MYLONITE DEVELOPMENT IN THE WOODROFFE THRUST,
NORTH OF AMATA, MUSGRAVE RANGES, CENTRAL AUSTRALIA

VOLUME I

by

Timothy Hampton Bell,
B.Sc. (Hons), Adelaide

Department of Geology and Mineralogy
University of Adelaide

June, 1973
CHAPTER 1 - INTRODUCTION

1.1 - Mylonitization and Mylonites
1.1.1 - Brittle Deformation Theories
1.1.2 - Strain Theories
1.1.3 - Experimental Work
1.1.4 - Ductile Deformation and Recrystallization Theories
1.2 - Aim of Thesis
1.3 - Microstructure and Preferred Orientation Development
1.3.1 - Ductile Deformation
1.3.2 - Recovery
1.3.3 - Recrystallization
1.3.3.1 - Nucleation

Classical theory of nucleation
Spontal decomposition - the Cahn-Hilliard non-uniform model of nucleation in two component systems
Nucleation by subgrain growth or coalescence
Bulge Nucleation
Dynamic recrystallization

1.3.3.2 - Growth
Thermodynamic theories on preferred orientation development
Coincidence lattice Kronberg-Wilson relationships
Orientation - vacancy effect on grain boundary mobility

1.4 - Preferred orientation of quartz (0001) in mylonitic rocks
1.4.1 - Fabrics of deformed quartz grains
1.4.2 - Fabrics of recrystallised quartz grains
1.4.3 - Fabrics of experimentally produced mylonite like rocks
1.4.4 - The typical Mylonite fabric

CHAPTER 2 - STRUCTURAL ANALYSIS

2.1 - Introduction
2.1.1 - Location and broad geological relationships
2.1.2 - Rock Types
2.1.3 - Structural relationships across the Thrust
2.2 - Structural Analysis
2.2.1 - The mylonitic rocks associated with the Woodroffe Thrust (sub areas 1,2,364)
2.2.1.1 - Structural elements and style
2.2.1.2 - Orientation of Structural Elements
2.2.2 - The amphibolite facies country rock (sub areas 163)
2.2.2.1 - Structural elements and style
2.2.2.2 - Orientation of structural elements
2.2.2.3 - The relationships of sub area 1 to sub area 3. 37
2.2.3 - The granulite facies country rock. 39
2.2.3.1 - Structural elements and style. 39
2.2.3.2 - Orientation of structural elements. 40
2.2.3.3 - Boulder, xenolith or relict early structure. 40
2.2.3.4 - The mylonitic rocks of sub area 6. 46
2.2.4 - A brief summary of the structural events. 47
2.2.4.1 - The deformation events in chronological order East of the Woodroffe Thrust. 42
2.2.4.2 - The mylonite deformation associated with the Woodroffe Thrust. 43
2.2.5 - Comparison with other work. 43
2.3 - The fabric study. 45
2.3.1 - The petrography of the rocks used in the fabric study. 45
2.3.1.1 - Granulite facies side. 46
2.3.1.2 - Amphibolite facies side. 44
2.3.2 - The chemistry of the rocks used in the fabric study. 50
2.3.2.1 - The whole rock analyses. 50
2.3.2.2 - Cluster analysis. 50
2.3.3 - The metamorphic grade of the mylonites. 51

CHAPTER 3 - THE MICROSTRUCTURAL AND FABRIC CHANGES OF QUARTZ ACROSS THE MYLONITES ASSOCIATED WITH THE WOODROFFE THRUST.
3.1 - Introduction. 52
3.1.1 - Procedure. 52
3.1.2 - Measurement techniques. 59
3.2 - Microstructure and fabric description. 55
3.2.1 - Slightly affected country rock. 55
3.2.1A - Granulite facies side. 55
3.2.1B - Amphibolite facies side. 56
3.2.2 - Strongly affected country rock. 57
3.2.2.1A - Granulite facies side. 57
3.2.2.1B - Amphibolite facies side. 58
3.2.2.2A - Amphibolite facies side. 61
3.2.2.2B - Amphibolite facies side. 61
3.2.3 - Coarse quartz feldspar mylonite. 61
3.2.3.1A - Granulite facies side. 61
3.2.3.2B - Amphibolite facies side. 62
3.2.3.3 - Medium quartz-feldspar mylonite. 63
3.2.3.2A - Granulite facies side. 63
3.2.3.2B - Amphibolite facies side. 64
3.2.3.3 - Fine quartz-feldspar mylonite. 64
3.2.3.3A - Granulite facies side. 64
3.2.4 - Quartz wholly recrystallized. 66
3.2.4A - Granulite facies side. 66
3.2.4B - Amphibolite facies side. 66
3.2.5 - Mica Growth. 67
3.2.5A - Granulite facies side. 67
3.2.5B - Amphibolite facies side. 68
3.2.5C - Homogenization. 69
3.2.6A - Granulite facies side. 69
3.2.6B - Amphibolite facies side
3.2.7 - Slaty Nylontite
3.3 - Discussion
3.3.1 - Reliability and consistency of measurements
3.3.1.1 - Fabrics
3.3.1.2 - Angular relationships between grains
3.3.3 - The stages in mylonitisation until quartz is wholly recrystallised
3.3.3.1 - Granulite facies side
3.3.3.1.1 - Deformation and recovery of host (original) grains
3.3.3.1.2 - Recrystallization - Nucleation
3.3.3.1.3 - Recrystallization - Growth
3.3.3.2 - Amphibolite facies side
3.3.3.2.1 - Deformation and recovery of host grains
3.3.3.2.2 - Recrystallization - Nucleation
3.3.3.3.1 - The effects of water on dislocations, ductile deformation, recovery and recrystallization of quartz
3.3.3.3.2 - Deformation and recovery of host grains
3.3.3.3.3 - Recrystallization
3.3.3.3.3.1 - Nucleation sites
3.3.3.3.3.2 - New grain size and degree of recrystallization

CHAPTER 4 - THE MICROSTRUCTURAL DEVELOPMENT OF MICA IN THE MYLONITES ASSOCIATED WITH THE WOODRUFFE THRUST

4.1 - Introduction .. 106
4.2 - Microstructural Description 106
4.2.1 - Granulite facies side 106
4.2.1.1 - Host grains .. 106
4.2.1.2 - Deformation of Host Grains 106
4.2.1.3 - Subgrains ... 107
4.2.1.4 - Nucleation sites 107
4.2.2 - Amphibolite facies side 109
4.2.2.1 - Host grains .. 109
4.2.2.2 - Deformation microstructures 109
4.2.2.3 - Fabric .. 110
4.2.2.4 - Nucleation sites 110
4.3 - Interpretation and discussion of mica microstructures.. 113
4.3.1 - Amphibolite facies side 113
4.3.1.1 - The stages of mylonitization until quartz is wholly recrystallized .. 113
4.3.1.2 - Changes with increased mylonitization-fabric 114
4.3.1.3 - Nucleation sites 114
4.3.1.4 - Nucleation Mechanism 115
4.3.1.5 - Changes with increasing mylonitization 118
4.3.1.6 - Fabric .. 119
4.3.2 - The differences between the amphibolite facies sides and their significance. 122
4.3.2.1 - The differences .. 122
4.3.2.1.1 - Kinking .. 122
4.3.2.1.2 - Subgrains ... 122
4.3.2.1.3 - Degree of recrystallization relative to strain. 123
SUMMARY

The mylonitization of amphibolite and granulite facies acid gneisses lying respectively east and west of the Woodroffe Thrust, central Australia has been studied in detail in an area fifteen kilometres north of Amat. The macro, meso and microstructural effects of mylonitization on the structure of the country rock to either side, and the further development of the mylonitic rocks was examined. The microstructural study was confined to the major constituents within the rocks examined i.e. quartz, feldspar and mica. The development of host and new grain fabrics, and the angular relationships between host and new grains, and adjacent new grains, for quartz, was also studied in some detail.

The schistosity within the mylonitic rocks is axial plane to folds of country rock layering and schistosity, on both sides of the main mylonite belt. This is most apparent in the amphibolite facies gneisses east of the Woodroffe Thrust as they have been strongly penetrated by the mylonitization. Intralaminar folds of the mylonitic schistosity which refold the above folds, are also produced such that the axial planes of the later folds are parallel to the mylonitic schistosity outside them. Both the mylonitic lineation and the axes of these folds bend through large angles in the plane of the mylonitic schistosity. This phenomenon occurs on all scales, and there is evidence to suggest that it causes ductile rotation of relatively unmylonitized blocks several kilometres long of amphibolite facies acid gneiss (sitting within the mylonite) relative to one another about an axis normal to the mylonite schistosity.

The microstructural development of the mylonites is described in terms of ductile deformation and recrystallization. The only brittle
deformation present occurs about, and associated with, pseudotachylite formed on the granulite facies acid greiss margin to the mylonitic rocks. The pseudotachylite forms as a late stage event and is often discordant with and intrusive into the mylonitic schistosity. It is thought to be a product of fusion after brittle failure due to an increased strain rate. Significant differences in recrystallization microstructures occur from the granulite to the amphibolite facies side of the mylonite zone (i.e. from west to east). The subgrain and new grain size in quartz and feldspar, the new grain size in mica, and the degree of recrystallization relative to strain is far greater on the amphibolite facies side. Subgrains were seen in highly deformed mica on the granulite facies side but not on the amphibolite facies side. In quartz, the nucleation sites for new grains differ across the zone with new grains growing on host grain edges on the amphibolite facies side but on host grain edges and deformation band boundaries on the granulite facies side. The nucleation mechanisms in quartz and feldspar include bulge, subgrain growth and coalescence, and in quartz on the amphibolite facies side, involve considerable subgrain rotation. The nucleation mechanisms in mica may involve subgrains on the granulite facies side but not on the other side. Host grain - new grain angular relationships (from c - axes) for quartz also differ considerably from side to side across the main mylonite zone. On the granulite facies side there is an extremely strong angular relationship between host grains and new grains directly adjacent to them. On the amphibolite facies side there is no such relationship but instead a near-uniform angular distribution of new grains about the host. There is also a considerable difference in the fabric development relative to the degree of strain. On the amphibolite facies side of the
main mylonite zone the mylonite fabric is strongly developed within host grains with very little strain, whereas, on the granulite facies side the same degree of preferred orientation is not attained until there has been considerable strain. New grains also develop the mylonite fabric during syntectonic growth with relatively less strain on the amphibolite facies side. Hence there must be a radical difference in the combination of slip and climb systems operating from side to side across the main mylonite zone. These differences in nucleation, degree of recrystallization relative to strain and combination of slip and climb systems operating, can only be a result of a difference in the rate of climb of individual dislocations and/or the number of dislocations able to climb. The only significant chemical difference between the granulite and amphibolite facies acid gneisses which is known to affect dislocation generation and movement in such a way is the higher water content in the amphibolite facies acid gneiss. The only other factor which might be involved is a strain rate difference (which of course could be dependent on the water content difference).

The fabric, petrographic and chemical evidence suggests that the granulite and amphibolite facies rocks were initially in contact before or during the early stages of mylonitisation at a point east of the Woodroffe Thrust where the microstructure shows an ultimate degree of development. The tectonic significance of this is discussed.