AN INVESTIGATION OF COMBUSTION PHENOMENA
ASSOCIATED WITH DETONATION IN
INTERNAL COMBUSTION ENGINES

by

R. G. Barden, B.Sc. (Eng.) (London)

A thesis submitted to the Faculty of Engineering of the University of Adela\idae to fulfil the requirements for the Degree of Doctor of Philosophy.

Except where specific reference is made to the work of others, this work is original and has not been submitted to any other University in any form.

1956
SYNOPSIS

The various theories on the possible combustion mechanism of the end-gas in an engine cylinder are first reviewed.

The development of a dynamic capacity-strain type pressure measuring cell to investigate the physical phenomena associated with explosive combustion is then described. Where extraneous effects caused by metallic ringing become prohibitive, it was found possible to isolate the pick-up to reduce such to a minimum. With a high-frequency response in the measuring equipment such effects can mask the recording of the actual phenomena under investigation. The pick-up requirements to follow a steep transient disturbance, experienced in explosive combustion, are also discussed. It is concluded that a pick-up cell resonant frequency of at least 360 Kc. is necessary.

The pre-knock behaviour, with possible two-stage or single-stage combustion, is evident from the many photographic traces taken. No definite confirmation of a detonation-wave passing through the end-gas is indicated and this must await the outcome of further work. Evidence of the "vibratory combustion" type of gas vibration appears to show that a detonation wave need not be a pre-requisite for engine knock. It is also shown that pre-knock vibrations may or may not be present before knock. It would seem that knocking-combustion in an actual engine cylinder takes on a form closely resembling that found by the N.A.C.A. investigators in their special combustion apparatus.

The post-knock behaviour of the cylinder gases is shown to be of a complex form. One or more modes of gas vibration may be excited. A change in mode as the piston descends and
a distortion of the nodal surfaces caused by the chemical and physical non-homogeneity of the gases is indicated.
CONTENTS

Introduction 1
Bibliography 6

CHAPTER I

Theory of Combustion

1.1 General 7
1.2 Ionisation 8
1.3 Ignition by a Spark 10
1.4 Combustion in an Engine Cylinder 11
1.5 Thermal Efficiency 12
1.6 The End Gas 14
Bibliography 19

CHAPTER II

Low Temperature and High Temperature Combustion Process

2.1 General 20
2.2 Low and High Temperature Regions 21
2.3 Cool Flames 22
2.4 Intermediate Products 24
2.5 Aldehyde and Peroxide Concentration 25
2.6 Comments 30
Bibliography 32

CHAPTER III

Detonation Waves

3.1 General 31
3.2 Formation of Shock Fronts 34
3.3 Effect of Pressure 36
3.4 Factors influencing the Explosive Reaction 37
3.5 Comments 40
Bibliography 41

CHAPTER IV

Nuclear Auto-Ignition

4.1 General 42
4.2 Nuclei from Carbon 43
4.3 Comments 45
Bibliography 46

CHAPTER V

Erosion of Piston

5.1 Piston Crown Failure 47
Bibliography 50
CHAPTER VI

Recording Apparatus

6.1 General
6.2 Choice of Pressure Cell
6.3 Apparatus in General
 6.3.1 C.R.O. Unit and Accessories
 6.3.2 Research Engine
6.4 Design and Development of Drum Camera
6.5 Commercial Pressure Pick-up
 6.5.1 Frequency Response
 6.5.2 Diaphragm Temperature
 6.5.3 Nominal Capacity Setting
 6.5.4 Pressure-Capacity Relationship
6.6 Push-Pull Pick-Up
 6.6.1 General
 6.6.2 Theory
 6.6.3 Pick-Up Design
6.7 Push-Pull Pick-Up Polystyrene Insulation
 6.7.1 General
 6.7.2 Capacity-Pressure Response
 6.7.3 Cooling Water Effects
 6.7.4 Limitations of Push-Pull Pick-Up
6.8 Multi-Diaphragm Pick-Up
 6.8.1 General
 6.8.2 Test Record
6.9 Single Diaphragm Pick-Up
 6.9.1 General
 6.9.2 Test Record
6.10 Long-Reach Pick-Up
6.11 Amplifiers with Response to 200 Kc.
6.12 Steel Ring for Pick-Up Location
6.13 First Steel Plate
 6.13.1 General
 6.13.2 Test Record
 6.13.3 Plate Subjected to Sharp Blows
6.14 Second Steel Plate
 6.14.1 General
 6.14.2 Test Record
6.15 Rubber Bonded Pick-Up
 6.15.1 General
 6.15.2 Test Record
 6.15.3 Rubber Bonding Injection Method
6.16 Asbestos Packed Pick-Up
 6.16.1 General
 6.16.2 Test Record
 6.16.3 Metallic Ringing and Gas Effects
 6.16.4 Test Record
6.17 Pick-Up employing Rubber Washers

Bibliography

(vii)
CHAPTER VII
Pressure Pick-Up Requirement

7.1 General 91
7.2 Frequency Response 91
7.3 Isolation 94
7.4 Insulation 95
 7.4.1 General 95
 7.4.2 Rate of Change Requirement 97
 7.4.3 Pressure Diagram Requirement 98
 7.4.4 Insulation Resistance-Temperature Requirement 100
7.5 Pick-Up Gap 102
Bibliography 103

CHAPTER VIII
Pre-Knock Phenomena

8.1 Two Stage Combustion 104
 8.1.1 General 104
 8.1.2 Experimental Findings 104
 8.1.3 Time Intervals and Pre-Knock Vibrations 108
8.2 Knock Consistency 110
 8.2.1 General 110
 8.2.2 Experimental Observation 111
Bibliography 113

CHAPTER IX
Post-Knock Phenomena

9.1 Gas Vibrations 115
 9.1.1 General 115
 9.1.2 Experimental Findings 116
 9.1.3 Change in Nodal Pattern 120
 9.1.4 Distortion of Nodal Planes 121
 9.1.5 Pressure Amplitude Build-Up 123
Bibliography 126

CHAPTER X
Discussion and Conclusions

10.1 Discussion 127
10.2 Conclusions 130
 10.2.1 Pick-Up and Amplifier Requirement 130
 10.2.2 Pre-Knock Phenomena 130
 10.2.3 Post-Knock Phenomena 131

Recommendations 132

Appendix I 133
Appendix II Tests from pick-up in 0.3 in. plate 137
Appendix III 141
Appendix IV Tests from plates subjected to sharp change 148