ASPECTS OF THE RELATIONSHIP BETWEEN
METABOLIC AND PROLIFERATIVE ACTIVITY IN
THE LARGE BOWEL

by

ROSS NORMAN BUTLER
BSc, MSc

A thesis submitted for the degree of Doctor of Philosophy

Department of Medicine,
The University of Adelaide,
Adelaide, South Australia.

February, 1990
TABLE OF CONTENTS

Table of Contents .. i

Abstract .. viii

Declaration ... xi

Acknowledgements ... xii

Abbreviations .. xiv

Chapter 1 Introduction and Literature Review

1.1 Introduction and Background 1

1.2 Diet and Colon Cancer - Hypotheses 7

1.3 Regulatory Control of Cell Proliferation and Differentiation 12

1.4 The Short Chain Fatty Acids 21

1.5 Butyrate ... 22

1.6 The Pentose Phosphate Pathway and Proliferation 24

1.7 Dietary Minerals and Proliferation 35

1.8 Integration ... 36
1.9 Summary ... 37

Chapter 2 Isolated Cell Suspensions

2.1 Introduction .. 39

2.2 Selection of Dissociation Agents 40

2.3 Cell Isolation Techniques 41

2.4 Validation of Cell Isolation Procedure 43

2.5 CO₂ Collection Techniques 50

2.6 Summary ... 51

Chapter 3 Assessment of Proliferative Activity in the Intestine

3.1 Introduction .. 52

3.2 Assessment of Proliferative Activity 53

3.3 Establishment of the Fasting /Refeeding Model 55

3.4 Comparison of in vivo and in vitro techniques to assess Proliferative Activity 54

3.5 Discussion and Summary 57
Chapter 4 SCFA Levels in Different Regions of the Large Bowel at Different Times After Fasting Followed by Refeeding

4.1 Introduction .. 60

4.2 Materials and Methods 62

4.3 Effect of Fasting and Refeeding on Food Consumption and Body Weight ... 64

4.4 Effect of Fasting and Refeeding on Mass and pH of Caeca and Colonic Digesta 65

4.5 SCFA in Caecal and Colonic Digesta 68

4.6 Discussion .. 71

4.7 Summary ... 76

Chapter 5 The Relationship between Proliferative Activity and SCFA Levels after Fasting/Refeeding in Different Regions of the Colon.

5.1 Introduction .. 79

5.2 Materials and Methods 79
5.3 Effect of Fasting/Refeeding on Digesta Weight and pH 83

5.4 Effect of Fasting/Refeeding on SCFA Levels in Different Regions of the Large Bowel 83

5.5 Proliferative Response to Fasting/Refeeding in Different Regions of the Small and Large Bowel 83

5.6 Relationship Between Luminal SCFA Levels and Proliferative Activity in Different Regions of the Large Bowel After Fasting and Refeeding 84

5.7 Oxidation of Butyrate 85

5.8 Discussion 85

5.9 Summary 90

Chapter 6 The Pentose Pathway in Rat and Human Colonic Tissue

6.1 Introduction 91

6.2 Materials and Methods 93

6.3 Preparation of Colonic Cytosol 94

6.4 Measurement of the Non-oxidative Pentose Pathway (NOPP) Activity 96
6.5 Activity of Enzymes of the Oxidative and Non-oxidative Segments of the Pentose Pathway .. 92

6.6 Dissimilation of Ribose 5-P and the use of [1-13C]Ribose 5-P and NMR to demonstrate intermediates of the NOPP in Rat Colonic Cytosol ... 100

6.7 Estimation of the F-type Pentose Pathway in Isolated Rat Colonic Epithelial Cells ... 105

6.8 Incorporation of [U-14C] Arabinose 5-P into Intermediates of the Non-oxidative Pentose Pathway 108

6.9 Maximal Catalytic Capacity of the NOPP in Colon Cancer and Uninvolved Mucosa 109

6.10 Discussion ... 116

6.11 Summary ... 116

Chapter 7 The Effect of Butyric Acid and Glutamine on Glucose Metabolism in Colonocytes from Fasted and Refed Rats.

7.1 Introduction ... 117

7.2 Effect of Fasting and Refeeding on the Oxidative Pentose Pathway ... 117
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Effect of Butyrate on the Oxidative Pentose Pathway</td>
<td>120</td>
</tr>
<tr>
<td>7.4</td>
<td>Effect of Butyrate on the Non-oxidative Pentose Pathway.</td>
<td>121</td>
</tr>
<tr>
<td>7.5</td>
<td>Effect of Glutamine on the the Oxidative Pentose Pathway.</td>
<td>123</td>
</tr>
<tr>
<td>7.6</td>
<td>Substrate Preference by Proximal and Distal Colonocytes.</td>
<td>126</td>
</tr>
<tr>
<td>7.7</td>
<td>Discussion</td>
<td>128</td>
</tr>
<tr>
<td>7.8</td>
<td>Summary</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Chapter 8 The effect of zinc deficiency on short chain fatty acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>levels and proliferation in the large bowel</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>132</td>
</tr>
<tr>
<td>8.2</td>
<td>Effect on Cellularity in the proximal and distal colon</td>
<td>133</td>
</tr>
<tr>
<td>8.3</td>
<td>Effect on body weight</td>
<td>136</td>
</tr>
<tr>
<td>8.4</td>
<td>Effect on proliferative kinetics</td>
<td>136</td>
</tr>
<tr>
<td>8.5</td>
<td>Effect on thymidine kinase activity</td>
<td>136</td>
</tr>
<tr>
<td>8.6</td>
<td>Effect on faecal mass, pH and SCFA concentration</td>
<td>138</td>
</tr>
<tr>
<td>8.7</td>
<td>Discussion</td>
<td>138</td>
</tr>
</tbody>
</table>
8.8 Summary ... 140

Chapter 9 Summary, Conclusions and Future Directions 141

Appendix A .. A1

Bibliography ... 152

Publications arising from this Thesis 178
ABSTRACT

Studies in this thesis explore aspects of the relationship between metabolism and proliferation of colonic epithelial cells from rats and humans. In rats the physiological perturbation of fasting followed by refeeding has been used to suppress and enhance epithelial proliferation, respectively. Emphasis has been placed on developing and integrating in vivo and in vitro models for both metabolic and proliferative studies.

The major observations from these studies are as follows:

(i) Methods have been developed for the isolation of colonocytes for metabolic studies. Use of the dissociating agent, trypsin, appears to be superior to the conventional use of EDTA and results in a suspension of cells with greater membrane integrity as assessed by metabolic parameters and by light and electron microscopy.

(ii) In the rat colon, crypts were more densely packed and longer in the distal colon than in the proximal colon, an observation which could account for the predilection of the distal colon for carcinogen-induced tumours.

(iii) Various methods were used to assess colonocyte proliferation in vivo and in vitro. All methods showed that fasting followed by refeeding was accompanied by significant increases in proliferation, particularly in the distal colon. The use of bromodeoxyuridine in vivo is a relatively simple and
reliable method of assessing proliferation in the rat colon which avoids the use of radioisotopes.

(iv) Concentrations of SCFA were determined in various regions of the large bowel after fasting and refeeding and showed that levels were highest in the caecum and lower in the proximal and distal colon. In the caecum, acetate, propionate and butyrate were in the approximate molar ratios of 2:1:1. Fasting produced greater falls in the concentrarions of SCFA in the proximal and distal colon than in the caecum, with greater falls in the concentration of butyrate than other SCFA. SCFA concentrations returned towards normal with refeeding for 15 h.

(v) Proliferation in colonocytes was unrelated to absolute concentrations of SCFA but changes in the concentrations of SCFA did accompany changes in proliferation. Changes in the concentration of SCFA may be one factor which influences proliferation.

(vi) Biochemical studies established the presence of the oxidative pentose pathway and the non-oxidative pentose pathway in colonic epithelium. The oxidative pentose pathway is induced by refeeding after a fast. The non-oxidative pentose pathway appears to operate via an L-type mechanism and is uninfluenced by changes in feeding/proliferation.

(vii) A study of the effects of butyrate and glutamine on colonocyte metabolism showed change in the glycolytic, tricarboxylic and oxidative
pentose pathways. The results indicate that colonocytes can use both substrates as alternative and perhaps preferred fuels to glucose.

(viii) The induction of zinc deficiency in rats was accompanied by suppressed proliferation in the distal colon. Zinc may be another factor which influences colonocyte proliferation in rodents and perhaps in man.

The data presented in this thesis provide valuable information with regard to the balance of synthetic and energetic metabolism and their relationship to proliferative responses. The challenge is to investigate the contribution of these parameters in the stepwise setting of cancer formation and to ascertain their importance in modulating these processes.