MORPHOLOGICAL RESPONSES OF NEUTROPHILS
IN SUSPENSION
TO PLASMA COMPONENTS AND CHEMOTACTIC FACTORS

DAMIEN GERARD HARKIN

Thesis submitted for the degree of
Doctor of Philosophy
in
The University of Adelaide
(Faculty of Medicine)

Adelaide 1995
TABLE OF CONTENTS

Declaration (1)
Publications in support of thesis (i)
Acknowledgments (ii)
Summary (iii)

CHAPTER 1. INTRODUCTION

1. 1. Neutrophil leukocytes
 1. 1. 1. History and terminology
 1. 1. 2. Histology and ultrastructure
 1. 1. 3. Histochemistry
 1. 1. 4. Kinetics

1. 2. Activities of neutrophils during inflammation
 1. 2. 1. The inflammatory response
 1. 2. 2. Vascular events of inflammation
 1. 2. 3. Margination
 1. 2. 4. Emigration
 1. 2. 5. Chemotaxis
 1. 2. 6. Phagocytosis and intracellular degranulation
 1. 2. 7. Extracellular degranulation
 1. 2. 8. Respiratory burst
 1. 2. 9. Tissue demage
 1. 2. 10. Release of chemotactic factors
 1. 2. 11. Disorders related to defective activities of neutrophils

1. 3. Regulation of neutrophil function by bacterial products, plasma proteins and inflammatory mediators
 1. 3. 1. Bacterial products and their synthetic analogues
 1. 3. 1. 1. N-formyl peptides
 1. 3. 1. 2. Endotoxin
 1. 3. 2. The coagulation system of plasma
 1. 3. 2. 1. Activation
 1. 3. 2. 2. Anticoagulants
 1. 3. 2. 3. Effects on neutrophils
 1. 3. 3. The fibrinolytic system of plasma
 1. 3. 3. 1. Activation
 1. 3. 3. 2. Effects on neutrophils
 1. 3. 4. The kinin system of plasma
 1. 3. 4. 1. Activation
 1. 3. 4. 2. Effects on neutrophils
1. 3. 5. The immunoglobulins

<table>
<thead>
<tr>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3. 5. 1. General activities and structure</td>
</tr>
<tr>
<td>1. 3. 5. 2. Immunoglobulin type A</td>
</tr>
<tr>
<td>1. 3. 5. 3. Immunoglobulin type G</td>
</tr>
</tbody>
</table>

1. 3. 6. The complement system of plasma

<table>
<thead>
<tr>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3. 6. 1. Activation</td>
</tr>
<tr>
<td>1. 3. 6. 2. Effects on neutrophils</td>
</tr>
</tbody>
</table>

1. 3. 7. Cytokines

<table>
<thead>
<tr>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3. 7. 1. Historical perspective</td>
</tr>
<tr>
<td>1. 3. 7. 2. Major cytokines</td>
</tr>
<tr>
<td>1. 3. 7. 2. 1. Interleukin-1</td>
</tr>
<tr>
<td>1. 3. 7. 2. 2. Interleukin-2</td>
</tr>
<tr>
<td>1. 3. 7. 2. 3. Interleukin-4</td>
</tr>
<tr>
<td>1. 3. 7. 2. 4. Interleukin-6</td>
</tr>
<tr>
<td>1. 3. 7. 2. 5. Tumour necrosis factors</td>
</tr>
<tr>
<td>1. 3. 7. 2. 6. Interferon-gamma</td>
</tr>
<tr>
<td>1. 3. 7. 2. 7. Granulocyte-macrophage colony stimulating factor</td>
</tr>
<tr>
<td>1. 3. 7. 2. 8. Transforming growth factor G</td>
</tr>
<tr>
<td>1. 3. 7. 9. Interleukin-8</td>
</tr>
</tbody>
</table>

1. 3. 8. Metabolites of arachidonic acid

<table>
<thead>
<tr>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3. 8. 1. Major metabolites</td>
</tr>
<tr>
<td>1. 3. 8. 2. Inflammatory effects</td>
</tr>
<tr>
<td>1. 3. 8. 3. Effects of LTB4 on neutrophils in vitro</td>
</tr>
</tbody>
</table>

1. 3. 9. Platelet activating factors

<table>
<thead>
<tr>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3. 9. 1. Origin and chemistry</td>
</tr>
<tr>
<td>1. 3. 9. 2. Effects on neutrophils</td>
</tr>
</tbody>
</table>

1. 3. 10. Histamine

<table>
<thead>
<tr>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3. 11. Stimulus-response coupling mechanisms in neutrophils</td>
</tr>
<tr>
<td>1. 3. 11. 1. Membrane receptors</td>
</tr>
<tr>
<td>1. 3. 11. 1. 1. Receptors for FMLP</td>
</tr>
<tr>
<td>1. 3. 11. 1. 2. Receptors for IgG</td>
</tr>
<tr>
<td>1. 3. 11. 1. 3. Receptors for C5a</td>
</tr>
<tr>
<td>1. 3. 11. 1. 4. Receptors for LTB-4</td>
</tr>
<tr>
<td>1. 3. 11. 1. 5. Receptors for LTB-1</td>
</tr>
<tr>
<td>1. 3. 11. 1. 6. Receptors for PAF</td>
</tr>
</tbody>
</table>

1. 3. 11. Guanine nucleotide-binding proteins

<table>
<thead>
<tr>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3. 11. 3. Phospholipid metabolism</td>
</tr>
<tr>
<td>1. 3. 11. 4. Protein kinase G</td>
</tr>
<tr>
<td>1. 3. 11. 5. Calcium ions</td>
</tr>
</tbody>
</table>
1. 3. 11. 6. Cyclic nucleotides 35
1. 3. 11. 7. Membrane potential 38
1. 3. 11. 8. Intracellular pH 58

1. 3. 12. Deactivation of neutrophil functions by bacterial products and inflammatory mediators 37

1. 4. Cell biological aspects of the motility of neutrophils 37
1. 4. 1. The motile behaviour of neutrophils 38
1. 4. 2. Adhesion, spreading and aggregation 38
1. 4. 3. Intrinsio motility 40
1. 4. 4. Random motility 42
1. 4. 5. Chemokinesis 41
1. 4. 6. Chemotaxis 41
1. 4. 7. Contact guidance and haptotaxis 42
1. 4. 8. Role of extracellular divalent cations 43
1. 4. 9. Role of intracellular calcium ions 44
1. 4. 10. Role of cytoskeleton 44

1. 5. Studies of neutrophil polarisation in cell suspensions 46
1. 5. 1. The morphology of neutrophils in suspension 46
1. 5. 1. 1. Spherical and polarised 46
1. 5. 1. 2. Non-polarised 47
1. 5. 1. 3. Zoiosis (Biebling) 47
1. 5. 2. Polarisation responses of neutrophils to FMLP and other stimuli 47
1. 5. 2. 1. Response to FMLP 47
1. 5. 2. 2. Response to plasma 48
1. 5. 2. 3. Responses to inflammatory mediators 49
1. 5. 2. 4. Responses to microtubule disrupting agents and temperature changes 50
1. 5. 2. 5. Response to H2O 50
1. 5. 3. Role of extracellular divalent cations 51
1. 5. 4. Role of intracellular divalent cations 51
1. 5. 5. Role of microfilaments (F-actin) 51
1. 5. 6. Techniques for measuring neutrophil polarisation 52
1. 5. 6. 1. Visual classification 52
1. 5. 6. 2. Morphometry 54
1. 5. 6. 3. Flow cytometry and photometry 54

1. 6. Outline of studies 56

CHAPTER 2. MATERIALS AND METHODS 58

2. 1. Materials 58
2. 1. 1. Chemicals 58
2. 1. 3. Buffers and reagents 64
2.2. Methods

2.2.1. Isolation of neutrophils from human peripheral blood 68
2.2.2. Preparation of plasma and sera 66
2.2.3. Stock solutions of FMLP and inflammatory mediators 70
2.2.4. Stock solutions of IgG and other plasma proteins 70
2.2.5. Stock solutions of cells and cells + antibodies and
TMB-8 71
2.2.6. Preparation and handling of cell suspensions 71
2.2.7. Assessment of neutrophil shape by visual classification 72
2.2.8. Assessment of neutrophil shape by computerized
morphometry 74
2.2.9. Assessment of neutrophil shape by FACS analysis 75
2.2.10. Staining of cytoskeletal F-actin with rhodamine
phalloidin 76

2.2.10.1. Fixation 76
2.2.10.2. Staining 76

2.2.11. Molecular sieve chromatography of plasma proteins 77
2.2.12. Preparation of Fe and F(ab')2 fragments from IgG 77
2.2.13. Digestion of phosphatidylinositol-linked structures on the
surface of neutrophils with phosphatidylinositol-specific
phospholipase C (PIPLC) 78
2.2.14. Detection of cell surface antigens using fluorescein-
conjugated monoclonal antibodies 79
2.2.15. Statistical analyses 79

2.2.15.1. Chi-square “goodness-of-fit” test 79
2.2.15.2. One-way analysis of variance 80

CHAPTER 3. THE MORPHOLOGICAL RESPONSE OF NEUTROPHILS IN SUSPENSION TO N-FORMYL-METHIONYL-LEUCYL-PHENYLALANINE ASSESSED BY VISUAL CLASSIFICATION, MORPHOMETRY AND FACS ANALYSIS 81

3.1. Introduction 81
3.2. Results 82

3.2.1. Time course of the morphological response of neutrophils in suspension to FMLP assessed by visual classification, morphometry and FACS analysis 82
3.2.2. Effects of formalin versus glutaraldehyde fixation, and
erythrocyte lysis, on FACS analysis of the morphological
response of neutrophils in suspension to FMLP 84
3.2.3. Morphometric comparison of the subtypes of cell-shape
identified by visual classification 86
3.2.4. Effect of FMLP concentration on the proportions of
morphological subtypes displayed by neutrophils
with time 98
3.2.5. Comparison of F-actin distributions for morphological
subtypes 99

3.3. Summary 92
CHAPTER 4. THE MORPHOLOGICAL RESPONSES OF NEUTROPHILS IN SUSPENSION TO WHOLE AND FRACTIONATED PLASMA

4. 1. Introduction

4. 2. Results

4. 2. 1. Time courses of the morphological responses of neutrophils to various concentrations of plasma

4. 2. 2. Effects of heparin on the morphological responses of neutrophils to plasma and FMLP

4. 2. 3. Comparison of the morphological responses of neutrophils to plasma and serum

4. 2. 4. Effects of cation chelating anticoagulants on the morphological response of neutrophils to plasma

4. 2. 5. Effects of cation chelating agents on the morphological responses of neutrophils to FMLP and heparinised plasma

4. 2. 6. Effects of cation chelating agents on the morphological response of neutrophile to heparinised plasma, in the presence of additional divalent cations

4. 2. 7. Effect of additional magnesium ions on the morphological response of neutrophils in suspension to plasma

4. 2. 8. Role of magnesium ions during the morphological response of neutrophils in suspension to plasma

4. 2. 9. Effect of soybean trypsin inhibitor (STI) on the morphological response of neutrophils to plasma

4. 2. 10. Effect of TMB-8 on the morphological responses of neutrophils to plasma and FMLP

4. 2. 11. Reversibility of the effect of TMB-8 on the morphological response of neutrophils to FMLP

4. 2. 12. Effect of TMB-8 on the morphological response of neutrophils to FMLP in the presence of human serum albumin

4. 2. 13. Effects of chromatographically purified fractions of plasma and serum on the morphology of neutrophils in suspension

4. 2. 14. Effect of commercial preparations of platelet proteins on the morphology of neutrophils in suspension

4. 2. 15. Effect of plasma on the F-actin distribution of neutrophils in suspension

4. 3. Summary

CHAPTER 5. THE MORPHOLOGICAL RESPONSE OF NEUTROPHILS IN SUSPENSION TO IMMUNOGLOBULIN TYPE G

5. 1. Introduction

5. 2. Results

5. 2. 1. Preliminary studies of the morphological response of neutrophils in suspensions to purified IgG

5. 2. 2. Morphological responses of neutrophils in suspension to F(ab')2 and Fc fragments of IgG

5. 2. 3. Morphological responses of neutrophils to various concentrations of heat aggregated IgG
5.2.4. Investigation of delay period during the morphological response of neutrophils to IgG, 1. response to different commercial preparation 127
5.2.5. Investigation of the delay period during the morphological response of neutrophils to IgG, 2. responses to supernatants obtained from IgG treated cells 122
5.2.6. Effect of PIP2 depletion on the morphological response of neutrophils to IgG 130
5.2.7. Effects of cation chelating agents on the morphological response of neutrophils to IgG 133
5.2.8. Effect of TMB-8 on the morphological response of neutrophils to IgG 135
5.2.9. Effect of IgG on the F-actin distribution of neutrophils 136

5.3. Summary 137

CHAPTER 6. THE MORPHOLOGICAL RESPONSES OF HUMAN NEUTROPHILS IN SUSPENSION TO CSa AND INTERLEUKIN-8 139

6.1. Introduction 139
6.2. Results 140

6.2.1. Time courses of the morphological responses of neutrophils in suspension to various concentrations of CSa 140
6.2.2. Effects of cation chelating agents on the morphological response of neutrophils to CSa 143
6.2.3. Effect of TMB-8 on the morphological response of neutrophils to CSa 145
6.2.4. Effect of CSa on the F-actin distribution of neutrophils in suspension 145
6.2.5. Time course of the morphological responses of neutrophils in suspension to various concentrations of IL-8 146
6.2.6. Effects of cation chelating agents on the morphological response of neutrophils to IL-8 148
6.2.7. Effect of TMB-8 on the morphological response of neutrophils to IL-8 151
6.2.8. Effect of IL-8 on the F-actin distribution of neutrophils in suspension 152

6.3. Summary 153

CHAPTER 7. THE MORPHOLOGICAL RESPONSES OF HUMAN NEUTROPHILS IN SUSPENSION TO LEUKOTRIENE B4 AND PLATELET ACTIVATING FACTOR 155

7.1. Introduction 155
7.2. Results 156

7.2.1. Time courses of the morphological responses of neutrophils in suspension to various concentrations of LTB4 156
7.2.2. Effects of cation chelating agents on the morphological response of neutrophils to LTB4 159
7.2.3. Effect of TMB-8 on the morphological response of neutrophils to LTB4
7.2.4. Effect of LTB4 on the F-actin distribution of neutrophils in suspension
7.2.5. Time courses of the morphological responses of neutrophils in suspension to various concentrations of PAF
7.2.6. Effects of calcium chelating agents on the morphological response of neutrophils to PAF
7.2.7. Effect of TMB-8 on the morphological response of neutrophils to PAF
7.2.8. Effect of PAF on the F-actin distribution of neutrophils

7.3. Summary

CHAPTER 8: GENERAL DISCUSSION

8.1. Introduction
8.2. How should neutrophil polarization be measured?
8.3. Are products of the plasma activation system the cause of neutrophil polarization in plasma?
8.4. Does IgG polarise neutrophils in plasma and what is the mechanism of IgG-induced neutrophil polarization?
8.5. What factors may contribute to the different morphological responses of neutrophils to supra-optimal concentrations of inflammatory mediators and FMLP?
8.6. What could be the role of extracellular divalent cations during neutrophil polarization?
8.7. What could be the role of intracellular divalent cations during neutrophil polarization?
8.8. What could be the role of the cytoskeleton, especially microfilaments during neutrophil polarization?
8.9. How might polarization of neutrophils be studied in relation to other activities of these cells in vitro and in vivo?
8.10. Conclusions

APPENDIX

BIBLIOGRAPHY
SUMMARY

Neutrophil leukocytes develop polarised cytoplasmic extensions as a prerequisite for their emigration into inflamed tissues. This shape-change has been extensively studied in cell suspensions as a response of neutrophils to chemotactic factors such as the synthetic bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). However, neutrophils also polarise when suspended in fresh heparinised plasma and the details of this response have not been previously characterised.

This study examined the time course and degree of neutrophil polarisation in plasma and compared this response with those induced by FMLP, purified plasma proteins (particularly immunoglobulin type G) and chemotactic inflammatory mediators (the complement derived fragment C5a, interleukin-8, leukotriene B4 and platelet activating factor). In addition, the possible roles of extracellular divalent cations (Ca^{2+} and Mg^{2+}), intracellular Ca^{2+} ions and actin microfilament distribution during responses to each stimulus were examined.

Neutrophils were isolated from human peripheral blood by a one-step Hypaque-Ficoll method and resuspended in Hank's balanced salt solution buffered with 20 mM Heps (HBSS-Heps) containing test agents, at 37 °C. Polarisation was assessed by microscopic examination (Nomarski optics) and classification of glutaraldehyde (2.5% v/v in phosphate-buffered saline)-fixed cells into five morphological subtypes: spherical (unstimulated); type 1 cells, characterised by non-polarised extensions; type 2 cells, characterised by polarised extensions and round body; type 3 cells, characterised by polarised extensions and an oval body; and type 4 cells (fully polarised), characterised by polarised extensions including a tubular (uro-pod). Optimal responses to each stimulus were defined as those exhibiting the greatest proportion of type 4 cells. Computerised morphometry and fluorescence activated cell sorter (FACS) analysis were examined as methods for assessing
polarisation, but neither technique was satisfactory since morphometry did not consistently distinguish between non-polarised (type 1 cells) and polarised cells (types 2 and 3) and FACS analysis only detected changes in cell size.

Standard preparations of heparinised (12.5 I.U./ml) plasma (10%, 50% and 99% v/v) induced immediate (within 30 seconds) polarisation responses which were apparent throughout the 60 minutes incubation, but cells rarely developed a type 4 morphology. In contrast, plasma anticoagulated with ethylene-bis-(oxyethyl)-enentriol-tetra-acetic acid (EGTA, 5 mM) or low concentrations of heparin (2.5 I.U./ml), standard plasma pre-treated for 5 minutes with soy bean trypsin inhibitor (0.25 mM) or additional Mg^2+ ions (0.5 to 5 mM), and fresh serum, induced formation of many type 4 cells. Plasma anticoagulated with either ethylene-diamine-tetra-acetic acid (EDTA, 5 mM) or disodium hydrogen citrate (4 mg/ml) induced little or no change in cell shape.

Responses to standard preparations of heparinised plasma were reduced in the presence of chelating agents of extracellular cations (EDTA, EGTA, or disodium hydrogen citrate; 5 mM). These inhibitory effects of chelating agents did not occur if compensatory concentrations of either additional Ca^{2+} or Mg^{2+} ions (5 mM) were present.

Commercial preparations of IgG (0.009% and 0.0005% w/v) containing aggregates induced neutrophil polarisation, but this effect was delayed until 5 minutes. Reducing the proportion of aggregated IgG by ultra-centrifugation further delayed or abolished responses. Partial removal (99%) of the type II receptor for IgG on neutrophils did not affect the response of the cells to this protein. Fc and F(ab) fragments of IgG prepared by papain digestion did not induce polarisation.

Heat aggregated preparations of IgG (0.1%, 0.01% and 0.001% w/v) induced neutrophil polarisation with high proportions of type 4 cells at higher concentrations, but these responses were also generally delayed until 5 minutes. In contrast, supernatants from cells suspended in 0.01% heat aggregated IgG for 6 minutes induced an immediate (within 30 seconds) response in fresh cells. Responses to 0.1% and
0.01% (but not 0.001%) heat aggregated IgG were markedly reduced in the presence of EDTA, but all responses were unaffected by EGTA.

Optimal responses to each chemotactic factor were observed at 10 nM for FMLP and leukotriene B4, 1 nM for C5a, 12.5 nM for interleukin-8, and 40 to 400 nM for platelet activating factor. These responses were rapid in onset (within 30 seconds), sustained for at least 60 minutes and were characterised by moderate to high numbers of type 4 cells. Furthermore, in contrast to the responses in plasma and IgG, responses in each chemotactic factor were generally enhanced in the presence of chelating agents of extracellular divalent cations.

Responses to plasma, IgG and chemotactic factors were generally abolished by pre-treating cells with 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8; 5 x 10-4 M for 10 minutes), an inhibitor of the release of intracellular Ca2+ ions. Furthermore, cells treated with plasma, IgG or chemotactic factors consistently displayed abundant F-actin within their cytoplasmic extensions when stained with the fluorescent F-actin probe rhodamine phalloidin.

The present studies demonstrate significant differences between the polarisation responses of neutrophils in suspension to heparinised plasma, IgG and chemotactic factors. This implies that motile responses of neutrophils in inflamed tissues may vary according to the cause and mediation of the inflammatory response. In addition, these findings suggest that plasma derived factors other than established chemotactic stimuli may regulate the emigration of neutrophils in vivo.