z)u’ . (2.4)

The commutation relations are then assumed to take the form

50 (298 (z2) £ 95 ()92 (21) = 8(1 —3x2) 406" (2.5)



It is quite straightforward to show that (2.5) implies (2.1)— by simple substitution
and use of the relations (2.5). As was pointed out by Green [27], one of the
advantages of this formalism is the possibility of defining a time-ordering in a

simple way. Thus, for example, the time-ordering of ¥, (z1)¥g(z2) would be
T (Yo(z1)¥p(22)) = ¥a(z1)¥p(z2) 81> 1
=395 ) ()95 (31) ta >t (2.6)
= 1 (w2l e(2) T4 (20 (m1)) t=ta.
The question of whether (2.5) is implied by (2.1) is quite difficult and not yet fully
resolved. We consider now several aspects of it:
The first clue to an approach that might be followed is provided by an ansatz

solution to (2.5). This is obtained through the following non-singular linear trans-

formation of the ¥’ (z):

40 = o= Y n 0 (a) (2.7)

where 5 is the m’th primitive root of unity. When the inverse of this transforma-

tion is taken one is able to show that
1 m—1
Ya(z) = T ;0 ¢\ (z) . (2.8)

In addition one can use (2.7) and (2.5) to derive the following relations for the

(1)

80 (21)85) (22) £ 07?95 (2)8() (z1) =0 (2.90)
820 (21)8%) (z2) £ 1° 7% ()9 (21) = Sapblxy —%2)67  (2.90)
u "¢ (z)u" = n"* 9 (z) . (2.9¢)

The first two equations of (2.8) define a colour algebra: The grading group is Z,, ®
Zm(®2,), (the Zz summand being added when we consider the fermi modular

quantization) with the gradings of the algebra being assigned as follows:
¢ (z) — (r1,1)
2 (z) — (-1, -1,1) (2.10)
§(x; —x2) — (0,0,0) ,
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while the commutation factor is given by

e(a, B) = n~(@P) (—1)*sFs (2.11)

m(a, f) = a1fa — azf , (2.12)

where a;,as and az are the projections of a onto the subgroups Z,, Zp, and Z;
of the grading group.

It is instructive to compare the relations (2.8) and (2.9) with those of (1.5) and
(1.4). Obviously there is an analogy between the para and modular quantizations
in that each has an ansatz solution with the component fields of the ansatz being,
in both cases, elements of a colour algebra. Clearly because of the invertible nature
of the transformation (2.7) the ansatz solution provides a complete solution to the
relations (2.5). Whether the ansatz provides a complete solution to (2.1) in the
case of Fock representations (as it does for (1.1) in the para case) is an open

question. A partial answer is provided in the next subsection.

2.2. Fock representations and the modular ansats

We shall confine our attention, for the present, to fermi modular quantization as
the bose case appears somewhat more difficult. An outline of these difficulties and
a comparison with the fermi case may be found at the end of this subsection.

A further complication arises when the possibility of anti-particles is consid-
ered. In this subsection and the next we shall assume a non-relativistic theory in
the sense that the spatial wavefunction consists only of creation or annihilation
operators. The relativistic complications are discussed in subsection 2.4 below.

In addition, for convenience we shall, for the rest of this section, work with
the discrete momentum representation of the modular fields. In particular we
shall consider the modular ring A to be finite linear combinations of monomials
in the elements ax and a}; these latter elements will be assumed to satisfy the

momentum analogs of (2.1):

ajapa; + ajaga; = 6;ap + Okiay
* *
Ak, Oky Bky - - - Ckppyy T Cky -+ Oy Ok Ok, = Ok kqy Ok - - - Ckpuy (2.13)
Ak, Gky - - Okpy Ckpyy T Ckpnyy Gy - - - Gk Gy = 0.
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Likewise we shall consider the modular ansatz ring B to be finite linear combi-
nations of products of bg) and b;;(r); with these latter elements satisfying the

discrete momentum analogs of (2.9):
b6 4+ pr=eblbl) =0
b;(r)bl(co) + na—rb’(:) b;(r) = 6567 (2.14)
u—rbf:)ur — f]"bf:) ]

The ansatz solution ring A' C B will be the subring generated by a} and al

which are given by
m—1
e L L
af=— by, (2.15)
\/E r=0 ’

Finally we shall consider, as usual, a Fock representation of, for instance, 4 to
be a homomorphic mapping h of £ into the ring of operators on a Hilbert space.
This space shall possess a unique vacuum state which satisfies the usual relation
h(a;)]} = 0. Moreover this state shall be cyclic with respect to the representation.
In otherwords h(4)]) shall be dense in the Hilbert space. We call the Hilbert space
the Fock-space and denote it symbolically by F(A).

As a partial solution to the problem posed at the end of the last subsection

we have

Theorem 2.1. If a Fock representation of the modular ring A satisfies*

s

Gk, ... 0k, a_,,-n X a;-1|) = 61:13'1 XS 6k,.j,.l) ’ (2.16)

for all n < m, then it is irreducible and unitarily equivalent to the Fock represen-

tation of the ansats solution ring A'.
Proof: We begin the proof with the following technical Lemma:
Lemma 2.2. If ¢ =aj ay_ ...a; |) for r <m then aja;é = 6;d.

Proof: For r = m—1 the result is immediate due to the second equation of (2.13).
For r < m — 1 consider firstly the case of 7 = k. The first equation of (2.13)
shows that

ayaja;d = ajé . (2.17)

* for notational ease we write a; for h(a;) and so on.
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If we take the scalar product of both sides of this equation with the state a;¢, we

obtain
laja;dll® = llajol® = (4, a;a74) - (2.18)
Now if we assume that the vacuum state is normalized then we may use (2.16) to

conclude that for r < m — 1, which we are assuming,

||¢7';"¢||2 = (|}, ax, ... ax, 0500k, ... 0k,

N=1.

In an identical manner we deduce that ||¢]|? = 1. Now from (2.18) we conclude

that
1=|(¢,85a5¢)| = ||| llaya;4ll ,
and hence the Cauchy-Schwartz inequality demonstrates that
aja;$ = ad aeC.
But (2.18) then shows that
1=(4,0505¢) = all¢|* =

and so we have demonstrated the case j = k. For j # k we have from the first of
(2.13) that

* * * * __ %
G;a;0 + apa;a; = Gy .

We now apply this equation to the state ¢ and take the inner product of the

resulting state with aj¢ obtaining
lajakdll* + (aja5 4, axard) = (4, arard) ,
and using the results derived above, we immediately have
lajardll? =0 = ajazd=0. ]
Consider now a state of the form
¢ = azi...a;ra;;...a,’:;‘ .Gy Ggm]) T21. (2.19)

This is an arbitrary product of creation operators applied to the vacuum. We
shall say that particles with momentum kJ belong to class j. Notice that this
is consistent with our interpretation of modular particles given previously. This

interpretation is given further weight by the following:
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Lemma 2.3. The state ¢ will have norm 1 if and only if all the kJ for the class
§ are different; otherwise it vanishes. Furthermore a state ¢' will be orthogonal
to ¢ if and only if it possesses a particle in any class j with momentum different

to any of the kJ for ¢; otherwise ¢' = +¢.

Proof: If any of the kJ are the same, the vanishing of ¢ follows immediately from
the first equation of (2.13).

Now consider the state

T =a1;na,:n—1 - .a,; o, .a,;n - .a,i

. . . (‘2.20)
.aki . ak;nak; . ak;,.l) )

we can move the ;i to the right by use of the second of (2.13). After repeated

use of this identity and finally with the use of Lemma 2.2 we obtain

r

. v+le . * * b
T= E (1" i air - QpitaGits - Gpioa Oy Gpins
v=1

* * * * *
...akt ...aki_lak:’_lak:‘].‘.l ...ak:+l PR (2.21)
* * * *
k:',;llﬂ,ki-{-lak:i]i S0 .a.k:,. ) .

a

Now if I = kI, Vj,t, then it is clear that

1811 = (), )

what is more, if all the momenta in class 1 are different only the first term in
(2.21) will survive. This argument can be continued iteratively until we conclude
that if all the momenta are different in all the classes then & = [); the final step in
the argument follows from the equation (2.16). The first part of the lemma now
follows trivially.

For the second part, if the state ¢’ has more particles than ¢ then either it
will vanish or at least one of the momenta in one of the classes will be different to
all the momenta in the same class in ¢. In any case repeated use of the second
equation of (2.13) will, a la (2.21), eventually show that (¢',4) = 0. We need
thus only consider ¢’ with the same number of particles. In this case we have

(¢',¢) = (), 7). Now in the class ¢ if I§ # k%, Vs then this will be zero by (2.21).
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In (2.21) we may interchange, using the first of (2.13), the a;; with a;; with only
a change of sign to = and so we conclude that if any of the If # ki, Vs then the
inner product vanishes. Thus our result holds for the class 1. To extend to the
other classes is simply a matter of continuing the reduction began in (2.21) and
this is, in principle, straightforward. =

The following result is quite important, not only to the proof but also to

arguments used later in the chapter.

Lemma 2.4. There exists a subset of statesin 1 = {af_...a}_|}} which provides

a complete basis for ¥(4).

Proof: Consider z € 4 to be an arbitrary product of creation and annihilation
elements, then h(z)|) may be rewritten, with the aid of Lemma 2.2 and the second
of (2.13), as h(z')|) where 2’ is a linear combination of only creation elements.*
It is thus clear that h(A4)]) = h(D)]|) where D C A is the ring of finite linear
combinations of products of creation elements. Further Lemma 2.3 shows in an
obvious way how an orthonormal basis for h(D)|) may be constructed from among
the elements of 2. Now since h(A4)|} is dense in F(A) sois h(D)]) and thus from
a standard result [41], the above basis is complete for 7(A). |

Denoting this basis by v}|), with v§ =1, v} € D, it follows, again from [41},
that any ¢ € 7(A) can be written as

$= Z v} ) . (2.22)
Consider now an operator V' which commutes with h(A). Clearly
Vé=YamVl); (2.23)
but from the definition of the vacuum we have
0=Vai]) =aV|) Vk; (2.24)

now V|) must be expressible in terms of the basis vf|):

Viy=2_ Bl - (2.25)

* The same thing is possible in paraquantization, see [40]
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Now from the proof of Lemma 2.3 it is clear that axv}|) = O unless the last created
particle in v}|) or one belonging to the same class, has momentum k. In this case
a little consideration of Lemma 2.3 will show that axv}|) = £v}|) for some j and
for every different v} there is a different v}. Hence, applying a suitable ax on
the left to (2.25) leads, when (2.24) is used, to the conclusion that g; = 0 for
all i except 0. Thus we have shown that V|) = a|) a € C and hence by (2.23)
that V is a multiple of the identity. Schur’s lemma [42] then shows that the Fock
representation of 4 is irreducible.

We now show that all operators in the Fock representation of A are bounded:

We begin by proving this result for ax. Consider an arbitrary

$=>_ aivf]),

now as we have seen above axv}|) = Zv}|) or O (with a unique j for every ).

Thus we have
lakdll = \/ 2 lesl®.P(d)
where P(i) =0,1. However

gl = /22 leil?

and so |lax¢|| < ||#l|. This means that ||ax|| <1, and in fact equality holds as can

" be seen from the following:

llax (akIDIl = Il = 1= [lai Ml -

From [43] we now have {|aji| = 1, and now consider an arbitrary finite linear

combination of monomials in ax and aj:
= ) . » 3 e v et > *
w= E iy Cip e -Chn 5 Cip = Bjys By, -
n

Now by the use of results from [44] we have
flwll = || Zj,n 'ch:fx o Ch |
<Y I llles, el
<Y I lllesll - Neg,
=> 17
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which is finite because the summation is finite, and so we are done.
Consider an arbitrary vacuum expectation value (|),w|)) of an element w € 4.

This may be rewritten with the aid of Lemma 2.4 as

(I),E,- v"v}l)) =°. (2.26)

Thus what we have shown is that once (2.16) is specified for the Fock representation
of A then all all V.E.V.s are determined. It now follows from [45], using the fact
that |) is cyclic, that £|) is determined up to equivalence.

Consider now a Fock representation of the modular ansatz ring B with vac-
uum state |)’. Within B is the ansatz solution ring A’ and one can consider
the subspace of h(B)|)’ generated by applying h(4') to |}'. The closure of this
subspace, which lies within F(4) by [46], is complete again by [46]. Letting h(A')
act on this space it is clear from the definitions given earlier that we have defined
a Fock representation of the relations (2.13). To show that this representation is

equivalent to the one discussed above, it remains simply to show that

ak, ...ak af . af]) =6k,5 - Ok |) YR<m. (2.27)
Consider the left hand side of this equation: By use of the momentum analogs of
“equation (2.5) we can shift the operator aj.  to the right until it is applied to the

vacuum. We obtain

j— oAl [} * %\ 7
LHS _6kn.7n akl P akn-—lajn—.l - aJ-1|)

| (2.28)
+(~1)"ay, ..o ateh a;(_l)a;c(:")l)’ .

n—1 Jn

The second term in (2.28) is zero because of the Fock vacuum condition for the
representation of B. We can then reapply the argument above to the first term
obtaining

LHS. =68k ; 6k i .0k ...ak _a” _...a[y 2.29
nln n=1Jn—1 k1 k

n—-2 Jn-2 J1
Obviously this argument may be extended until we obtain the desired result. The
proof of Theorem 2.1 is now complete. [

To complete this subsection we make a few comments concerning the bose-like

modular quantization:
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It appears difficalt to generalize Theorem 2.2 to this case. The basic problem
stems from the proof of Lemma 2.2 which does not generalize because it uses the
relation (2.17) in an essential way. There is no completely analogous relation in

the bose case, as can be seen by setting k = { = m in the relation
k4] Ay — Q@] Ak = Sg1am — Eimak ,

which is satisfied by the bose ring. It is possible that in this case further relations
apart from simply (2.16) are needed to tie down the Fock representations to the
ones given by the ansatz solution.

A further difficult arises because the proof of the uniqueness of the repre-
sentation specified by equation (2.16) depends, in the fermi case, on a technical
result [45] which applies only in the case of bounded operators. This appears to
pose problems in the bose case where the operators are unbounded.. However
given the fact that there exist general theorems (see [47]) reconstructing boson

field theories from their V.E.Vs, this difficulty is not likely to be insummountable.

2.3. Uniqueness of modular ansats
We now consider the question as to whether Fock representations of (2.13)
other than that specified by the condition (2.16) are possible. We shall show that
(if they are given by an ansatz, such as (2.15), then the answer is negative. This
result is significant because, as we shall see in section 4 below, the ansatz enables
one to compare the theory with a normal theory of fermions.
We shall make a number of assumptions concerning the possible ansatz solu-

tions. Firstly the solution will be given by the equation

1§40
aj=—= Y b, (2.30)
\/N r=0 ’
Secondly the bg-r ) will be assumed to satisfy the algebraic relations

b6 + e(r, )bl = 0 .
2.31
b0 1 e(F, )b 0 = 67

with e being an arbitrary non-zero map into the complex numbers. Notice that

this algebra is more general than a colour algebra. Finally we shall assume that
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the ring B’ generated by bg-') and b;.(') has a Fock representation. These three
assumptions appear to this author to be minimum requirements if a theory is to
be compared with a normal bose or fermi theory.
Consider now equation (2.13) with the momentum j; all distinct. Substitution
of (2.30) into this equation gives
! NZ_I B0 bt B = 0
5 Jm o1

m+1 Jm+41 Im+1
N Tl,...,f‘m+1=0

With the repeated use of the first equation of (2.31) this becomes

Z[H;L e(rma1, 1) [T2o eriyr1) — 1] bg.:") bﬁ'";t" _0.

Now consider 7(B’) and the following inner product:

Im+41 ? J m+1

(b*_("m+1) . *("1)|) *(tmt1) *(h)l))

= (l) b(,"l) b(fm+1)b*(tm+1) *(‘1)|))
L 1

Im+1 Im41
m+1

= II € h;ﬂ rit;

where we have used the distinctness of the j;, and the second equation of (2.31).

The non-zero nature of € implies that the state b*('"‘“) . .b;l(r‘)|) is non-zero and

*(tmt1) )

orthogonal to b - b;l(t‘) |} if this state is different. As a consequence of these

Jm41
considerations we deduce that all of the b;: l .b_g-:‘":‘) are linearly independent
and hence that
m m
He Frt1sTl) H e(ri,r1) (2.32)

=1

If we set r; = r for 2 <1 < m in this equation we can deduce that
€(Tms1, 7)€ Hrmer, )E™ Hr,r) =1. (2.33)

Further, if we set r; = rp,41 =t and pote that the first of (2.31) implies that
e(r,t) = e 1(t,r), we may deduce that

e(t,t) =1 (2.34)

and as a consequence (b_‘;.('))2 =
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Now by the use of the second of (2.13) with all the j; distinct except j1 = jp
for 3 < p < m+ 1, we obtain

”z‘:‘ (*(r,)b(r,)_ BEm) gl plrmaa)y (r:)b*(n)) 0.

Im+1 Im+41 12
f1,.-0Tm41=0

Repeated use of the second of (2.31) now leads to
SO [(1 - THms* e, m) TS elranm)) 87 62 VB850

Ip-1 Jp41 ot IJm41

p—1
—1) [ el rbls) b 6ee) pma)] =0

q=2

If we take the hermitean conjugate of this equation and introduce an obvious

abbreviation we obtain
[ty P B BB ) )

*.("m+1) b*("p+1)b*("p—l) b*("Z)] =0.

+u(r1""’r"‘+1)b3m+1 Jp+1 Jp—1 * V2

In 7(B') we apply this operator to the state b;-l(w)l) obtaining

E t(w’ r2""’rm+1)k(r21 y T'm+1 )b*(rz)b*(ra) *(r,,.+1)|)

Jm+l
rpFw
+ Z U;(Tl, ‘e Tm+1)l(7'2, 1 Tm+1 )b*(rz) B b;f:’;—l)bffw)bf(rp.u) (235)
x0T
where k,I # 0 and we have used (b_’;.l("’))2 = 0, together with the sec-
ond of (2.31) applied to the vacuum. From the comments made above,

the states b;(r’) *(""+‘)|) in the first sum of (2.35), together with the
2 J +1

;z(r’) . b;:"') e b;f:"l“)l) from the second sum, are all non-zero and orthogonal.

This leads to the conclusion that ¢t = u = 0 or more explicitly to the equations

m+1 m+1
II e.m) I elrasm) =1 (2.36)
(=2 =3
N-1p—1
Z H (71, rq) (2.37)
ry=0qg=2
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If we set r; = rg for I > 2 in (2.36) and use (2.34) we obtain
(7 t)=1. (2.38)

A further equation may now be obtained from (2.36) by setting r; = r for [ > 3
and using (2.38):

€(5,t) = €(5,r)e(t, r) . (2.39)
Upon consideration of the second of (2.31) with r =t we are led, after taking the

hermitean conjugate, to the conclusion that (e(¥,r))* = €(¥,r). When (2.38) is

considered this implies that

e(F,r) =£1. (2.40)

Suppose, for arguments sake, that €(Z,t) = —1 for some t. Now in #(B') we have,
from the second of (2.31), that

bO5Y) = e, 8l = 6] - (2.41)

Next consider the V.E.V. (]),bg)b;(t)bg.t)b;(t)|)) for j # k. By (2.41) this has
value +1, however it also equals

(1), +e(E, t)e(t, )6 6152 531y

==, 6P0 55N (using (234))

=— {156 2,

which certainly cannot equal +1 and so we conclude that
e(r,r)=+1 Vr. (2.42)
From (2.39) we now conclude that
€(3,t) = €(t, s) , (2.43)

and we may thus restrict our attention to the €(s,t). If we set rg = r for ¢ > 2

in (2.37) then we obtain the useful equation

N-1
d e, =0 1<n<m-1. (2.44)

1‘1’:0
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Now if we let » = 1 and note that (2.38) implies that all the €(¥1,r) must be
powers of 5, the m’th primitive root of unity, we can conclude that

m—1

> an' =0 (2.45)
(=0

where ¢ is the number of occurrences of n amongst (¥, r) for r fixed. In general

we have

Y a®)}=0 1<n<m-1. (2.46)

Now, up to a factor of proportionality, there is only one (m —1)’th degree polyno-
mial which has all the roots of unity (apart from 1) as its roots, namely Eﬁ;l ot
We therefore conclude that the g; in (2.45) and (2.36) are all equal to some integer
which we call q.

From the above considerations we deduce that amongst the N values that
the arguments of € can take on, there must be exactly g sets of m values. These
we denote by r§ with t = 0,...,¢q—1, and § = 1,...,m. By an elementary

reordering, they satisfy the equation
e(rh, r¥) =n'"" . (2.47)
If (2.43) is now substituted into (2.39) we may generalize this to
e(rf, Ty i) = e(rf-,rf,)e(rg,r;?)
= ¢ (b, ri)e(rh, ¥
=nt, (2.48)

where we have taken the hermitean conjugate of the second equation of (2.31) to

deduce the second step. Finally we form the new algebraic elements

q—-1

-y _ 1 (r$)

b} =%§:bj : (2.49)
t=0

By the use of (2.48) and (2.18) it is now straightforward to show that these new ele-

ments satisfy the same equations as the first two ansatz equations (2. 14); moreover

we have
lq_l"'(') lml(k)
aj = > b = . (2.50)
2
qm t=0 =1 m k=0
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which is identical to {2.15). As far as the last equation of (2.14) is concerned, it is
shown in Appendix B that such a u always exists on a colour algebra satisfying

the first two equations of (2.14).

The demonstration of the non-existence of other ansatz-like solutions of the
fermi modular relations generalizes in an obvious way to the bose case (only the

argument following equation (2.40) needs any significant modification).

We have not, as yet, considered the existence or otherwise of the Fock repre-
sentation of (2.13) satisfying (2.16). This question is addressed in Appendix B in

the context of the Klein transformation.

2.4. The relativistic case

We come now to the important consideration of a relativistic theory. In this case
one would expect, as with the usual relativistic theory, that modular fields would
be made up of two parts corresponding to positive and negative frequecies. Thus

for example, one would write the free spinor modular field as [48]

1 ;

¥(z) = == D _{EEXTT T, v (K)et (k)
WA { 1 (2.51)

4 eilextBa) Tyt (k) (k) |

where the u®(k) are the usual Dirac spin components, V is the volume appropriate
to the spatial fields, and the operators af(k) and c**(k) are to be interpreted as

particle annihilation and anti-particle creation operators respectively.

In order that the relations (2.1) be satisfied by our relativistic spatial field, the
relations (2.13) which apply in the non-relativistic case, need to be extended to deal
with anti-particle operators. This may be achieved by following the prescription
that a creation operator af in (2.13) may be replaced by an annihilation operator
cx providing that Kronecker deltas involving the momentum labels of particles
and anti-particles are removed. In otherwords the ci acts algebraically like aj
except with an extra degee of freedom corresponding to its status as an anti-
particle operator. Similar comments apply for exchanging ax with c;. With this

prescription the first equation of (2.13) expands to include the following extra
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equations:
ekl + cfckC; = 6Hc;- + 8;xc)
cyarcr +cfagc; =0
cyapa + araxc; = bpics (2.52)
ciegay + ajcrc; = b5xa
7Ckal + aickc; = djxay

ajcka; + ajcga; = 0.

Similar extensions occur for the other two equations. It is interesting to note
that when m > 3 these extended equations are non-trivial in the sense that one
cannot just consider the anti-particle to be an ordinary particle with an “anti-
particle” label. To see this, we observe that the second equation of (2.52) has
no counterpart involving just particle operators (except, of course, when m = 2).
This non-trivial property distinguishes modular field theory from parafield theory
where it is possible to consider anti-particles as simply ordinary particles with an

anti-particle label (see [49]).

The extension of Theorem 2.1 to the relativistic case will present problems
when there is a non-trivial extension of the relations (2.13) (the trivial extension
in parafield theory can be easily dealt with by introducing an anti-particle label
into the condition (2.16)). We simply remark that in the fermi modular case
the relations satisfied by the anti-particle operators are identical in form to the
relations (2.13). As a result, if we impose the condition (2.16) on anti-particle
operators then the proof that the usual ansatz solution is implied by this condition
will go through in an identical manner. This shows that the ansatz solution for
anti-particles is the same as that for particles. The remaining problem concerns
the commutation relations between particle and anti-paticle ansatz operators. It
is not clear whether relations such as (2.52) are sufficient to determine these or
whether further conditions such as (2.16) need to be imposed for mixtures of
particle and anti-particle operators. We leave this question unresolved and merely
demonstrate how a solution to the basic relativistic commutation relations of (2.1)

may be constructed.

We begin by extending the modular ansatz ring B to include the elements
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efcr) and e;(r) which we assume to satisfy the relations
egf)es:) s r’r—aey)e;_") =
eel) £ n2rel el = 587 (2.53)
u—reg:)ur — fl—"eg:)
amongst themselves and also the relations

P oG o a1
b;(r)ez(s) n no—re;(")b;(") -0 '

with the original elements of B. We now define an ansatz for the anti-particle

operator cf:
1 m—1
=== . (2.55)
r=0
As in equation (2.4) we may also define
c;_(") =y Ty’
(2.56)
a;-(r) =u"aju

With these definitions and the equations (2.14), (2.15) and (2.53)—(2.55) we

can derive the equations

AN g ) =) = gl (g (0) 4 g+ 2201 — g

c?(r)C;c(a) + C;(’—I)C?(r_l) = a;'(r)a;:(s) + a;:‘(a-—l)a;_(r—l) - 5kj6” (2_57)

c;_(') a:(") 3 a;:(’+1)c;.('—l) — c;“(")a;:‘(") + a;:(s—l)cgj*(f—l) —-0.
Substitution of the expressions (2.15) and the hermitian conjugate of (2.55) into
(2.51)* gives us our relativistic modular field. When the relations (2.57) are taken
into account it is easily shown by the usual methods [48], that the fields so con-
structed satisfy (2.5) and hence (2.1). Moreover it is relatively easy to also see
that equations (2.57) imply the extended relations such as (2.52).

Finally we come to the question of the eztstence of Fock representations of
the relations (2.1). Clearly if we can show the existence of Fock representations of
(2.14), (2.53) and (2.54) then this question will be resolved. This latter problem

is solved in Appendix B where the Klein transformation again plays a central role.

* With an appropriate addition of a spin index.
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3. Observables

3.1. Locality constraints

In ordinary field theory the consideration of what constitutes an observable is far
from resolved. As a consequence of this, we shall follow the approach used by
Ohnuki and Kamefuchi [29] to consider the analogous problem in parafield theory.
This involves using locality conditions to restrict the possible algebraic form of
observables.

The essential feature of this approach is that observables are defined in local
regions of space. This is achieved as follows: Let g be a function of the fields
W(z1), ¥(22),-- -, ¥*(¥1), ¥*(y2),... and hy a function of zi,z2,...,¥1,¥2,...
which vanishes if any of it arguments lie spatially outside the region V. An

observable F(V) for the region V is now defined to be of the form

FV) = f hvg(¥(z1), ¥(z2), .., ¥ (1), ¥* (y2), .. .)dz1dza .. . dysdys...

apace 51)

with z,,%Za,...,¥1,¥2,... having the same time component. In practice we shall

possibly require derivatives of the fields in our observables. The complications
introduced by this generalization are discussed at the end of this section.

A first requirement of our theory is that measurement of two observables

defined at equal times in non-connected regions should be independent. This is

simply an expression of the principle of causality and can be achieved through the

following equal time equation
[F(V),F'(V)l_=0 V~V', (3.2)

where V ~ V' means that V and V' are disjoint. We shall refer to (3.2) as a
condition of weak locality.

A stronger condition than (3.2) is the equal time relation
[F(V),d(z)]l-=0 z¢V, (3.3)

where 9¥(z) = (z) or *(z). This relation ensures that measurement of F(V) is
unaffected by the existence of particles in regions which cannot have any causal in-

fluence* on V. Condition (3.3) shall be referred to as strong locality. It is fairly

* See [29] p88 for a more detailed dicussion on this point.
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clear that (3.3) implies (3.2), however, as we shall see below, the converse is cer-
tainly not true.

We turn now to the particular case of modular quantization. We make the
assumption here that the modular fields satisfy the conditions (2.3)-(2.5). In
otherwords, we are considering the ansatz solution of the relations (2.1). We
also restrict our attention here to the fermi modular quantization. These two
assumptions will remain for the rest of this chapter.

It is fairly easy to construct observables from modular fields which obey weak

locality. An example is

F(V) = [ (a0 () (a)dody (3.4)

Relations (2.5) easily confirm that [F(V),F(V')]- =0 for V ~ V'. In general
however, these observables do not satisfy the condition of strong locality*. In order
to consider the form of observables which are strongly local it proves convenient
to allow them to be constructed from the ansatz fields ¢*(7)(z) and ¢(")(z), or
equivalently, by (2.7), from the fields ¥*7) (z) and 97 (z). The following result

now holds:

Theorem 3.1. Observables F{V') constructed from the ansatz fields obey strong
locality if and only if
(i) They are functions of $*(")(z)¢(t) (y), ¢(r)(z,). .. ¢(r)(z,) and its hermitean
conjugate; where ¢ = m for m even and q¢ = 2m for m odd.

(ii) v F(V)u=F(V).

Proof: We firstly demonstrate the sufficiency of the two conditions: Using a Taylor
series expansion of g in (3.1), we may rewrite it, with the aid of (2.5) and a change

of variables, as:

9@, a ¥ )= Y anlr Tt y) 90 (20) 90 (z) ) (1)

l,n,r;,t,-

L) () . (35)

* For m = 2 candidates may be constructed— see [29]. For m > 2 see Theorem

3.4 below.
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Now if we take ¥(z) with z € V', we obtain after repeated use of (2.5)

/ hy D gt (zy) gl ()t (yy)

ln.r. t;

Pt (g )= (2) (1) dz, ... dy, .. (3.6)

By the use of condition (i) we have that n —{ =0 mod m and n+ /=0 mod 2.
It follows now from (2.4) and (3.6) that
Y(2)F(V) = v F(V)uy(2)
=F(V)¥(2) ,
when (ii) is used.

To demonstrate neccessity we firstly rewrite (3.5) with the aid of (2.7):

921y ) = D dinlri, Tir s, 9)8) (31) . 40 ()94 (yy)

lLin,rt;
L) (y) . (3.7)

Secondly we regroup terms in this sum as follows:

F(c)_ E Z Z dzn(rs',:n.',tj,y:')‘ﬁ(”)(zl)---¢(")(Il)

z—y=c l—-n=q l+n=t
mod m mod m mod 2

) (1) .. 9 (yn) (3.8)

with z = )::-=1 t; and y = )i, ri. We now have the following commutation

relations:
3O (2)hy By = n?*e(-1)thy F ¢ (2) . (3.9)

Since

/hv S FYdz, .. o (3.10)

¢, ¢t
strong locality therefore demands that

/ dxdyhy 3 [1 - q®+e(—1)HFS 40 (2) =0, (3.11)

b,e,q,t
where dx = dz;dz, ... and dy = dy;dy;.... Let W be a region of space contain-

ing z but not intersecting V. Define the following operator:

u(W) = exp(A)

with
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A= [ [Srt e O@e0 @] G

and
xwi(z) =1 reW
=0 zg€W.

This operator will be unitary since A is evidently anti-hermitean. One of the

Baker-Campbell-Hausdorff identities [50] is:

ezp(—A)$ ezp(A) = ezp(—ada)¢

(3.13)
where ezp(—ada)p = 1— (A, ¢]— + 5[4, [4, 0] ] —... .

Now

4,891 = 2 | [ (e (SR 60 @60 1)z, 493)]
= =2y ()99 (2) . (3.14)

Therefore (3.13) allows us to conclude that

u (W) (2)u(W) = ezp(22xw (2))¢"") (2)

- nbxw(2)¢(b)(z) . (3.15)

The operator u(W) might be considered to be a “local” Klein operator. If (3.11)
is premultiplied by «~"(W) and post-multiplied by u"(W') we obtain

[axighy 3 atl- - FDOO @ =0 (319)
b,c,q,t
If we multiply this by 7%, sum over r and use the following
m—1 m—1
Z r'—drnrb — Z nr(b——d) = mbpg , (317)
r=0 r=0

then we can conclude that

[ sy Sl - e (<1 FE ) = 0. (3.18)

¢,q,t
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Consider now the operator u(V). By the use of (3.15) and its hermitean conjugate,

together with (3.8) we conclude that
wLVIFD u(V) = n°FY) . (3.19)

We can now premultiply (3.18) by u~"(V) and post-multiply by u"(V') and, using

an analogous argument to the one developed above, conclude that

/ dxdyhy ) _[1 — n?** (1)1 FP W (2) = 0. (3.20)

q.t

We introduce now a further unitary operator given by
v=eap (22 [ T30 0@)60 (2)dz) (3.21)

When (3.13) is used in conjunction with the commutation relations for ) (y) we

obtain
v ¢ (y)v = ¢ (y)
and hence, by (3.8),
v—lFé:)v = r)qu(:) . (3.22)

The argument used twice above, leads then to
f dxdyhy Y [1— it (—)MFS ¢ D(z) = 0. (3.23)
t

Finally we eliminate the sum over ¢ by introducing the unitary operator

w= esp (in [ D75 60 (2180 (a1 ) (3.24)
which satisfies
w140 (g)w = —40) (g (3.25)
and hence
w FPw = (-1)!F}y) . (3.26)

Premultiply (3.23) by w™! and post-multiply by w; adding the result to (3.23)
then shows that

[ syt -t =09z = 0. (3.27)
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The above arguments are easily modifiable to the case ¢*(2) instead of ¥(2). We

are led then to
[ sty it =i 1) ED 6O @) = 0. (3.28)

The bracketed quantity in (3.27) is the complex conjugate of the corresponding
quantity in (3.28) and so therefore they vanish simultaneously. Suppose they
vanish for all values of d. A little thought will show that this can only occur when
j =1=38=0 (consider d =1 and m — 1 and solve the relevant equations). Thus

unless this situation occurs we may conclude that for some 4

f dxdyhy Fi2 ¢ / dxdyhy F{)¢*@(2) =0 . (3.29)

Consider now the integral

[ dxdy [ ED (80@80E) + 9(2)69 2)) dz

with 2’ € V. By (3.29) this is zero, however by (2.9b) it is also

dxdy | hy FO6(z — 2"Ydz = | dxdyhy F
J8 Je

and so therefore we are led to
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/ dxdyhy F) =0, (3.30)

whenever 1 = § = s = 0 does not apply. Conditions (i) and (i) now follow from
(3.1), (3.7), (3.8) and (2.9¢c). |

The question now arises as to the form of strongly local observables which are
solely functions of the modular fields ¥(z) and ¥*(z). This problem is partially

solved in the following theorem:
Theorem 3.2. Let us define the following polynomials of modular fields:

M(Ils---)mm—lsyla'--)ym—l) = E Z ¢’ ITm— l ";b(zm—l)";b*(ym—l)
1) 1=0

perm(1l,...,m—
() Y(m1) - P(Emao)(—1) (3.31)
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By(z1,-.pzn) =, (1) Wy(a) . ¢(zN) (3.32)

cyel(1,...,N)
On(z1y r2m) = D, (z)...P(zn) . (3.33)
cyel(1,..,N)

An observable F(V) is strongly local if the function g in (3.1) is a function of
the following modular field polynomials (and their hermitean conjugates): M,

CimnCl, Ci;nCi* and when km is even, Biy,.
im) im ’

Proof: Contemplation of Theorem 3.1 shows that it is sufficient to show that the
relevant field polynomials are invariant under u. The case of B is considered

firstly:

It is easily seen from (2.3), (2.4) and (2.5) that when N is even and equal to
km then

Y(zn)b(z1), .. Yzy_1) = =9V (z1) ... 2y 1) p TV (zn)
=~V (z1) ... D (my_1)¥ "V (z)

and therefore

m—1
By(z1,...,Zn) =k Z v (zy) .. 9D (zn) .
r=0

The form of the right-hand side of this equation now gives the desired result.
The case of C is proved in a similar way; we content ourselves with a proof
that v~1C1, Ol u = Ci Cfy, as the proof for the other C polynomial is almost

identical. Now

CimCimn = Y. $(=1) - ¥(@m)¥ (Ym), .- $(y1)

Cyc‘{xlv-"azlm}
cyel(y1,es¥im)

= E Z V(z1) .. Y (Zim) V" (yim) - ¥ (Y1) -

eycl(l,....Im) eyel(Zy,.. .\ Tt m)
However by (2.3)-(2.5)
'()b(zl) vee t/)(:Elm)"/)"‘(ylm) v '/)* (yl) :¢(1)(zim)¢(l) (Il) s ¢(1) (zlm—l)

* O (gmet) - O ()" D (y1m)
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so therefore we have

m—1
C[mCl’:" == Z Z ¢(r)($1) DR ‘P(r) (z,m)‘p*(r) (ylm) R ‘p*(r) (yl)

cyel(zy,yoTim) =0

which demonstrates the required result.
For the case of M we move the fields ¢(z,),...,¥(zm—i—1) in equation (3.31)
to the left using equation (2.5) repeatedly. After a straightforward but tedious

calculation we obtain the result:

m—1m—q—1 k;

> E ) E ZX‘O m—1,m—1)XED(1,n,)

perm ¢=0 = n;=0n2=0 ng,=0
XD (ny +2,n; +ng + 1) XDt —ng—1,t-2)
XC Dt m—1—-1)Y T ) (1, )Y D 2,8 -y — 1)

Y g, DS I - 8T (334)

where
XM (a,b) =9 (za) ... 9 (z) 5 YO (a,0) = ¢* D (ya) ... ¢* D (w)

q )
t=q+1+ > n;; z=(l+1)g—-m+1)+1; 6] =6(z; — vi)
i=1

i—1
ki=m—1-1-3 n;.
=1

This may now be rearranged by use of (2.5):

ZX(—I—l)(l’ ny)... X(—l—q)(t —ng—1,t— 2)x(—l—q—1)(t, m— 1)
Y=Y (m — 1,1). Y & D(ng, 1 )5;:1111 ST (1™t | (3.35)

By the rearrangement of the summations and by setting ngr1 =m—1t, we obtain

Ng41

2L 2—:( ) ZX( SOy XTI m = gy, m - 1)

perm q=0 q+1
n;=3

i=1

YD (m — 1,m —ngyy)... YD (0, 1)
gritl 6m—nq+1—1 (3.36)

ny+1 - m—nq.H—l )
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where s stands for m — 1 — g. Consider terms in this sum with fixed n; with
i=1,...,q+1. Corresponding to these terms are other terms with their n; being
a cyclic permutation of these fixed values. After an appropriate permutation of

the spatial indices these latter terms become
n;

S XD () + 1,76+ D) =) XTI g, m— 1)

1=0
X240 (1) L XEED (- 1) + 1, f(5) - 1)
YD (1) =1, fG - 1)+ 1) YERD (F(5+1) = 1, f(7) +1)

+1 m—n -1
LIS A (3.37)

where f(j) =7+ Z{:l n; with § = 1,...,q. This may be rearranged using (2.5)
repeatedly:

ZX(_1_1+f(J'))(1’ nl)X(—l—Z-i-f(j)) (nl + 2’ n, +ne + 1) .
=0

X=1=aH ) (m — gy, m— WY (=1 0 (m — 1,m — ngyy) ..

Y (=146 (ny 1)6PaEL | gm TRt ] (3.38) .

ni+1 m—nggp1—1

Now as ! goes from 0 to n; the index —I — 1+ f(j) goes from —1 + f(5) to
f(7—1) or when § =1, to 0. In the original unpermuted term the corresponding
index goes from —1 to —1 —ngp; =t —1 =g+ Y i_, n; = f(qg). It is clear now
that this index will cover all values mod m when (3.38) is summed over all values
of § and added to the original term. Hence this sum will be invariant under u.
A little thought about how the terms in (3.38) are produced will show that all

terms in (3.36) may be grouped into such sums in a non-overlapping way. Hence

v Mu=M. n

3.2. New modular commutation relations

In the special cases of m = 2 and m = 3, the polynomial M has the form

M(zy,y1) = [$(z1), 9" (11)]- (3.39)

M(zy,%2,Y1,92) = Z ¥ (y2)¥" (y1)¥(z1)¥(z2)

perm(1,2)

- 1/)(9:2)1#*(312)1,0*(3/1)1/1(3:1)
+ Y(z1)¥(z2) 0" (y2) 9" (y1) - (3.40)
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In the case of m = 2 we are dealing with parastatistics of order two and in that
case the strong locality of M follows directly from the fundamental commutation
relation of paraquantization, namely (1.1a). This observation tends to suggest
that a generalization of this fundamental equation may be possible. This turns

out to be the case as the following theorem shows:

Theorem 3.3. The field polynomial M given in equation (3.31) satisfies the

following commutation relations:

(M, ¢(2)]- = Z Z 118 (2 — Yym—t—1) ¥ (Ym—i—2) .- ¥* (91)

perm(l,...m—1) =0

¥(z1) - P(Em—1)¥" (Ym—1) - ¥ (Y1) (3.41)

(&)

m—

(M, 4*(2)]- = (—-1)'6(z — Tm—t1-1)¥(Tm—1) - - - $(Tm—1)

perm(1,...,m—1) =0

¥ (Ym—1) - " (11)¥(31) - P(Em—i—2) (3.42)

Proof: We have firstly, the following interesting lemma:

Lemma.

[9(z) - Bl () . " (1),
1/)*(ym_1)...¢*(y1+1)¢(z;+1)...1/;(3:,“_1)] =0

(3.43)

Proof: We introduce the abbreviations ¢(z;) = z; and $*(yi) = yi. Now by (2.5)

we have
Zy ... ZiYr-- - Y1¥Ym—1 - Y41%141 - - Tmm—1
n o« !
= Zi. :L',y,(.,ll) 1- l(—}}lyl( +1) y( +1)Zl+1 ...zm_l(—l)’"’ (3.44)
s l { I+1 I m
. ym—lzi 1) ""l( l)yfn) 2" 1(421y1(+ ) y§+1) Zi+1 ~-’3m—1(—1)l( )
Now for there to be any fields in the range yg,)_z yl(ﬂl, the index | must be less

than m — 2. It follows from (2.5) that we may move y() to the left without

m—2

picking up a delta function, thus:

Y 19m_az 2 Ty Ly s g ()
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() )

and now for there to be any fields in the range y,, .. Yy, We must have l<m-3

()

and hence we can also move y,’ 5 to the left without picking up a delta function.

Obviously this argument can be extended until we obtain

{ { i l
Ym—1--- y[+1$g+l) K .Zl( +1)yl( +1) o0 yg +1)Z[+1 o Typ—1

By the use of an argument similar to the one just described we can move the fields
Zi41-.-Tm—1 to the left obtaining

I+1 ! ! !
Ym—1 ---yl+15'3g+ )"'zf+1)zl(-21 Sn) Wiy (-1

and finally this may be rewritten as

Ym—1---Y+1Zi4+1 - Tm—-1Zy1 - .- ZIY1.-- Y

which demonstrates the lemma. ]

As a corollary to the above lemma we have the following alternative form for

M:

M(z,y) = Z Z V* (Ymei—1) - ¥*(41)¥(21)

perm(l,...,m—1) =0

Y @me1)¥ (Ymt) - (Ymt) (1) (3.45)

We begin the proof of Theorem 3.3 by demonstrating (3.42). By the use of

the abbreviations introduced above we have, using (3.31),

m—1
Mz, y)¢¥* (2) = Z Z(—l)'zm_; e Tm—1Ym—1---Y1T1 .- - Tm—l—12

perm [=0

- Z(—l)m_lzm—l - Im—1Ym—1 . .- ylz(H-l)zg—l) : sn—l)—l

m—2
+ Z Z (—l)lzm—l - Tm-1Ym-1--- Y1

perm [=0
Zy...Zm—1—2 5(2 == zm_[_l) (3.46)

The first term in (3.46) is equal to
Z Tm_l...T _lz(')yfn—_ll ) ..yg—l)xg_l) e xf;_ll)_l
=z (-1 fn e i BORE") i R OOE o
= 9" (2)M "V (z,y)
= ¢ (2)M(z,y) .
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Consideration of the second term in (3.46) then gives equation (3.42).

Now the hermitean conjugate of (3.31) is

M* (1, Eme1, Y15 - - Yme1) = (=1 (Emot=1) - 97 (2)9(01) - Y (¥m—1)
¥ (Zm—1) ... ¥ (Zm-1)

:M(yly---ym—lazli"')zm—l) ) (347)

where (3.45) has been used. We have now

[M(z,y),9(2)]- = = (M (z,9),¥" (2)]-)"
= —([M(y, z), 9" (2)]-)" (3.48)

and then (3.41) follows from (3.42) and (3.48). =

In the case m = 2, the commutation relations given in (3.41) and (3.42)
evidently have other solutions apart from simply m = 2 modular field theory.
These are, of course, the higher order parafield theories. One might expect, there-
fore, that the relations (3.41) and (3.42) will have further solutions when m > 2.
Whether this is so is, at present, unclear. In the special case of m = 3 this author
has attempted without success to find other ansatz solutions. This suggests that
the above expectation may not be realized.

A further question deserving investigation is whether the new commutation
relations can serve as the fundamental defining relations for modular field theory.
This is of some interest since we have been unable to show that the original mod-
ular relations (2.1) imply the Fock-condition (2.16), which selects out the ansatz
solution to these relations. The relations (3.41) and (3.42) may be stronger in this

regard.

3.3. Order restrictions
A classification of all strongly local observables remains an open question. In the
case of m = 2 the parafield classification applies (see [29] for details). In the more

general setting the following theorem is of some interest:

Theorem 3.4. For m > 2 there are no strongly local observables which are of
second order or less in modular fields. For m > 4 there are no such observables

which are fourth order or less.
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Proof: Consideration of Theorem 3.1 shows that first and third order polynomials
are impossible for strongly local observables. We show now that second order
polynomials are impossible for m > 2:

By Theorem 3.1 such polynomials must involve both a ¢ and a ¢* and must

therefore have the form*

Fy(V) = / (0 (21)9* (52) + b9 (22) (21 )]dz1 dz (3.49)

where a and b are functions of z; and z, which vanish when these variables are

not in V. By the use of (2.8) and (2.9) this may be rewritten as

(V) = f [Zr,t(a —nt=rb)gt) (Il)¢(r)($2)] dzidzy + K (3.50)

where K is a c-number. When the notation of equation (3.8) in the proof of

Theorem 3.1 is used, we may rewrite this as

Fy(V) = / [Z;';—Ol(a - n—vb)Fgg)] dzidz, + K (3.51)
where we have
Fg) = )" 40 (21)4* D (za) . (3.52)
r—t=v

It follows from the proof of Theorem 4.1 that

F, = /(a. — "B FY =0 v#0. (3.53)

Evaluate now

0=F,¢")(25) — n° ¢ (23)Fy = Gy

and then
Gy—wd* ) (2)) + 9" ¢* " (21) Gy -

After these calculations are carried out, we obtain the equation
a(zy,23) — 0" "b(z1,22) =0 v#0.

If v can take on more than one value, as it can when m > 2, then this implies

that @ = b = 0 which shows that Fy(V) =0.

* Apart from the addition of a c-number, of course.
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If m > 4 it is clear from Theorem 4.1 that the only possible strongly local
observables of fourth order involve two ¢ and two ¥* fields. Some thought as to
the possible permuations of these fields leads us to conclude that such observables

must have the form*

Fy(V) = /dzldzzdyxdyzlal¢(31)¢($2)¢*(y1)¢*(yz) + aztp(z1) ¥ (y1)¥(z2) ¥ (v2)
+ a3 (y1)¥(21)P(22) 9" (y2) + aa¥* (y1) 9 (21) ¥ (v2) ¥ (22)
+as ™ (y1)¥" (y2)¥(z1) ¥ (=2)]
+ [ ddyloup(@)” (4) + bav ()91 (354

where a; and b; are functions vanishing when their arguments lie outside V.

When (2.4), (2.5) and (2.8) are used, we can rewrite the terms in the first

bracket (apart from a c-number) as

3 Alrn, rasty, t2)¢) (21) 802 (22) 47 () (91)8° ) (v2)

r1,r2,t1,l2

) (3.55)
+ 30 D T(r )¢ (2:) 4" (v5)
r,t i,j:l
where
Alry, oyt ta) = @y — 982 Tag + 0" T T 2ag — n° T g, 4 9?%as
(3.56)
v=1t; +l—1r — 12
le(r7 t) = 6(52 - yl)(az + flt—ra‘l — r,2(t_r) (15)
T2 (r,t) = —6(z1 — y2)n" " as
(3.57)
T (r,t) = —6(z2 — y2)n° "4

T?2(r,t) = 6(z1 — y1)(as — ' "ay) .
By the use of a change of variables, the second integral in (3.54) can be combined

with the second term from (3.55) and we may write (3.54) as

Fy(V) = _/ dz,dz3dy dys [Zr.-,:; Aryy 72y te, t2) (1) (21) 342 (22) 4 (") (31)6* (™) (32)

+ Zr,t 2'.‘1. Uij-(r, t)¢(t)($‘.)¢*(r)(yj):| + K (3.58)

* We are using $* (y1)¥(z1)9(22)¢* (v2) = $(22)¥* (92)¥" (y1)¥(21), which fol-

lows from the lemma above.
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U'(r,t) = T"(r,t) except wheni=73 =1, when
where
U (r,t) = T (r, 8) + bi (21, 91) — 1° " "ba(z1,91)

and where K is a c-number.

By the use of a similar proof to the one used for second order observables

above, we may conclude, using the proof of Theorem 4.1, that

/ dz,dzody dyaFS) =0 v#0

FP = % A ()80 (22)¢" ) (31) 47 (v2)

ti+te—ri—rz=v

+ D D U ()¢ (y;) .

t—r=v 15

We introduce the following notation:

Fu E/Fé;)da:ldzgdyldyz
A::I.lt::??::'gz = A(r1)r2:t11t2)

where, in the second line; A is evaluated at z,z2,y1,¥2.

Now when (3.59), (3.60) and (2.9) are used we obtain

0=¢®(2)F, —n " Fy¢™(21)
[ B e
ti+tz—r=v+ta
_¢(¢1)(Il)¢(‘2)(x2)¢*(')(y)dn:ld:czdy
o f Uij-¢(v+a) (:c,-)5(z1 — yj)dzldxzdyldy2]

=-—n""Gyta v#O0.
Similarly we have

0= ¢(b)(z2)Gv+a + ﬂb—v_an+a4’(b)(z2)
= _']—v—-a/ Z [ 311:;2;‘221 _ "a—bA;B:tﬂ:;?Zz
t1+t2=ﬂ+a+b
.¢(t1)(zl)¢(t7)(zg)dz1dz2
= _n—”_aHv+a+b v '_Ié 0.
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If we continue in this manner we obtain

0 = ¢*)(23) Hyasb — n"F 202 Hy 0 y08* () (23)
e K [Aﬁfz::m e TAGTRT — tTNI (3.63)
btttz | 0

= —ntJy d+c—a—-b#0,

where we have defined d= v+ a+b—c. Finally taking the anticommutator of

Jg with ¢*(9)(z,) we obtain

Z4ZaZp2y a—b 24282122 c—d \2aZe¢2221 cta—b—d y 23242122 __
AGepa 2™ = gy T T A AL =0 (3.64)

for d+ ¢ —a — b # 0. By the use of {(3.56) and the notation

e = a4(24, 23, 22,21) (3.65)

we obtain the equation

4321
ay -1 n

c—b(a3321 _gi312 _ g3eat 4 a41?)

a.—ba‘ll312 _ c—da?421 +nc+a—b—da?412

-"n
d+c—a—bs a—b _4321 4312 cta—b—d 3421 c—d 3412
+1 (n*"a3”" —a3”> " — 1 az*" +n°"%a3" ")

d4c—a—b_c—b( 4321 4312 3421 3412
-n n°""(ay —ag " —ay T +ay )

+ n2(d+c—a—b)(a2321 _ r’a—bagi’»l? _ rf'dag“m + nc+a—b—dag412) =0 (3.66)

when d+c¢c—a—b#0.
fwetaked=a+b—c+1and d=a+b—c+2 and remember that m > 3

then we may subtract the resulting equations obtaining:

(n—-l _ n-z)[nz(c-—b) a?412 _ n2c—a—ba?421] +(n— nz)[na—bagsm _ 03312]

2y c—b[ 4321 4312 _ 3421 , 3412
) [ag®?t — ag®t? — ay™* + et

—(n—n
+ (r;2 _ n4)[a§321 _ na—bagsml
— (n — n3)[n2e—a—ba42t _ p3(e—b)g3412] = ¢ | (3.67)
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If we let @ = 0,1 and subtract the resulting equations we obtain
(17t — 9720t — Dn**"a}*® + (n — 0°)(1 — n)p~ %>
+(n? —n*)(n — e + (n —n*) (0™ — Dp**agt =0 (3.68)
If ¢ = 0,1 is then substituted, subtraction of these equations gives

.':1’»421(7’ 1 _ "'—2) + ag421 (,7 — 172) =0. (3.69)

The above procedure may be repeated, in the case of m > 3, with d = a+b—c—1

and d =a+b—c+1 in (3.66). The resulting expression is
ad*® (™t —n) +a3* (n—n77) =0

or in otherwords a3*?! = %2 . Substitution of this into (3.69) gives

ad** (™ = +n—n?) =0

or
a3*?! (cos 2= — cos %) = 0.
If cos = 2 = Cos 4—" we have, using cos26 = 2cos?8 — 1,
2cos22 cos——+1~0
which has solution cos 4 2 g, —— . This in turn has the solution 27n’5 = n2r and
-2';" = 2—"— +n27 which means that m = 1,3, which we have excluded. We therefore

conclude that a342! = 242! = 0. Substitution into (3.68) gives also a."‘321 = 0.

Equations (3.67) and (3.66) finally give

a2321 _ a4312 _ ai‘l?l + ai412 =0
(3.70)
03321 03312 3421 i a34l2 =0.

By the use of the first equation of (2.1) and its hermitean conjugate the following
identity may be derived:

Y(z)9" (y1)9(22) 9" (¥2) — $(z2)¥" (1) 9(21)9" (v2) — $(21) ¥ (y2)¥(22)¥" (91)
+ P(z2)¥* (y2)¥(z1) 9" (1) = 49(21)¥" (y1)¥(22)¥" (92)

— 36(z2 — y1)¥(z1)¥* (y2) + 6(z1 — y2)¥(22)¥" (v1)

— §(z1 — y1)¥(22)¥" (y2) — 8(z2 — y2)¥(z1) 9" (v1) - (3.71)
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If we multiply the left hand side by a3(z1,Z2,¥y1,¥2) and integrate over the four
variables we may, after a change of variables in the final three intégrals and use of
(3.70), conclude that the result is zero. Examination of the right hand side of the
identity will then show that the second term in (3.54) becomes a quadratic term.
A similar argument holds for the fourth term and so we conclude that Fy(V') must

be a second order polynomial and hence, from the first part of the proof, zero. =

3.4. Derivative fields

As a final topic in this section we consider the possibility of observables constructed
from the derivatives of field operators. Clearly such observables will be used in
constructing useful physical observables such as the energy—momentum operator
P,.

Firstly we have, as usual, the equal-time commutation relations
[ (z1), 0 (32),, | = b1 (02 —x0) 6
+

where ®()(z) are the Klein transformed fermi fields and the subscript ,,, is
understood to mean the covariant derivative with respect to (z2),. The Klein

transformation of this equation gives

") (21)9® (22) s +1° "D (22)30, 6"V (21) = 6y (2 — 1) 67 . (3.72)

It is now demonstrated that Theorems 3.1-3.4 are true with replacements (in any
position) of ¥(z;), ¥*(z:) and 6(zi—z;) by ¥(2i)su:, ¥* (2i)su; and by, (20— ;)
or 8,4, (€i — ;) respectively. It is clear from (3.72) that the proofs of these mod-
ified theorems will change only in that there may be a mixture of delta functions
and their derivatives rather than simply delta functions. This will only affect The-
orem 3.1 in that the rearrangement given in (3.5) may need the ¢in(ri, Zi,t;, y5)
modified. Obviously though, this does not affect the proof in any essential way.
In the case of Theorem 3.2, the collection of terms (3.36) and (3.37) whose sum
is shown to be invariant under u, will have the same product of delta functions.
Hence if some are changed to derivatives of delta functions, the invariance under
u is unaffected, and so the proof goes through in the same way. In Theorem 3.3

delta functions make one appearance in both of the commutation relations and
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examination of the proof shows that no other use of delta functions is made. Thus
this proof also goes through in a similar way if these delta functions are replaced
by the derivatives of delta functions.

Finally the proof of Theorem 3.4 needs more extensive modification. The

details are rather technical and may be found in Appendix C.
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4. Relationship to a normal field theory
In this section we use the Klein transformation developed in Appendix B to com-
pare modular quantization with a field theory which is quantized normally but

which has a “gauge” invariance.

4.1. Introduction
In order to introduce the techniques that are required for such a comparison we
briefly review the situation which applies in the parafield theory case. For the
purposes of clarity we shall restrict ourselves to the parafermi alternative.

In this case it has been shown [29] that observables satisfying the condition

of strong locality must be functions of the field polynomial

P(z1,73) = [¥(21), ¥(23)]- (4.1)

where
Y(z) = ¢(z) or ¥*(z).

When equations (1.5), (B.2), (B.31), (B.32) and (B.37) are used P(z;,z2)

may be rewritten in terms of the fermi fields ®"(z) as

P(z1,22) = )_[87(21), 9" (23)]- - (4.2)

The parafermi states may also be transformed into fermi states once the following

condition is imposed:

The transformation is possible for the following reasons: Theorem I.1 from [51]

shows that the Fock-space for parafield theory is spanned by states of the form

M(b; b; ...b; )|), where M is a monomial of para creation operators. By use of

the ansatz equation and the Klein transformation (B.3), this may be rewritten as
P

Y M(Kre™ K a M) (4.4)

1
r;,...,r,.:l

When (B.2) is used, the Klein operators may be shifted to the right within M
until they all act upon the vacuum state. Usage of (B.6) and (4.3) allows us to

then conclude the desired result.
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We can see then that once a Fock representation is assumed, parafield theory
is equivalent to a normal theory in which both the form of the observables and the
states, are restricted in some way.

An explanation for this restriction can be found through the notion of “gauge”
invariance. To explore this, we introduce the following transformation on the fermi

fields and vacuum:

o"(z) — ) g (a)

p
M Co . E grt a® (4.5)

t=1

h—1
where the matrices g belong to a p-dimensional unitary representation of some
compact Lie group G. Now, as is observed in [52|, P(z;,z2) is invariant under
the group O(p)* and moreover this is the minimal group showing this invariance.
In addition to this invariance of observables, O(p) also leaves invariant the basic
fermi commutation relations and the Fock vacuum condition a(}|) = 0. Because
of this overall invariance we say that a theory with observables restricted in the
manner implied by (4.2) is O(p) gauge invariant.

In |6] a stronger result is derived. It is shown that in an ordinary field theory,
if we a priori require that the theory be gauge invariant under O(p) then our
observables are restricted precisely to those generated by P(zy,z2). Thus in
parafield theory the requirement of strong locality is the same as the requirement
of O(p) gauge invariance in the corresponding fermi field theory.

We cannot, however, conclude from the above that the two theories are equiv-
alent since we have not considered the effect of the restriction of states implied by
parafield theory.

As we have seen, the transformation (4.5) is an automorphism. If we use this
property and the invariance of the Fock vacuum condition, it is straightforward
to show that all V.E.V.s are also left invariant. As is well known [53] this means
that the transformation (4.5) induces a continuous unitary representation of G on

the Fock-space of the fermi quantization. As a consequence (see [54]), this implies

* g obviously belonging to the fundamental representation of O(p).
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that this representation is decomposable into a direct sum of finite-dimensional
irreducible representations of G and hence the Fock-space decomposes into a direct
sum of orthogonal finite-dimensional subspaces, each of which carries an irreducible
representation of G.

Now within each subspace, a basis may be labelled using the generators of
the unitary operator implementing G. It is clear then that the Fock-space has a
basis of states of the form |R, z,d), where R denotes the irreducible representa-
tion which acts on the vector; z denotes the labelling by group generators which
specifies the “direction” within its subspace; and d is another label which indicates
that there may be more than one subspace for each irreducible representation.

Now the quantities that are actually physically accessible, are the expectation

values of the observables. On the basis states mentioned above these have the form
(R, 2,d|F(V)|R, z,d) (4.)

Let U(g) be the unitary operators implementing the gauge group G, then the

invariance of the observables implies that
U-Yg)F(V)U(9) =F(V) Vg€@ (4.7)
and hence that

(R,z,d|F(V)|R,z,d) = (R, z,d[U"" () F (V)U(9)|R, z,d)
= (R,y,d|F(V)|R,y,d) (4.8)

with

U(g)IRa xad) . |R) Y, d) g

This shows that all states within a particular irreducible subspace are physically
equivalent (since U(g) acts transitively on irreducible subspaces). Now it is possi-
ble [55] to label fnequivalent representation subspaces of G using Casimir operators
constructed from the field algebra. Since these operators are invariant under the
gauge group it follows that they are potential observables and hence we conclude

that states coming from inequivalent subspaces are physically inequivalent.
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In parafield theory it may be shown {6] that if G = O(p) then the restriction
of states implied by the theory forbids the appearance of states belonging to most
of the irreducible representations of the gauge group. Given the discussion above,
this implies that the parafield theory is not physically equivalent to a normal field
theory with an O(p) gauge symmetry. In view of this negative result, one seeks to
alter the appropriate gauge group by restricting the possible form of observables—
this restriction being clearly above and beyond the requirement of strong locality.

Thus we require that observables be generated only by the following kind of
field polynomials:

Q(zl;IZ) = hb* (:1:1), 1!)(1:2)]_ . (49)

Upon Klein transformation this polynomial becomes
r
Q(z1,72) = ) [0 (21), @ (22)]- (4.10)
r=1

and such polynomials are easily shown to be invariant under the larger gauge group
Ufp).

With this larger group, the commutation relations and Fock condition are stiil
invariant. Moreover one can show [52] once again that all observables invariant
under U(p) can be generated from Q(z;,z2). Thus with our restricted set of
observables; we can again regard U(p) as a gauge group.

The situation with regard to the restricted set of para states is more positive
in the case that U{(p) is the gauge group. In fact, one can show [6], [12] that from
every irreducible representation subspace of U{(p) in the Fock-space of the normal
theory, there is exactly one state in the Fock-space of the para theory. Since all
states within an irreducible subspace are physically equivalent, it follows that the
para theory contains all states* physically relevant for a U(p) gauge invariant
normal field theory. Thus, with the restriction on observables mentioned above,
parafield theory becomes physically equivalent to a U(p) gauge theory since they
share the same set of observables and physically relevant states. The description
of such a gauge theory with a parafield theory might be regarded as convenient

since there are no physically redundant states in the latter theory.

* See the note at the end of the proof of theorem 4.3.
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4.2. Observables

We turn now to the case of modular field theory and consider firstly the effect of
the Klein transformation on strongly local observables. We make the assumption
that this Klein transformation is given by (B.27) and (B.37). There are still unre-
solved questions concerning the equivalence of the representations of normal fields
obtained by different Klein transformations (see section 4 Chapter 1), however we
shall not go into these here.

If one takes an arbitrary product of modular fields then there is no guarantee
that after the tranformations (2.8) and (B.37) are applied, the resulting products
of fermi fields will not involve the non-local Klein operator. Certainly if modular
field theory is to be compared with a normal field theory then observables in the

two theories should coincide. The following result is therefore reassuring:

Theorem 4.1. After Klein transformation, strongly local observables involving
modular fields consist of only normal fermi fields and may be considered as strongly

local observables in the fermi field theory.

Proof: As was seen in the proof of Theorem 3.1 strongly local observables may be

written as

F(V) =thF(§§)dz1...dy1... (4.11)
where Fég) involves field polynomials of the form
6 (z1) ... ¢ ()¢ ) (91) ... 6° ) (ya) (4.12)

with Y r; =3 .t; mod m; [—n=0 mod m; [+ n even.

Upon use of the transformation (B.37), such polynomials become
wl T (3y) L ul T O (1) B (g )ut L @t (g Ut Y (4.13)
The spatial analogs of (B.2) then allow us to write this as
ka2 20) @1 (z)) . D" () D (31) ... ¥t (yn) (4.14)

where k is some phase factor involving the m’th primitive root of unity. Now be-
cause of the restrictions following (4.12) and the fact that 4™ = 1, we have demon-

strated the first part of the theorem. The second part is trivial since any observable
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consisting of an even product of fermi fields is easily shown to be strongly local.

The third restriction following (4.12) requires this for strongly local observables.m

We turn now to the question of identifying a suitable normal gauge theory with
which modular field theory may be compared. Since the classification problem for
strongly local observables is as yet incomplete, we obviously cannot, as has been
done in parafield theory, identify a gauge group which will select out the strongly
local observables.

There may, moreover, be fundamental problems in this regard since Theo-
rem 3.4 appears* to rule out the possibility of observables of second degree when
m > 2. Since the fundamental invariants of the simple Lie-groups are quadratic
the existence of a “selecting” gauge group appears problematical. One possible
solution to this difficulty lies in the area of non-linear representations {56]. Thus
one implements the gauge group not through (4.5) but through a non-linear gener-
alization of it. One might hope that the linear part of the representation (namely
the stablity group of the related coset space) would be a group which selected out
certain invariant polynomials in the usual way and that the non-linear part of the
representation would leave only higher order linear invariants, invariant.

Naturally the above discussion is purely speculative and awaits further inves-
tigation for confirmation.

In view of the above difficulties we confine ourselves here to comparing mod-
ular field theory with a normal field theory having a U(m) gauge symmetry.
We choose such a gauge group for two reasons: Firstly it plays a central role in
parafield theory and secondly the physical applications of modular field theory are
hoped [27] to lie primarily in the area of colour where the appropriate gauge theory
is unitary. As we shall see some progress is possible in the proposed comparison.

We begin by constructing strongly local observables which, when expressed
in terms of normal fermi fields, are invariant under U(m). In this regard we have

the following results:

Theorem 4.2. Observables constructed from the following modular field poly-

* There remains the peculiar possibility that the observables might be of higher

than second order in the modular fields but of second order only in the fermi fields.
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nomials are-strongly local and when Klein transformed, are invariant under the

gauge group U(m):
(i) CnC,., where

Ql
3
I

Y ¥(z0).. $(zmor) (4.15)

perm(To,..Tm—1)

= Z Cm(zo, I ,:Bm_.l) . (4.16)

perm(0,...,m—1)

(ii) For m = 3 the special case

M(Il,ﬂ?zsylayz) b M($1;$2ay1:y2) +M($2,$1;y1ay2) . (4-17)

Proof: Consider firstly the case (i): When the ansatz (2.8) is used, C,, becomes

(apart from a numerical factor)

m—1

Cm= 3. > ¢")(z)...6"(zpn) . (4.18)
perm r;=0

Consider now the terms ¢(™)(zo) ... ¢ (z;)... ) (z) ... $"m-1) (zp_y) from

this sum. By use of the commutation relations (2.9a) the ¢(77)(z,) and ¢(")(z)

fields may be interchanged with the result

__nr,~--rk ¢(r°)(-’50) . ¢("k) (zk) . ¢('f)(z_.,-) . ¢('m-1)(zm_1) i

Thus if r; = ri then this term will not be present in the sum (4.18) since this sum

extends over all permuations of the spatial indices. Hence it becomes

Cm= Y Y ¢"(zo)...40)(zmy) . (4.19)

perm i #r;

If we now apply the Klein transformation (B.37), we obtain

Cp = E Z ul TP (z0) ... ul T 1P -1 (g, )

perm rir;

=3 S flroye s Tme1)®0(0) ... O (o) u T E - (4.20)

perm ri£r;
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using (2.9c), the fact that ro,...,ry,—1 must be a permutation of 0,...,m — 1

and where

F(For- -y Frmet) = miszs T 2tz (I (4.21)

Now (4.20) may be re-expressed as

. Y £(1(0),9(2), - 2(m — 1)@7) (4g)) ... @1 (2 (1))

perm(Zo,..yZm—1) 7

~m(m-—1

xu 3. (4.22)

where 7 is an arbitrary permutation of 0,...,m — 1. When the anticommuting

nature of the fermi fields is used, this becomes

{ > 2°(zo) - . ‘Dm_l(zm—x)} > sign(7) F(1(0), ..., 7(m — 1))

perm(zo,..cTm—1)

xXu~ 2 . (4.23)

We show now that the sum to the right of the curly brackets is non-zero: Now it

is obvious that 370! (i) = Yoimy' 4; and also that Y i~ Sla? (i) = ot ?; so

therefore we have

m—1 m-—1 m—1 m—1 m—1
Py =90 Y a6) =Y 6 +2) 1))
1=0 J=0 1=0 I= 1=0 i>7
which implies that
Y i) =D ds (4.24)
27 1>d)
and hence
F(1O) ..., (m — 1)) = ez T g T ) (4.25)

If we call the first term on the right hand side n°, and remember that the deter-

minant of an m X m matrix A = {a;;} is
det(A) = Esign('y)ao,,(o)al.,(l) e G 1y(m—1) » (4.26)
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then we can derive the result

> " sign(1) F(1(0), ..., 7(m — 1)) = n°det(S)
" (4.27)

where S;y = N .
Consider the matrix ?,-J- = 5’7 ; we have

m-—1

(58)is= ) n*n™
k=0

m—1

= 3 gl

k=0
= m6.-,-
and so therefore det(S) # 0. The matrix § was used in (2.7) and the matrix
7%? is the so-called Sylvester matrix [57] and is unitary.
We may now rewrite (4.23) as

3 frgrn s ®(30) - O (Zm) ntdet(S)u =5 (4.28)

T05--sTm~—1

where det(S) # 0 and ¢ is the completely antisymmetric tensor of m’th order.
Let the quantity in brackets in (4.28) be called Dy,. This has been shown [6]

to transform as follows under U(m):

1
Dm -— WD,,, y (4.29)

where G is the matrix implementing U(m) through (4.5). If we take the hermitean
conjugate of (4.28), we may deduce that

CmC. = kD, D", (4.30)

where k is a real constant. Now since G is unitary it follows that det(G) is a
phase factor and hence 5,,,6’,; is left invariant by G. Finally Theorem 3.2 and
(4.16) show that ”C‘,,,E’,:‘, can be written as a sum of field polynomials which give
rise to strongly local observables and hence any observable constructed from it
will obviously also be strongly local. This completes the demonstration of the first

case.
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In the second case we have

N

S w(m)¥(m2) ¥ (52)9° (91) — $(z2)¥" (92)9" (1) ¥(=1)

perm(z1,%3)
Perm(!lxvyz)

+ 9" (y2)¥* (y1)¥(z1)¥(z2) - (4.31)

(2.5) allows us to rewrite this as

M=) LE#»"’ 2)9() (22)9* ) (32)9" ) (1)

perm 0

— 9(z2)¥* (y2) 6(z1 — 1) + 9" (y2)¥(22) 6(z1 — 1)
— 9@ (z,)9*®) (yy) 6(z2 - yz)]

. Z LZ['/’M z1) 'l’( ) (z2)p* (r)( )Kb*(') (v1) - ¢(r)(zz)¢*(r) (ya) 6(z1 — 1)

+ 6(z2 — y2) 6(z1 — yl)] . (4.32)

We show that the various order terms in this sum are invariant under U(3). The
scalar terms (& functions) are obviously so. For the second order terms we have,

using (2.8) and (2.9¢):

SO @) =5 Y ) ()¢ O (y)
=2 ¢ (=)* ) (y) . (4.33)

Upon application of the Klein transformation (B.37) this becomes

Z@' )®** (y (4.44)
and, as is well known, this transforms as the fundamental invariant of U(3).
Consider now the fourth order terms:

Z Z '/)(r)(zl)'/’(r) (12)’10*(')(3/2)’/’*(') (y1)

perm(zy,T2) T=0
Perm(!/hyz)

(OID-‘

2
Z Z Z r(o+t—v— W)¢(6)(z1)¢(t)(x2)¢*(v)( 2)8* () (y1)
r=0s,t,v
%Z Y 8 ()8 (22)6* ) (92)¢* ™) (1) (4.45)

mast+t=v+w
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where we have used (2.8) and (2.9¢c) and the equivalence sign is modulo 3. Now
since the sum is over permutations of the z and y spatial indices, it follows
that we must have s # ¢t and v # w within the summation. When the Klein

transformation is applied we obtain

Wi

E Z ul—aQa(zl)ul—tQt(zz)Qw(y2)uv—1¢tw(yl)uw—1 (4.46)
perm s+t=v+uw
s#t vEw
. _:1; Z Z na(l—t) uz""“Q‘(zl)(I)‘(zg)i)*"(yg)q)*“’ (v1)
perm s+t=v+4w
s#t v#w

X uu+w—2nw(u—1) . (4.47)

The fact that the sum only extends over s +¢ = v+ w and also {2.9¢), means this

may be rewritten as

$Y0 Dm0 ()@ (22) @77 (v2) @ (1) - (4.48)

perm s+t=v+w

s#t v#w
Consider the possible values for s and ¢ in this sum: Clearly, apart from order,
these are 0,1 0,2 and 1,2. Given the restriction s+ ¢ = v+ w mod 3, these values
must be matched by the same values (apart from order) for v and w. When the
sum over spatial indices is taken into account, (4.48) becomes

LYY F(a,5)8%(1) % (22) @1 (42) ®** (1)

perma>b

F(a., b) =] = "b—a _ "a-—b + ﬂa—b+b—a =3
and so therefore the sum is
DD %(51)8(22) @ (v2) 2 (y) -
perm a>b
The sum over permutations means that this becomes

S 3 (287 (22) 2% (42) (31)

perm i,3

Z Z[‘I" ‘I)" (¥1 ‘1’1(32)@ J(yz)

- 5(.'122 - !/1) @i (:cl)@*i(yg)] (449)
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which is manifestly invariant under U(3). Given (4.17), M s, by Theorem 3.2,
strongly local. [
For future reference we express M in terms of the fermi fields. By use of

(4.32), (4.44) and (4.49), we deduce that

M= Y 3 [0 (z)0"(11)%(22)9* (y2) — 26(21 — y1) *(22)®** (v2)

perm(zy,x3) ,5=0
perm(yl,yg)

+6(z2 — 2) 61 — va)] - (4.50)

A few comments are appropriate regarding Theorem 4.2: Firstly, in the case
that m = 2 we are dealing with parafield theory and so the field polynomial
[¥*(y), ¥(z)]—~ is strongly local and invariant under U(2). Secondly one might
expect that strongly local U(m) invariant field polynomials could be constructed
from the polynomial M for arbitrary m. Whether this is so is not clear. We have,
however, the following conjecture:

Conjecture: The polynomial

M

E M(zl,...,zm_l,yl,...,ym__l) (451)
perm(Zy,...,;Tm—1)
is strongly local and invariant under U(m).
The proof of this conjecture appears to involve complicated algebraic compu-

tations and is not attempted here.

4.3. The non-relativistic states

Having shown that there exist appropriate observables invariant under U(m),
we now consider the properties of states with respect to this gauge group. In
particular we shall be interested in the question of whether the Fock-space of
modular quantization contains all the physically relevant states for a U(m) gauge
theory. We begin by considering this question for what we shall term the “non-
relativistic sector” of the Fock-space. By this we shall mean the subspace of
the relativistic Fock-space generated by linear combinations of states obtained by
applying a number of particle as opposed to anti-particle creation operators to the

vacuuni.
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To consider the decomposition of the non-relativistic sector into direct sums
of subspaces invariant under U(m), we consider the subalgebra of C obtained by
restricting the momentum indices to a finite set of N values. The Fock-space ob-
tained by applying creation operators from the restricted set is finite-dimensional
and it is straightforward to show that the representation of the restricted algebra
on this space is irreducible.

In the same way as we introduced a unitary group on the upper indices of
elements from C , we may introduce another such group U(N) which acts on the
N momentum indices of the restricted algebra Cy :

N
&) - 3" g a) (4.52)

i=1
Such a transformation leaves the commutation relations of Cp invariant and if we
assume that the group leaves the vacuum invariant, then we may use the argu-
ment given above for U(m) to conclude that U(N) is implemented on F(C,) as
a continuous unitary representation and hence F(C,) decomposes into finite-
dimensional irreducible subspaces of this group as well. Consider now the subspace

Va C F(Cp) which consists of states of the form
g )

where n < N. Given that non-zero distinct states of this form are orthogo-
nal, it follows from the usual theory of the representations of the unitary group
(see Boerner [58]) that states within the possible irreducible subspaces of the two
groups U(N) and U(m) may be projected out by means of the so-called Young
symmetrizers. These antisymmetrize and symmetrize with respect to certain of
the r; and k; indices (depending on whether U(m) or U(N) respectively is being
considered) according to a Young tableau. An example of such a tableau may be
seen in Figure 1.

Into such a diagram one puts the integers 1,...,n in order to specify how
the Young symmetrizer is to operate. Thus the numbers in the diagram refer to
the indices to be symmetrized or antisymmetrized (1 stands for k; or ry and so
on). One then antisymmetrizes with respect to all indices in the columns of the

tableau and then symmetrizes with respect to those in the rows (or vice versa).
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Vu ] ] [}

= a(‘u— 1) — s(u) —

X

p— s(u)——

Figure 1. The Young tableau referred to in the text.

It is worth noting at this point that since the r; indices cannot take on more
than m values, any attempt to antisymmetrize with respect to more than m
indices will result in zero. As a consequence there are no irreducible subspaces of

U(m) in V, corresponding to tableaux with columns of length more than m.

Consider now the operation of antisymmetrization with respect to a certain set
of momentum indices k;,,..., ki . By rearrangement of such an antisymmetriza-
tion it is easy to see, using the anticommuting nature of the fermi operators, that it
corresponds to a symmetrization of the indices ry),..., i . Similarly symmetriza-
tion with respect to the momentum indices corresponds to antisymmetrization

with respect to the “gauge” indices.

It follows from the above that if we project into a particular irreducible sub-
space of U(N) specified by a particular Young tableau then we will also be in
an irreducible subspace of U(m) specified by the so-called conjugate tableau (the
transposed tableau). Now it is straightforward to check that the actions of the
groups U(m) and U(N) commute on F(Cp) . It follows that this space de-
composes into irreducible subspaces of the product group U(m) ® U(N). Given
the nature of such subspaces (see, for example, van der Waerden [59}), it follows
that the projection mentioned above is into a particular irreducible subspace of
U(m)® U(N).

We shall now demonstrate that there cannot be two equivalent irreducible
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representations of U(m) ® U(N) on Vy,:

Suppose to the contrary that there were two such representations. Denote
the subspaces corresponding to these two representations by U ! and U?. Since
the representations are equivalent it is possible to construct bases for the two

subspaces which transform in the same way under U(m) ® U(N). Thus

(gl)UN (92) Vi Zh"khﬂv}cl

l (4.53)
Um(91)Un (g2)v Zh'khJ Vit

where v‘J and v ‘are the desired bases vectors for U' and U? respectively;
hy and h, are 1rreducible representations of U(m) and U(N) respectively and
Unm(g1) € U(m), Un(g2) € U(N). Define now the following linear operator on
F(Cw) -
Wv}- = v?-
T (4.54)
Ww.-:,- = Wyy
where w;; are the bases vectors of all other irreducible subspaces of U(m)® U(N)
in F(Cy) . It follows easily from (4.53) and (4.54) that W commutes with all

elements from U(m) @ U(N). In otherwords
U (91)Un (92) WUy (2) U (91) =W . (4.55)

Now since the representation of Cy on F(C,) is irreducible it follows that the
commutant of Cx consists of multiples of the identity (Schur’s Lemma). As a con-
sequence the bicommutant C% is equal to the set of linear operators on F(Cy) .
Now a very well known result (orginally due to Von Neumann, for a modern refer-
ence see [60]) tells us that C’; is equal to the closure of Cx under, amongst others,
the strong topology. Now the operators in Cn belong to a finite-dimensional space
since they are finite matrices. As is well known [61], all the relevant topologies are
eqiuvalent on such a topological vector space and as a result we deduce that W
is in the norm closure of Cy (the operator norms generate the untform topology
which is not covered in the bicommutant theorem). Now it has been shown in [62]

that if an element in the norm closure of a Clifford algebra is invariant under U(m)
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then it may be approximated in norm by invariant polynomials from the algebra.
It follows that W may be approximated in norm by polynomials of creation and
annihilation operators from Cp which are invariant under U(m). Now it is fur-
ther shown in [63] that the invariant polynomials of Cx must be polynomials in

the fundamental invariants of U(m). In otherwords they must be polynomials in

m—1
Pa= Y d"a{" . (4.56)
r=0

Once the relation

[Py, d¥)]— = —bkmd (’)

is noted it becomes clear that the Pk;. are merely the generators for the group
U(N). Let fy(Pxki) be the sequence of invariant polynomials which approximates
W in norm. It follows that

| fe(Pri) —W|| =0 as g— o0
= ||(fe(Pu) —W)vjjll =0 as g— o0

= ” Zp t 1._1( ) v?j” —0 as q—00. (4'57)

The last step follows from the fact that U?! is transformed into itself by U(N) and
hence also by the generators of this group. Equation (4.56) cannot hold because
v'_,,- is linearly independent of U! and so we have a contradiction.

We complete the description of the decomposition of V,, into irreducible sub-
spaces of U(m) ® U(N) by showing that every irreducible subspace characterized
by a Young tableau for U(N) with rows of length less than or equal to m is, in fact
present: Into the tableau given in Figure 1, we place integers sequentially across

the rows starting at the top left-hand corner. With reference to such a tableau we

consider the state

) Wm0 gre()=0) g 0)

iy TR Heaay Kae(1)+1
*(0) 2:(@-1 (a(u)—1)
) dk"u(l)+1 T kV1.(1)+.(z) .- dk,, |) ) (4.58)

with the k; all distinct. When the antisymmetrization process is carried out,

the anticommuting nature of the fermi operators ensures that the state is simply
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multiplied by an integer. After the symmetrization process is carried out we may
use the linear independence of distinct non-zero fermi states to conclude that the
result is non-zero.

The above decomposition of V, into irreducible subspaces of the group
U(m) ® U(N) has been considered in a slightly different context by Bracken and
Green [64].

We now consider the non-relativistic modular Fock space #(A4) for which we

have the following result:

Theorem 4.3. The modular Fock-space ¥(A) possesses all physically relevant

states from the non-relativistic sector of a U(m) gauge theory.

Proof: Since the subspaces V,, discussed above span F((C) it suffices* to show that
there is a state in F(4) belonging to every irreducible subspace of U(m) in V,.
Consider the subspace V™ C #(4) generated by states of the form

ax, ---ax,|) (4.59)

where the k; are allowed to take on the N values of momenta present in the
states of V,. Now by the Klein transformation (B.3), equation (2.15) and the
action of Klein operators on 7({A) given by equations (B.20), (B.29) and (4.7)
Chapter 2, we deduce that V;* C V,. States within the irreducible subspaces of
U(m) ® U(N) may obviously now be obtained by applying Young symmetrizers
to the momentum indices of the states in V;J*. Suppose there is a state ¢; € V"
which belongs to a particular irreducible subspace of U(m) ® U(N). Now since
this group acts transitively on its irreducible subspaces, any state ¢} within the

subspace may be written as

¢i = Um(91)Un (92) s - (4.60)

It follows that there exists a state

o7 = Un(g7')0: = Un(g2)¢s (4.61)

* See the note at the end of this proof.
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which belongs to the same irreducible subspace of U(m) as ¢} does. Now since the
group U(N) acts on the momentum indices, it takes states within V;" into other
states within the same subspace and as a result ¢! € V,[*. This demonstrates that
if there exists just one state in V™ within a particular U(m) ® U(N) irreducible
subspace of V,, then there exist states from V™ which are in every irreducible
subspace of U(m) within the U(m) ® U(N) irreducible subspace.

In the light of this and also the discussion about the possible irreducible
subspaces of U(m) ® U(N) in V,, it suffices to demonstrate that there is a state
¢ € V;* such that

6¢ #0 (4.62)
with 8§ being a Young symmetrizer acting on the momentum indices and corre-
sponding to an arbitrary tableau with row lengths less than or equal to m. We
proceed now to a proof of this:

We write § as

s§=1no, (4.63)
where n symmetrizes with respect to all arguments within rows of the correspond-
ing tableau and # antisymmetrizes with respect to arguments within columns.
Now consider an arbitrary ¢ € V,/® which has all its momenta distinct.

By use of the Klein transformation we obtain

¢ =S alrdynmt g ryr=t gyt (4.64)
T
Now since the vacuum has grading O (see Appendix B) it follows that ul) = |).
Usage of (B.2) and (B.27) now shows that

¢ = Ef(rl,.. .,rn)d;?") ...d;g’")l)

with (4.65)

flry,... rp) = ,,ZL;("—U"-ZK, Pl

Consider now a permutation 7 of the momentum indices of ¢. It is straightforward

to show that

8= 3 sign()F(ra1) -2 ) L)) (4.66)
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It follows from the usual properties of fermi states that the states

al g (4.67)

1

are non-zero and linearly independent for different choices of ry,...,r,. It there-

fore suffices to show that

§(f(0,...,s(1) = 1,0,...,s(1) = 1,0,...,0,...,8(2) — 1,...,s(u) — 1)

«0)  (s(1)=1) +(0) +(s(1)—1) y+(0)
dkx ce dk.(x) dk.(1)+x Tt dkz.(x) dkz.(1)+1
* *(8(2)— *(o(u)—
D gD T 20, (468)

The s(;) and V; in equation (4.68) refer to the notation used in Figure 1. Apply
now the antisymmetrizer § to the state in equation (4.68). Clearly this antisym-
metrization will apply only to arguments with equal values of r;. As a result,
equation (4.66) implies that the result will simply be a non-zero numerical multi-
ple of the original state. It is thus clear that the only non-trivial part of the proof

is the symmetrization. If we define

YWF(rey---yrn)) = sign(VNflry@)s- -2 v(m)) (4.69)

then it is clear from equation (4.66) that we need only show that n(f) # 0, where
f has the form given in (4.68). Now with reference to the Young symmetrizer §

and Figure 1, we may rewrite f(ry,...,rs) as n?¢, with

v Vi
9= Z Z [E:(zli (i + ik — l)ri'+tuc - E:(Sl),'<j Tt r_-,'+t,k] (4.70(1)

=1 k=1
-1

tie =Y _(Vp — Vp—1)s(p) + ks(l) ; Vo=0. (4.70b)

When the symmetrizer 5 is applied to f(0,...,s(1)—1,0,...,s(u) — 1) we obtain

u Vi
n(f) =TT II > sign(m)no* (4.71)
I=1k=1 v
s(l)—1 a(l)—1
g= Y (i+t)n@ - Y %w@)nb), (4.72)
i=0 0<i<y
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where 4 permutes 0,...,s(l) — 1. By use of arguments similar to those developed
in the proof of the first part of Theorem 4.2, it follows that the only part of (4.72)

not left invariant under 7 is the term

s(l)—1

> i) -

£=0
From the form of (4.71) it clearly now suffices to show that

s()—1

Y sign(w) I #™0 #0. (4.73)

We deduce immediately that the left-hand side of (4.73) is the determinant of the

s{l) x s(I) Sylvester matrix S* which has components
(8% = 1" . (4.74)

The determinant of this matrix is known [67], and is

a(l)—1
det(S') = (1)'[ (n* —v7) . (4.75)

k>5>0
This will obviously be non-zero when s{l) < m. If s(I) > m then we are dealing
with a Young tableau with a row of length greater than m. As we saw previously
such tableaux are not relevant to our considerations. The proof of Theorem 4.3 is
now complete. [
Additional note: The above proof is not quite complete for the following reason:
Although we have shown there is a state in () for a spanning set of irreducible
subspaces of U(m) in F(C), we have not shown that there are states in F(A)
corresponding to sums of states from the irreducible subspaces. Let $;, 2 € F(C)
belong to two different irreducible subspaces. We have shown that there are states
b1, ¢2 € F(A) such that Un(g1)gs = 1 and Un(gz)da = ¢2. It is clear,
however, that ¥; + ¥2 # Umn(g3){(41 + ¢2) in general, which shows that the state
$1 + $o is not neccessarily physically equivalent to the state ¥; + 3. We indicate

a possible resolution of this difficulty:
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It has been observed in [6] that superselection rules operate between states
in 7(C) which belong to inequivalent irreducible subspaces of U(m). As a conse-
quence sums of states from inequivalent subspaces are not physical in the gauge
theory and hence need not be demonstrated to exist in #(A). Now the irre-
ducible representations of U(m) are such (see [58]) that any distinct standard
Young tableau specifies a distinct (up to equivalence) irreducible representation.
As a consequence all irreducible subspaces of a particular character must lie in the
union of the subspaces V,, discussed above (notice that this is not the case for the
gauge group SU(m)). It is clear from the decomposition of these subspaces that
by choosing the finite set of momenta appropriately (and hence N large enough),
any fintte sum x of states from the spanning U(m) subspaces can be placed in an
irreducible subspace of U(m)® U(N) and hence by the use of the argument at the
beginning of the proof of the last theorem, a state x,, € #(4) can be found such
that x = Up(g)xm which demonstrates physical equivalence. Obviously infinite
sums of states need also to be considered and in order to do this the group U(N)
needs to be extended to the infinite unitary group which acts on a countable set of
indices (the full set of momentum values). It is conjectured that the results derived
at the beginning of the present subsection also hold in this case. The proofs given
there appear to require modification to deal with topological complications.

We have shown above that there is at least one state in the modular Fock-
space for a spanning set of irreducible subspaces of U(m) in the non-relativistic
sector of the gauge theory. In fact, there are in general more. Consider equation

(2.16), this may be rewritten as

(.. abl)yah gl ) = ks Bhnda - (4.76)

Clearly this equation implies that any non-trivial permutation of the indices k;
for the state af ...a% [} results in another non-zero, orthogonal, state (providing
that the k; are distinct). If we now consider the subspace of U™ C V;* formed
by allowing permutations only of distinct k; then it follows that for n < m,
dim(U™) = n!. The orthogonality of the permuted states allows us then to define
a representation of the symmetric group S, on U™. The decomposition of U™

into irreducible subspaces of S, in this instance is well known [65]: There are d;
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of the dj-dimensional subspaces which carry the I’th irreducible representation.
Each irreducible representation has the symmetry property of a Young tableau
with n boxes. Consequently states within each of the dj-dimensional irreducible
subspaces of Sy, also belong to the one irreducible subspace of U(m) ® U(N) in
Va.

Consider a state w within a particular d;-dimensional irreducible subspace.
In the light of previous discussion it may obviously be written as

w=Y glr,..mm)dp ) (4.77)
i

Now it is clear from the action of the group U(N) that a spanning set of states for
the U(N) irreducible subspace of w may be obtained by allowing the momentum
indices in (4.77) to take on all possible N values. If the new values are simply
a permutation of the original set then the new state will belong to the same
irreducible subspace of S, as did w (in fact since the permutation of distinct
momentum indices is an operator belonging to U(N), these states will belong
to the same U(N) irreducible subspace as w). On the other hand, if the new
values are not such a permutation then clearly the state will not belong to U™.
The consequence of this is that states belonging to different irreducible subspaces
of equivalent representations of Sy, belong also to different irreducible subspaces
of U(N) within the one irreducible subspace of U(m) ® U(N). From this we
may deduce that within a different U(N) irreducible subspace lies a state which
belongs both to V™ and to the same U(m) irreducible subspace as w. Given the
distinctness of the U(N) irreducible subspace for this other state, it is clear from
the transitivity of U(N) that this new state must be distinct from w.

We now have the following conjecture:
Conjecture: For n < m particle states, every U(m) irreducible subspace of
of ¥(C,) contains d; linearly independent states from ¥(A). The number d; is
the dimension of the irreducible representation of S, corresponding to the Young
tableau which characterizes the particular U(m) representation.

It is interesting to contrast this “degeneracy” of description with the situation
in parafield theory where there is only one state for every irreducible subspace of

U(p). The difference is caused by the fact that in parafield theory states belonging
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to U™ are in general not linearly independent under the full group of permutations
(this is due to the relation (1.1b)). As a consequence the space U™ has dimension

less than n! and in fact contains every representation of Sy, just once.

4.4. The relativistic states

We now extend the result of the previous subsection to states involving anti-
particles as well as particles. We shall prove that all physically relevant U(m)
states occur here as well. The relativistic extension is non-trivial because the anti-
particle operators transform according to the conjugate rather than fundamental
representation of U(m). The proof we shall give is close conceptually to the

corresponding proof for parafield theory [12].

Theorem 4.4. The modular Fock-space F(A) possesses all* the physically rel-
evant states of a U(m) gauge theory.

Proof: Consider a particular irreducible subspace of U(m) from a spanning set of
such subspaces in the Fock space F(C). The space will be spanned by states of

the form

3= S T(ri,...,ra)d; " (ky) ... d; ) (ka)l) (4.78)

where the index i, takes on the value 1 or —1 to indicate that d:q(")(kq) is a
particle or anti-particle creation operator respectively. We shall show that the
subspace contains at least one state which belongs to ¥(4), the modular Fock-
space.

Now the state ¢ may contain factors that are invariant under U(m). These

will be products of the polynomials

M= mi & (ka0 . (4.79)

r=0
Such polynomials, when fncluded in ¢, may be rewritten in terms of modular
particle and anti-particle operators. This may be deduced from the following

lemma:

* The incompleteness of the proof of the non-relativistic case applies here as
well. The proof easily extends to finite sums of states such as ¢. It is conjectured

that the result also holds for infinite sums.
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Lemma 4.5. Let ¢' be a state in F(C) which consists of particles (or anti-

particles) of momentum l,,...,l; then

M = {[ai (k) a2y (D] + Y () s (m)ai (R)a, 0

a*(ng)...a", (nl)}qﬁ' (4.80)

providing the n; are all distinct from all the I; and I. The a; (k) and a.?q(k) are

particle or anti-particle modular creation and annihilation operators.

Proof: For notational purposes let the quantity in braces on the left-hand side of
(4.80) be called Mpod-
Now the relations (2.57) from section 2 allow us to shift the operators a_; (n;)
to the right in M4, obtaining the expression
* w«(—1 w(—1
aty (1) +a; TV (Ral TV )
2

+ ¢ (k)a*D (Na_y(ny) ... as(ny)a (ny) ... a5 (ny).(4.81)

N

3
|

Consider now
a_i(ny)...a_1(ny)a* (n;)...a%((ny)d
= {eca(m) ... ass(rim1)aty (njr) . aly (1)
+ (1Y asy(m)...acr(nym)a P (ng) 02D (11)a (n) } o
The second term of the last line vanishes due to the condition that nj; # [l; Vi.

Evidently the above argument can be extended until we conclude that

a_y(ny1)...a_1(nj)a* (n;)...ax (n))¢' = ¢ . (4.82)

When (4.82) is combined with (4.81), we obtain

m—1

Mmoad' = Y ai (k)aZ D (1)¢" . (4.83)
r=0

With the use of equations (2.55) and (2.53), this becomes

,,r(v—t) p*(t) (k)e*(") Ori

=Y v (k)e ()¢ (4.84)



When use is made of the Klein transformations (B.3) and (B.35) this becomes
m—1
> P maY e (4.85)
=0

which is what was required. n
As an obvious extension to the above lemma, if we have M; ... M;¢' then this

may be replaced by MY ... M! .4’ providing the n; from different MK, _, are

mod *
distinct.

The consequence of the above discussion is that we can write invariant factors
in ¢ in terms of modular fields. It suffices therefore to consider the “lowest config-
uration” corresponding to the particular irreducible representation (in otherwords
one not involving invariant factors). As was observed in [12] in such a situation

the state ¢ is homogenous in dI(r)(k) and d:(lr)(k) seperately. This means that

we may write
$=3 T(ri,...,rn)di " (ke) ... &} (k) d P4 (k) .. 42§ (Rn)]) (4.86)

with p and n fixed.

Consider now the following state:

_I ' Zetxtz t ea]. Bm— .lf'n i(:l)( )dgh)(J) d( "‘)(Jm 1)

ti,8:

A} () L d* D ()

= —_ 1 ‘ Zthtz ton €81ubn1tn §tmdm—1 gtm—18m-3 agz,ldc(tl)(k )l)

( t;,9,

1 “(ty
= mzetltz...t,ﬂ €t,...t.,,r,, _(: )( )l)
—Zsmn a*$) (kn))

= d*_({"’(k,.)n . (4.87)

We may therefore replace the latter state by the former. Now as we saw at the end
of section 2 the operator a* , (k) acts algebraically like a; (k) apart from a degree

of freedom associated with being an anti-particle. Consider now the operator Cp,

116



from Theorem 4.2. When the momentum analog of this operator is considered we
may use the proof of this theorem, in particular equation (4.28), to show that
, -—m{m-~—1
Y alk).aibm) = Y e d (k) AT (k)u T
perm(ky,...km) fryeeafm

and hence that

Em = Z a,*_l(kl)al (kg) o .dl(km)
perm(ky,....km)
= 3 erprnd I (k)d (ko) .. d (k)u TR L (488)

When (4.87) and (4.88) are combined, we conclude that
) ka)l) = G Y Coramosrndi " ) G (489)
s
where E:’,‘,, involves the momenta ky, ji,...,Jm—1 rather than those in (4.88). If
the momenta 7;,...,Jm—1 are chosen to be distinct from ky,...,kp,—y then in
(4.86) we may shift the operator G, to the left.

If the above process is repeated for all the anti-particle operators in ¢, we
may eventually rewrite it as a product of n—p G,, factors and p+(m—1)(n—p)
particle creation operators. Now given that d*_(f )(k) transforms under U(m) in
the same wa;y as dgr)(k), it follows from (4.29) that the G,, transform as singlets
under U(m). In otherwords, they acquire phase factors upon transformation. In
addition they can be written in terms of modular fields. The remaining particle
creation operators applied to the vacuum belong to an irreducible representation
subspace of U(m) in the non-relativistic sector of the Fock-space. As Theorem 4.3
has shown, it is always possible to produce a state from such a subspace by applying
only modular particle creation operators to the vacuum. We have therefore shown
that the irreducible subspace containing ¢ also contains a state which belongs to
the modular Fock-space. [

In summary, we can conclude that modular field theory is essentially equiva-
lent to a normal field theory with a U(m) gauge symmetry in which the observables
have been further restricted by some, as yet unknown, requirement. Furthermore
modular field theory lies between a normal field theory and parafield theory with

respect to degeneracy of physically relevant states.
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5. The energy-momentum operator
One of the very basic equations of second quantization is the expresssion of Heisen-

berg’s principle [66]:
[Py, ¥(z)]- = —tY,u (2) . (5.1)

This simply expresses the fact that the energy-momentum operator generates
space-time translations of the fields in the theory.
In modular field theory, as Green [27] has pointed out, it is possible construct

a P, satisfying this condition. It has the form

m—1

Po= [ & (Z i O (2)p),, (z)) - (5.2
r=0

A short calculation using equation (2.5) confirms that this indeed satisfies (5.1).

Notice that when m = 2 this operator is precisely the same as the P, introduced

for parafield theory in equation (1.3). The parallel is, in fact, stronger: If the fields

in (5.2) are Klein transformed then we obtain

Pll . /dsm (2—: (D"(z)(I)"m (:L')) ) (5'3)

which is precisely the expression obtained when (1.3) is also Klein transformed. It
is also easy to see that (5.3) is invariant under U(m) and so, as an observable, P,
is consistent with the discussion of the previous section. It would appear that if a
free field theory is desired then (5.2) is the correct choice for P,. This expression
is, however, undesirable in one respect: apparently it cannot be written purely in
terms of the modular fields and the use of the Klein operator u would appear to
be mandatory.

To see why this is likely to be so, observe firstly that since (5.2) is invariant
under u and consists of operators of the form ¢*(")¢(®) then by Theorem 3.1 its
local form*

Py = / hyd®z (i ip* (") (z)¢(”(x)) (5:4)

r=0

* This will correspond to an energy-momentum operator for the region V
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is strongly local (a desirable feature naturally). The proof of Theorem 3.4 then

tells us that for m > 2 the density

T4“(1;) = E— ¢*(r) (5)1/)(") (I)

cannot be written as a quadratic expression in ¥(z) and so the same applies to
P, . There is still the rather unlikely possibility mentioned in the footnote on page
in which it may be possible to write Ty, (z) as a higher order polynomial in ¢(z)
and ¥*(z).

In view of the above remarks it would appear that interacting field theories
may be a more appropriate setting for modular field theory. Such theories are non-
renormalizable when their Lagrangians, and hence energy-momentum operators,
are greater than fourth order in the fields. It is desirable therefore to avoid such
operators. If one further requires that the local energy-momentum operator be
strongly local then Theorem 3.4 would appear to rule out the cases m > 4.
Furthermore if one also requires that P, be invariant under U(m) then the only
suitable candidate discovered by this author is given in equations (3.40) and (4.17)
and these apply only in the case that m = 3. One might, therefore, consider a P,

containing terms such as*

Pi= [ {0 @9 @, wio)l:
b B (Y (90
9@ B (2 (2)
+ [ (2), $@)+ ¥ (29" (2) } (5.5)

which is invariant under U(3). It is rather fortuitous that possibilities such as
(5.5) occur when the gauge group is, apart from a U(l) summand, precisely the
group usually used to describe colour. One might expect in such a theory that
the equations of motion would be obtained by the requirement that P, satisfy
Heisenbergs principle.

The above discussion is naturally only tentative and is presented only to

indicate possible future avenues of enquiry.

* There may also be terms involving gauge fields.
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CHAPTER 4

A GENERALIZATION OF MODULAR QUANTIZATION

1. Introduction

There is evidently much scope for generalization of the quantizations which have
been considered to date. The form of the ansatz solutions for both para and
modular quantizations suggest that it should be possible to consider arbitrary
ansatz solutions. More explicitly, one could consider fields constructed from the

ansatz
N

¥(z) =) ¢ (z) (1.1)

r=1

where the fields ¢(7)(z) are elements from some arbitrary colour algebra. Given
this large mathematical diversity it seems likely that suttable quantizations could
only be identified on the basis of physical criteria. One might hope that such
criteria could rule out certain possiblities and render others equivalent. A “classi-
fication” such as this is, however, beyond the scope of this thesis.

A further generalization can be considered by allowing several fields rather

than the single ¢(z):
vo(z) =) _¢{7(z) . (1.2)

Once again the fields may be assumed to be elements of a colour algebra. Such a
generalization has been considered by Ohnuki and Kamefuchi [67] in the case that
the individual ¢,(z) are parafields. In this chapter we consider a particular gen-
eralization in which the individual fields are modular. We shall content ourselves
with a fairly introductory discussion and shall not go into the details of the com-
parison with an ordinary gauge theory (this has been done for the parafield case
in [67]). In addition we shall consider a possible application of this generalization

to the rishon model.
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2. Generalized modular fields

We introduce this generalization by considering a generalization of the colour
algebra of ansatz fields for modular field theory (the fields given by equation (2.7)
Chapter 3).

Consider the fields ¢;*™ with r; =0,...,m; —1and [ = 1,...,n (we are

omitting the spatial index for clarity). Let them satisfy the relations

seeorTn At1eentn —t tayeestn g 1seensn
grr T gt oy g gt g™ = 0 (2.1)
¢;‘1‘1,...,Tn ¢tqlv"wtn + ":l nq_rq ¢tq.l)--'1tn ¢:r1)"-arn — 51‘11‘1 s 6r,,t,,

.5q¢5(xg — xq) ; (2.2)

where n; is the m;’th primitive root of unity.

Such an algebra is a colour algebra: The appropriate grading group is
I'=(Zn, ®Zm,)®...0(Zm, ®Zn,) 2, (2.3)

and one assigns gradings as follows:

ot — (ry,0,79,0,...,1,1,...,1,,0,1)
¢;=r,,...,r,. - (_rl;O; '_r2)01 ceey T —1’ seey —T,,,,O, 1) (2'4)

1—(0,...,0).
With such gradings the commutation factor implicit in equations (2.1) and (2.2)
becomes

ela, f) = ﬂ‘ll‘ﬂ’_azm s r)gzn-lﬂ?""‘aznﬁzn-x(_l)azn+xﬁzn+x i

a={0y,Q2,...,02n—102n,02n+1) .
The above equations apply to the case of fermi-like fields. In order to obtain
the bose case one changes the + signs in (2.1) and (2.2) and also drops the Z;
summand at the end of I'. We make no further comment on the bose case.
To obtain the Klein transformations of the ¢ fields into fermi ® fields, we
need to define a o factor (see Appendix B and Chapter 2 section 4). We choose
this to be a straightforward generalization of the one chosen in the modular case

(see equation (B.29)):
U(C!,ﬂ) — ﬂgﬂz—ﬁl)alﬂgﬁl_ﬁ?’)aa . r"(lﬂzn—ﬂzn—l)azn—1 . (2.6)
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It is easily confirmed that (o, 8) = (—1)*2+:Pan+1g(q, B)o—1 (B, @), which is what
is required in the fermi case.

In terms of the indices r; and I we may use (2.4) to show that

—tyry tarz (1-ti)ry

o(r,l,t,q) =] N5 2 suEhy ...n;t""“ : (2.7)

In view of (B.2), the Klein operators for the fields ¢;*""™ satisfy

Krl¢f1"""t“ =¢ ! (t,q,r, l)¢fll”"’t" Ky . (2.8)

If we now define the operators S; as satisfying

Sl—l¢;1,...,r,. S, - m"l(ﬁzl,...,r,,
(S)™ =1 (2.9)
[S1,84]- =0
then a short calculation using (2.7)-(2.9) will show that the operators K,; and
S8 ... 87" ... 8™ have the same commutation relations with respect to
the fields ¢;*'""™. H it is assumed that S; are unitary then we may conclude that

the latter operators are suitable Klein operators.

We can now define generalized modular fields through the following ansatz:

=D g (2.10)

Flyeaeyln

The summation over the r; extends over all possible values.

If we now make the definition
Yo = (80)7T(S2) T L (Sn) T u(Sa) ™ . (S2)™ (S)™ (2.11)

then it is easily shown, using (2.1), (2.2), (2.9) and (2.10), that these ancilliary
fields satisfy

(rose-argre-arn) 4 (2 yeorsblyeenytn tr,eenti—1,0,tn 10("11"'17 +1,...7n) —
¢l q 1!,5 1 { ) + 1!,(5 1 4 ) | 7 P 0
*(1‘1,--.,1‘ a---’rn) t ,...,t ,...,tn
¥, v Pltar-ti )

o= ‘b((ltl,...,t1+1,...,t,,)¢;k(r1,...,rq+l,...,r") _ §riti  gTatn &q 5(xl _xq)
(2.12)
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These relations generalize the relations (2.5) in Chapter 2.

As was indicated in the introduction we shall not attempt to carry out a
comparison of this generalized theory with an ordinary gauge theory. We simply
point out that deciding on the appropriate gauge theory for comparison may be
a little less straightforward than in the modular case: After Klein transformation

the fields ¢;*""™ become
QrivTe = SO ST §pm g (2.13)

which are the fermi fields for the ordinary gauge theory. One must now decide
which way such fields are to transform under the gauge group. An obvious candi-

date for such a group is
G=Um)QU(m)®...0 U(m,) . (2.14)

The indices r; would then transform according to m;-dimensional representations
of the group U(m;). There are however, two m;-dimensional representations of
such a group, namely the fundamental and its conjugate. Obviously one could en-
visage various mixtures of such representations. Deciding on the “correct” trans-
formation properties of the fermi fields would probably be governed by the kind
of application one was looking at.

As a final comment we observe that it is possible to construct an energy-
momentum operator for free fields which satisfies the Heisenberg principle. This

has the form

P,,:i/dsz: Z E'p;t(rl,...,r,,)¢’(r1,...,rn)’” (215)

Fiyeensn
and like its modular counterpart appears to require Klein operators for its expres-

sion. By use of the relations (2.12) one can easily verify that this satisfies the

equation

[(Pu, ¥i]— = =1, . (2.16)
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3. The Rishon model

We study here a possible application of the generalized modular quantization to
the Rishon hypothesis [30]. In this it is proposed to unify leptons and quarks
by assuming that they are both composed of two different kinds of fundamental
particles T and V which are called rishons. The T is assumed to have charge one
third and the V is assumed to be neutral. Both particles are assumed to carry
spin one half. Quarks and leptons are then built up as certain combinations of
the T and V. Thus the positron becomes TTT and the v.-neutrino becomes VVV.
In addition combinations such as TTV become u-quarks while combinations such
as TVV become d-antiquarks. One of the interesting hypotheses made by Harari
is that the particular order of the T and V within quarks indicates the colour of
that quark. Thus TTV, TVT and VTT give three different colours to the u-quark.
This ordering effect strongly suggests the application of a generalized quantization
as it is obviously not possible when T and V are fermions.

A number of criticisms have been leveled at the original Harari-Shupe model
(see Lyons [68]). Apart from the above mentioned problem with ordinary statistics,
there are a number of others. Two of these, which are of interest here, are

(i) Why are combinations of rishons such as TT, VVYV and so on, never observed?

(i) Why are quarks confined but leptons not, when both have similar substruc-

tures consisting of three quarks?
A possible solution to the above problems was proposed by Jarvis and Green [69].
In their model the rishons T and V were modular fields of order three when
considered seperately. The algebraic relations satisfied between the two different
rishons required the introduction of the Z-metacyclic group C; x D3 (see [70]) In
this section we introduce these relations from a different perspective— namely as
an example of the generalized modular fields of the previous section.

If the T and V particles are both required to be modular fields of order three,
then the generalization of section 2 forces the fields (which we call ¥;(z) and

¥2(z)) to satisfy the relations

p" ()9l (y) + 9l (et (2) = 0 (3.1)
i (@) () + 9 e ) =0 (3:2)
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Now up until the present, only bosons and fermions have been observed as free par-
ticles. This suggests that only “modules” of the fields ¥; and 2 which commute
or anticommute should be allowed as free particles. Naturally this requirement
does not explain the mechanism by which non-modules are never observed as free
particles. This is the well-known dynamical problem of confinement which has
not, as yet, even been resolved within ordinary field theory. The requirement is,
however, suggestive and it is possible that it may point in the direction of a correct
dynamical theory.

We shall now demonstrate a collection of modules which commute or anti-
commute amongst themselves. We shall also demonstrate that this collection is
maximal in the sense that any other product of fields fails to commute or anti-
commute with at least one kind of module.

This collection consists of “conglomerates” of fields in which the number of
particle fields of type ¢+ minus the number of antiparticle fields of the same type is
equal to zero modulo 3.

Particle and anti-particle fields arise from the splitting of the relativistic fields

into positive and negative frequency parts:

¥i(z) = ¥f(2) + ¥;* () . (3.3)

As was observed at the end of section 2 in Chapter 3, if the anti-particle field
¥;7(z) satisfies the same algebraic relations as the particle field ¥;?(z) (apart
from the extra degree of freedom associated with being an anti-particle) then the
relativistic field ¥;(z) will satisfy the same algebraic relations (namely (3.1} and
(3.2)) as its non-relativistic (or “particle”) counterpart.

Consider products of operators which create particle and anti-particle fields:
P =il @)wif (z2) . ¥i1 (2a) (3-4)

where f; = p or ap and ¢; = 1,2. Now by use of relation (2.12) and the comments
concerning anti-particles above, we deduce that if P is a module in the sense

described above, then
YiPP = (- pOyr i P = (—1n POl yyeP
(3.5)
R R A o
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We have defined
pirt) = grrstpsttsie (3.6)

It is reasonably clear now from the relations (3.5) that different modules will either
commute or anticommute with each other. In addition if we consider products @
of the fields, which do not satisfy the conditions imposed on modules above we

shall have the relations
QP = (-1)i"plrtlQ . (3.7)

In (3.7) 1 is the number of fields in @; r is the difference (modulo 3) in the number
of particles and anti-particles for type 1 fields and ¢ is the same thing for type 2

fields. In general the requirement for a module does not imply that

plrt) = p for r,t #0. (3.8)
This may be demonstrated by considering the simple module

Po = 17 (2)91” ()91 (2) - (3-9)

By the use of arguments similar to those used in the proof of Theorem 3.1 Chapter

3 one can show, with (2.9) and (2.10), that

ST PoSy # Po # S5t PoS, (3.10)

which shows that (3.8) must be false in general.

In view of the above construction of modules we may conclude that objects
such as TTT, VVV, TVVVTVVVT and TVTVTYV are allowable as free particles
whereas objects such as TT, VVV and TTV are not. In otherwords objects iden-
tified by Harari as positrons, neutrinos, baryons and W-particles are observable as
free particles whereas exotic rishon combinations and more importantly, quarks,
are not.

One possible problem with this proposal concerns colour. As was mentioned
above, Harari originally proposed that colour be dealt with through the ordering
of rishons within quarks (and other coloured particles). Consider now a baryon

state constructed from three quarks:

(TTV)(TVT)(VIT)|) .
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One might at first conclude that the state consisted of quarks of three colours.
This is not quite clear however, if one considers that the order in which the quarks

are applied to the vacuum is also important in our proposal. Thus the state
(TVT)(TTV)(VTT)|)

is not neccessarily a numerical multiple of the original baryon state. Another
problem with interpreting ordering as a colour effect lies with the W-particle.
It is clearly possible to obtain different orderings of rishons in its construction:
TVTVTYV and VIVTVT are two. Despite this, W-particles are assumed usually
to be colourless. This latter difficulty has already been pointed out by other
authors [68] in the context of the original Harari-Shupe model.

A resolution of the above problems will probably require a careful comparison
with a normal gauge theory: The appropriate gauge group would appear to be
U(3) x U(3) (consider (2.10) and (2.13)). It is interesting to note in this regard
that a dynamical rishon model based upon almost the same gauge group (SU(3) x
SU(3) x U(1)) has been proposed by Harari and Seiberg {71]. In this model the
groups denote colour, hypercolour and electromagnetism, and particles such as
quarks, leptons and W-particles are hypercolour singlets (the latter two are also
colour singlets).

Whether the proposal made here can be shown to be equivalent, at the global
gauge symmetry level, to the Harari-Seiberg model is not straightforward.

In order to see this, consider, for instance, the neutrino which in the Harari-
Seiberg model is a colour and hypercolour singlet. Within the context of the

present proposal it may be written as combinations of states of the form

¥a (z1)95° (22)92" (za)]) - (3.11)

When use is made of equation (2.10) this becomes

3§ () ¢ ()71 (o)) (3.12)

riti,8;

(we are dropping the particle labels for notational ease). Now if the superscripts of

the fields in (3.12) are interpreted in the obvious way then they would transform
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as the colour and hypercolour indices. It is unclear then how to obtain colour and
hypercolour singlets from linear combinations of states such as (3.11). The only
possibility would appear to be permutations of the fields in (3.11). As was noted
above the 9 fields act like modular fields of order three amongst themselves. In
particular relations (2.1) show that only the second index of the ¢3 fields play a role
in the commutation relations. One can therefore construct a singlet with respect
to the group acting on the second index (see (4.15) in Chapter 3) by permutations
of fields. The first index remains however, problematical. Similar considerations
with respect to the electron will show that it is possible there to construct singlets
with respect to the first index only. The above comments indicate that the present
proposal may not be compatible with the Harari-Seiberg model and its notion of

hypercolour.
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APPENDIX A

Proof of Proposition 2.3, Chapter 2.
Consider the usual fermi-bose creation and annihilation algebra:

aja; X aja; = &;;

(A.1)

a;a; + aje; = aja; * aja; =0
where the indices belong to an arbitrary finite set. We create a colour algebra with
grading group I' as follows: Take an arbitrary non-zero a € T'; if ¢(a,a) = 1,
select a bose a} and a; or if €(a, ) = —1, select a fermi a} and a;. Now if
(i) 2a #0 then assign a} the grading « and a; the grading —a.
(ii) 2a =0 then assign p; = a} +a; the grading a.
Now rewrite the a},a; or p; as ag,a_a or pa. Repeat the above procedure for
the other elements of I' unless —a has been considered previously, in which case
make no assignment. Finally assign the identity the grading O and delete any
surplus creation or annihilation operators.

It is clear that the constructed colour algebra is a canonical superalgebra and
has an associated colour algebra coloured by < I',e > . Furthermore for every
a € I' there is a unique element in the algebra.

Consider now the Fock representation of (A.1} and consider the states ob-
tained by applying the a},,a_, and p, to the vacuum: That is, states of the

form
(a2)*(a=a)" ... (@) (a=p) " (py)* ... (ps)']) -

If we assign such states the grading
tiao—tqa+ ...+ nB—f+ky+...+18

and let the operators a},,a_, or po act only on linear combinations of such states,
then it follows from (A.1) and the assignments of gradings, that these operators,
when applied to the above states, will satisfy the fundamental equation (1.9) from

Chapter 2. We have therefore defined a colour algebra representation for our
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canonical superalgebra. Moreover it is clear from the usual Fock construction [63],
that any product of two elements of our algebra will be represented by a non-zero
operator ezxcepl aa; OT G_nG_4, Where the creation and annihilation operators
concerned are fermi.

By the results of section 4, Chapter 2, there exists a Klein transformation
on our graded vector space which converts the representation of the canonical
superalgebra into a representation of the associated colour algebra coloured by
< T,e> . The Klein transforms of the a},a_, and p, we denote by b,,b_, and

go Tespectively. They satisfy the relations

bib_p — €, —B)b_pbl, = bap (A.2a)
2ads — €@, £)350a = 26a,5(1 ~ (a1 B)) (A2b)
babp — €(a, B)bpba = bbby — €(a, B)bpby =0 (A.2¢)
dabp — €(@, B)bpqa = gabp — €(c, B)bpga =0 . (A.2d)

Furthermore the non-zero nature of the Klein transformation will ensure that the
product property mentioned above will remain true. Now if the algebra given by
(A.2) is coloured by < I'',€ > as well as < I',e > , then since there is only one
element of (A.2) for each element of I', it follows that there must be a well-defined
map h between I' and I".

Now since we require the operator algebra (A.2) to also be a representation
when coloured by < I',¢ >, then (A.2) together with the non-zero product
property, imply that

(a, B) = ¢ (k(a), h(8))

unless a = B and 2a # 0 when the product property fails in (A.2¢). In this event,
we consider (A.2a) with @ = f# and deduce that

e(a, _a) = 6’(h(a)’ h(_a)) y

Now since the identity commutes with all the other elements of the algebra, we

have
¢(h{0),h{7)) =1 VyeT (A.3)
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and so
é(a, a) = e(a, ~a)

= ¢(h(a), h(~a))
= ¢(h(a), h(0) — h(a))
= ¢ (h(a), —h(a))€ (k(a), A(0))
= ¢((a), h(a)) -
In the above we have used h{a)+ h(—a) = h(0) which we can deduce from (A.2a)

with & = 8 and from (i) in the definition of colouring. We have. also used (A.3)
to get the last step. [
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APPENDIX B

Klein transformations in field theory
In this appendix we consider Klein transformations independently of the colour
algebra formalism developed in Chapter 2. Despite this, we show below that
nothing extra is gained. The formalism developed here, however, proves more
convenient for considering a number of applications in generalized quantizations.
We shall be interested in creation-annihilation rings satisfying the relations
(r) 4(t) () 5(r) _
d;'dy’ £dp’d;’ =0 (B1)
* t t) ,% '
d;dl) +dP a3 = 556, .
The ;5 and k refer to a denumerably infinite momentum set, while the r and ¢
take on a finite* number N of integral values. For our purpose, only the latter
set of indices are relevant and so for convenience we rewrite dg-r) as d, and so on.
The Klein operators K, and K7 will be assumed to commute and also to
satisfy the following quite general relations:
o(t,r)K.d, = di K, o(t,7)Krdy = de K )
2
o(t,r)K.di =d; K, o(t,7)Krd; =d; K7,
where o is an arbitrary non-zero mapping of our index set into the complex num-

bers.

The Klein transformation is then given through the equations
b, = K,d, by = Kvdy . (B.3)

The b, and b; shall be required to satisfy the relations

beb: £ €(r,t)beb, =0
(B.4)
b:bt + E(F,t)btb: = 6rt ’

* Generalizations to an infinite number of values are no doubt possible but are

not central to this thesis.
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with € being a non-zero map into C which can be determined fron o. To make this
determination, we substitute (B.3) into (B.4) and use (B.2) and (B.1) to conclude
that

e(v,u) = o(v,u)0 ™" (u,v) (B.5)

with u =1¢,% and v = r,7. In addition to this, the second equation of (B.4) leads

to the requirement that

K:K, =0~ L(F,r) . (B.6)

This ensures that the right-hand side of the equation is 8, after the application

of the Klein transformation.

Thus given the equations (B.1), (B.2), (B.3), (B.5) and (B.6) then (B.4)
follows. We therefore adopt these first five equations as our definition of the
Klein transformation. A number of consequences for o can be deduced from these
equations. Firstly, if we multiply the first equation of (B.2) on the left by K7 and

then use the second equation in conjunction with (B.6), we conclude* that
o(t,r)o(t,7) =1, (B.7)
and in a similar way that
o(t,r)o(t,7)=1. (B.8)
Consider now the second of (B.1) with r =t and j = k:
did¢ £d,d; =1.
If we multiply on the left by K, and use (B.2) we can deduce that
o(t,r)o(t,r)K, = K, ;
and when (B.6) is used this becomes
o, rjo(t,r)=1. (B.9)

Similarly we deduce that

o(t,F)o(t,7) =1. (B.10)

* We are assuming that d, # 0; this follows from the second of (B.1) with
j=k, r=t.
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It is now possible to show that (B.1) and (B.4) define colour algebras; that €
defines a commutation factor and finally that the Klein operators introduced here
are just special cases of the ones introduced in section 4 of Chapter 2.

To carry out this program, our first step is to grade the elements d,, d; and

by, b} with the grading group* 'z =Z2@Z@...® Z (N copies):

dy, b, — (0,0,...,0,1,0,...,0) r’th place
d&*, bt — (0,0,...,0,~1,0,...,0) " (B.11)

1 — (0,0,...,0) .

Now let o, € I'z have the form (ry,...,rn) and (¢1,...,tn) respectively. We

induce a ¢ : 'z xI'z — C as follows:
N
o(a, f) = [T lo(s, 7)1 (B.12)
5]

where o(1,7) are the o defined previously. If the index set is mapped into I'z in

the obvious way, namely

a(r) =(0,...,1,...,0) r’th place

it is clear from (B.12) and (B.7)-(B.10) that
o(a(u), a(v)) =o(u,v) . (B.13)

Moreover we can induce an € from (B.12):

N
ele, f) = o(e, B0 (B,2) = [ o6 )™ [ (5, 9)]™"

N
=[G )% , (B.14)
8.5
which consequently satisfies

e(a(u), av)) = e(u,v) , (B.15)

* It is to be observed that such a choice of grading group is not, in general,

unique.
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and, as a result of (B.5) and (B.14), also satisfies the commutation factor rules
(1.3) of Chapter 2. It is clear now that (B.4) is a colour algebra*. Finally we
can identify the K,, Ky with the unscaled K7 of section 4, Chapter 2. This

identification is

K, = K?(—a(r)  Kr=K’(+a(r)) . (B.16)

To see this, firstly observe that the form of (B.12) ensures that o(a, B) satisfies
(4.4), Chapter 2 and o(a,0) = ¢(0.@) = 1. Secondly with the help of these
relations for o, together with equation (B.13), equations (B.2) become special
cases of equation (4.3), Chapter 2. Thirdly we deduce from (4.2), Chapter 2 and
(B.6), that the 7 of K7 need only satisfy

7(a(r), —a(r)) = a7 1(F,r) . (B.17)

When 7 is decomposed into its trivial form r~!(a)r=!(B)r(a + f) we see that

(B.17) amounts to the restriction
r(—a(r)) = rQ)r~ a(r))e ™" (1) ; (B.18)

so, providing our scaling set r(a) satisfy this relation, the Klein operators defined
through (B.16) will satisfy equation (4.2), Chapter 2. Finally we can induce the
full set of Klein operators KZ(8) through the equation

N
K7 (8) = r(8) I Ir(sign(t:)x(i)) K (sign(ti)ati))] !

N
= r=(8) [T Ir(sign(t:)a(i)) K™ (B.19)
i=1
which can be shown, in a straightforward manner, to agree with (B.16) and more
importantly to satisfy (4.2), Chapter 2.
We now examine the question of representations. Fock representations of the
relations (B.1) have been explicitly constructed by, amongst others, Berezin [63]

and we use these here.

* In the fermi case the commutation factor for such a colour algebra is actually

—€.
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An interesting feature of such representations is that they may be graded by
an arbitrary grading group I'. More specifically we assign gradings from T for d,

and df as follows:
d, — +a(r) (B.20)

where a(r) is an arbitrary map of the index set into I'. Products of elements
from (B.20) will have gradings that are sums of the gradings of the elements in
the product. Consider now the Fock-space and observe that any state d|), with
d an arbitrary element of the ring C associated with d, and d}, can be easily
rewritten, with the aid of (B.1), as d’|} where d' consists only of sums of products
of creation operators. Now as we have seen in the discussion preceding (2.32),
Chapter 3, it is possible to choose an orthogonal set of states d;l(r‘) - .d;-fr")|),
each being non-zero, which will span the set of states d'|). Now since such a set
is dense in the Fock-space we conclude, as we have done before, that an arbitrary
state in this space may be written as a linear combination of the above orthogonal
states. Now if we assign d;fr‘) . .d;fr")l) the grading — Y -, a(r;) then it is
clear that F(C) has been graded according to (1.1), Chapter 2. It remains to
be shown that the grading assignments made for ¢ respect those of F(C) (see
equation (1.9), Chapter 2).

A little thought shows that it suffices to consider the action of d;(r) and d_S-r)
on the state d;-l(r’) e d;-fr") [). The first has the result d;(r)d;-l(r‘) . d;-fr")|) which
has grading —a(r) — >/, a(r;) which is what we require. The second has the
result dg-r) d;l(”) : ..d;.'f'")]), which when the second of (B.1) is used repeatedly,
becomes .

3 (1) 85, d5 ) I ) i)y (B.21)
1=
Now a term in (;3.21) will only be non-zero if a{r) = a(r;) and so it follows that
the state (B.21) has grading a(r)—Y_;—, a(r;). This completes the demonstration
that C has a graded representation for arbitrary grading group TI'.

Given this fact and the fact that the Klein operators considered above are just

examples of those considered in section 4, Chapter 2, it follows from that section
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that these Klein operators have a representation on ¥(C). An interesting feature
of this representation is that the Klein operators turn out to be unitary and the

o factor a phase factor. To see this we firstly rewrite the second of (B.3) using
(B.2):

bt = o~ (F,¥)d: K5 (B.22)
and now taking the hermitean conjugate of both sides and using the first of (B.3)
together with (B.8), we have

K. d, =o*(v,r)K:d, (B.23)
or, multiplying through by K7 and using (B.6)
d, = |o(F,r)|° KrK2d, . (B.24)

Now consider an arbitrary basis state ¢ of F(C) given by ¢ = d;-l(r‘) . .d;-fr")l).
By choosing r # r; and j # j; for all i, we deduce, by use of (B.1), that
d_,(,-')d;.(r)qS = +¢ (notice that this argument holds for ¢ = |}). It follows now
from (B.24) and (B.7) that

K- K6 = lo(r, )
or
KzK: = |o(r,7)|? . (B.25)
If we take the hermitean conjugate of the second of (B.3) and use (B.2) on the

first of (B.3), we obtain
d. Kt =d. Ko™ (r,1) .

If this is multiplied through on the right by K7 and we use the fact that it
commutes with both K* and K, (due to (B.25)), then we obtain, with the use of
(B.25), (B.6) and (B.9),

d,la(r, r)lz == d,-O'_l (Fa r)a_l (T, r) o dr H

which implies that ¢ is a phase factor and that K7 is unitary by (B.25). If we
multiply this latter equation on the left by K, and use (B.6) then we may deduce
that

o~ !(r,r)K: = K, , (B.26)
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and since o is a phase factor and K unitary, it follows that K, is also unitary.

We now consider the Klein operators which allow a transformation to the para
and modular ansatz algebras. This allows us to demonstrate the existence of the
usual Fock representations of para and modular quantization.

In the modular case we choose o to have the form
a(r,t) = nlt=t)" (B.27)

and because of (B.5) this results in € having the forms
e(r,t) =n™* €(F,t) =nt" (B.28)

which means (B.4) agrees with (2.14) of Chapter 3.

Consider now the u operator of section 2, Chapter 3. A little calculation
using the commutation relations (2.14) and the expression (B.27) for o, will show
that the operators u!~" and K, obey the same commutation rules with respect
to d, and d}. Since the Fock representation of C is irreducible [63], they are
therefore numerical multiples of each other. It is clear then how the operator u
may be defined on our representation, moreover it will be unitary providing the
numerical factor is a phase factor.

The index set can be graded in this case by the finite group Zy & Zy (©2-)
(contrast this with the I'; grading above) as was done in equation {2.10) of Chap-
ter 3. With this grading the o map becomes

o(a, ) = nlPr=Fr)e (B.29)
and this leads to

e(a, B) = n*1Pz—a2bs (B.30)
In the para case we choose o to have the following form

o(s,r) = h(r—s) s even

=h{r—s—-1) sodd
(B.31)
At)=+1 >0
=—1 1<O0.
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It is easily confirmed then that €(r,s) has the form
€(r,s) =26,,—1,

which is the correct commutation factor for the para algebra (c.f. (1.8) of Chap-
ter 2). An interesting feature of the choice made in (B.31) is that for r odd,
K, and K, satisfy the same commutation relations with respect to d; and dj;
hence, as before, they are numerical factors of each other. If we make the choice
K, = —iK,,, then (B.26) and (B.31) combine to show that K} = K7. It is also
apparent from (B.31), (B.7) and (B.8) that K7 and K, satisfy the same commu-
tation relations and are therefore multiples of each other. If we choose them to be

equal, we may conclude that
K.=K'=Kr=K!. (B.32)

If one assumes that the grading is as it was in the equations following (1.8),

Chapter 2 then it easily checked that the ¢ map may be written as
0'(&, ﬂ) = (—l)d’ (a’ﬂ)
Y(a, B) = Zaiﬂj + E ok —1PB2k—1
k=1

i<y (B'33)
z=p/2 for p even
=(p+1)/2 forpodd.
This then leads to the following expression for e:
elat, B) = (~1)20ims (B.34)

Finally we turn our attention to the extension of the above discussion to the
relativistic case.

To do this, we introduce another copy of the fermi operators d, and d;. We
shall call these further fermi operators g, and g;. Instead of grading these as we
did in (B.20) for d, and d}, we grade g, with —a(r) and g; with a(r).

Since g, and ¢} both anticommute with d, and dj, it follows that the ar-

guments following (B.20) will generalize. In otherwords, the extended ring which
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includes g, and g will have a graded Fock representation and this grading may
be with an arbitrary group.
The Klein transformations for g, and g} are determined by their gradings,

equation (4.5) of Chapter 2 and equation (B.3). Thus we have
er = Krg, e; = Krg; . (B.35)

In otherwords, the g, transforms as d; and the g} as d,.
Consider now a spinor spatial fermi field ®,(z) [48]. We may write it in terms

of the d, and the g;:
1 ((k.x— 2
0,(z) = — Z{e“""‘ Bo0) ey o (k) ()
VWV 4
+ ¢f(k-x+Ezo) 2;1:3 vt (k)g:t (k)} (B.36)

where, as in section 2 of Chapter 3, v* are the Dirac spin components and V is
the volume in which the field theory is being considered. It is clear now that as
a result of (B.3) and (B.35), a consistent Klein transformation is possible for the

relativistic spinor fields. This is simply given by
¢.(z) = K. P, (z) . (B.37)

The possibility for such consistency flows directly from our choice of gradings for
gr and g} .

We consider now the special cases of the modular and para ansatz algebras.
It is clear in the former case that the relations (B.2), (B.27) and (B.35) will lead
to the relations (2.53) and (2.54) of Chapter 3. These were the relations which
were needed to construct a solution to the modular quantization relations (2.1)
in the relativistic case. In the para case the extension to the relativistic case is
trivial since by (B.32) we may choose K, = K7 which means that d,, d;, g and
g* all Klein transform in the same way. As a result the addition of the latter two
operators is no different from simply adding an extra label for anti-particles to
the d, and d} operators. This situation appears to derive from the fact that the

gradings for the para-ansatz algebra satisfy a(r) = —a(r) or 2a{r) =0.
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APPENDIX C

Proof of Theorem 3.4, Chapter 3 for derivative fields.
We consider here the case in which possibly one field ¥(z,) is replaced by ¥(z1),,-
The extension to the more general case involves no essential difficulties.

In the case of F>(V') we have the more general possible form:

B) = [ Sh, st )9 (2) + bt (1)) dasd (€.1)
with _
Y(o) =(m)  i=0
= 'p(zl)il‘x 1=1.

By the use of the same arguments as those presented in the restricted proof, we

may deduce that for v # 0,

Foz [ STy #9@)¢ Ola)a —nb) =0, (C2)

Introduce now the following operator:

01) = eap s [ 1) S5t 60280 (a1 (©3)

By the use of (3.13), (3.72)* and the properties of both the delta and derivative

delta function, we may conclude that

U= ()" (21)U(F) = /(=) () (z,)

» (C.4)
U= ()$* O (2)U(f) = e =) ¢ O (zy) .

Upon calculation of U~ (f)F,U(f) with an appropriate choice of f (that is, one
with */(z1) £ ¢=#7"(#1)) we obtain two equations one of which we have considered
in the restricted proof and which leads to the conclusion (for m > 2) that a9 =

bo = 0. The other equation is

P [ 5, #0680 - 17"h) =0. (©.5)

* Equation numbers in this appendix refer to those in Chapter 3.
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If we carry out the calculations F!¢(*)(z;) — n°¢{?) (23)F! = Gy_y and then
Go—wd* (=" (z) +9° " ¢*(v=")(2,)Gy_y, we may conclude, in the same way as
the restricted proof (using the properties of the derivative delta function), that for
m> 2

@1y, = b1y, =0 (C.6)

where ,,, now means . This equation implies that aj(z1,22) and by(zy, 22)

621 u
are not functions of z;. We now evaluate

0:G,,_u,/tan_l(zl,,)rﬁ*("’"’)(zl)dzw
+77"_"’/tan—l(zl,‘)¢r*(‘”"’)(zl)dzl,,G,,_,,, (C.7)

and obtain the equations

ay(zy, 22) _ by(z1, 22) —
,[ 1+ (21,)? 4y _/ 1+ (m,.)zdzl =0 (C5)

Since the a;[z;,22) and by (z1,22) do not depend on their first variable and since
the rest of the integrands above are positive it follows that a; = b; = 0.

In the case of F4(V) the form of the possible observables is modified in a
way exactly analogous to (C.2). Application of the argument above involving the
operator U(f) allows us to reduce the problem to one in which each term in the
observable has a ¢! (z;). Following the argument given in the restricted proof we
obtain equations analogous to (3.66) except with, for example, ak'mn replaced by
akbmn  (the second subscript has the same meaning as the subscripts in (C.1)).
By use of the argument following this, we conclude that a¥i™®, akim" and o™ do
not depend on their first variable. The proof given above for Fz(V) is then easily
modified to show that these functions are in fact zero. For the coefficients a§i™"
and ak¥™" we again have equations (3.70), with the two coefficients replaced by
aklmn . and aki™" . . When the identity (3.71) is modified by replacing ¥(z1) by
¥(z1),,, and similarly the appropriate delta functions replaced by derivative delta
functions, the argument below (3.71) will hold with the modified (3.70) showing

that the right hand side of the integrated expression is zero. This allows us again

to reduce the Fy(V) to a F2(V) as we did in the restricted proof.
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