COMMONWEALTH OF AUSTRALIA
Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of
The University of Adelaide pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act.
Any further reproduction or communication of this material by you may be the
subject of copyright protection under the Act.

Do not remove this notice.
BIOLOGY AS AN NECESSARY MEASUREMENT HABITAT
FOR HIGH PLANTS

Thesis submitted for the Degree of Doctor of Philosophy

by

E. T. Armstrong

May, 1958.
CONTENTS

PART 1 INTRODUCTION ... 1

PART 2 PREPARATION ... 5

(i) Preparation ... 5
1. Experiments A and B .. 5
2. Experiments C, D, E, F, and G 6

(ii) Precautions taken to prevent contamination
of media or columns (all experiments) 13

(iii) Purification of water 16
1. Experiments A and B .. 16
2. Experiments C and D ... 16
3. Experiments E, F, and G 17

(iv) Cultural procedure ... 19
1. Experiment A .. 19
2. Experiment B .. 22
3. Experiments C and D ... 22
4. Experiments E and F ... 23
5. Experiment G .. 23

(v) Composition of culture solution 23
1. Experiment A .. 23
2. Experiment B .. 24
3. Experiments C, D, and E 28
4. Experiment F .. 28
5. Experiment G .. 29

(vi) Chemical determinations (all experiments) 29
1. Analytical techniques 29
 Sodium ... 29
 Potassium ... 33
 Chlorides .. 33
2. Preparation of extracts for the estimation of sodium, potassium, and chlorine in plant material...

(vii) Elimination of sodium and chlorine from nutrient salts...

1. Experiment A...
2. Experiment B...
3. Experiments C, D, and E...
4. Experiment F...
5. Experiment G...

PART 3 EXPERIMENTS IN THE CLASS-Room

Experiment A. The effects of small amounts of sodium chloride on plants of Atriplex vermiculata

I. Introduction...
II. Experimental...
III. Results...
(a) Yields...
(b) Moisture content of leaves...
(c) Analytical data...

IV. Discussion...
(a) Yields...
(b) Moisture content of leaves...
(c) Analytical data...

Experiment B. The effects of various salts of sodium and chlorine on Atriplex vermiculata growing in water-culture...

I. Introduction...
II. Experimental...

Page: 35

Lawn...

Introduction...
Experimental...
Results...
Discussion...

Experiment A...

I. Introduction...
II. Experimental...

Experiment B...

I. Introduction...
II. Experimental...

Page: 99
III. Results
(a) Observations
(b) Yields
(c) Moisture content
(d) Analytical data

IV. Discussion
(a) Yields
(b) Moisture content
(c) Analytical data

PART 4 EXPEDITIONS IN THE ROYAL UNITED SCIENCES I \ MACROFILIA \ VASIGARTA

Experiment C. The effects of the application of potassium nitrate on \ catharina
Nitrate grown in soil culture

I. Introduction
II. Experimental
III. Results
(a) Yields and observations
(b) Analytical data

IV. Discussion

Experiment D. The recovery of sodium-deficient plants of \ catharina \ vasigarta \ following the application of a small amount of sodium nitrate

I. Introduction
II. Experimental
III. Results
(a) Yields and observations
(b) Analytical data

IV. Discussion
Experiment 2. The effects of the sulphates of various group one elements on maize Ascot plant of *Zea mays* var. *Archer*.

I. Introduction 129
II. Experimental 129
III. Results 131
IV. Discussion 132

PART 5 EXPERIMENTS ON THE PLANT-ASPIRE CONTROLLERS: II BRASS

Experiment A. The effects of male mutants (in small amounts) on several members of higher plants

I. Introduction 140
II. Experimental 140
III. Results 142
IV. Discussion 142

Experiment B. The effects of male mutants (in small amounts) on lettuce

I. Introduction 144
II. Experimental 144
III. Results 144
IV. Discussion 146

PART 6 GENERAL INTRODUCTION 151

ACKNOWLEDGEMENTS 160

REFERENCES 162
For many centuries, the need for the micronutrients, calcium, potassium, magnesium, nitrogen, phosphorus, and sulphur, has been obvious for a long time. These included them all in his culture solution of 1860, as well as the micronutrient, iron, which has been known as essential since 1844 (Ascor and Bolton 1952).

During this century, when the salts used in culture solutions and been carefully purified, the discovery of other elements required in trace amounts was made. Previously, these elements had been present as impurities of the salts of culture solutions in amounts large enough to satisfy the plants' requirements.

When this research was initiated, the elements sodium and chlorine had not been shown to be essential for the growth of higher plants, possibly due to their universal presence in at least trace amounts wherever plants grow under natural conditions.

It has been shown that varying amounts of sodium and chlorine are contributed by atmospheric accretions of salt to plants and soils under field conditions (Button 1953; Turton 1955; Downes 1954). These elements may be redistributed to the soil by the movement of water (Jackson et al. 1956), or by their uptake into the roots of plants with subsequent re-deposition in falling leaves and decays.

When there is little drainage, as in arid areas, or where there is an impeded water-table, salt may accumulate in concentrations in the soil which hinder or prevent plant growth. On the other hand, where drainage is rapid, much of the sodium and chlorine pass below the reach of the root systems, so that only traces of their ions remain within the root
same. Although the effects of excessive salt concentrations have been studied widely, little in known of the minute rules of these elements in plant nutrition. No experiments had been reported in which plants had been grown in media really low in sodium and chlorine when this study began. It therefore seemed possible that if these elements are essential for growth, they must be needed in very small amounts indeed. The chief object of this work is an attempt to determine whether there was any evidence for this possibility by studying the effects of small amounts of sodium and chlorine on plant cultures under conditions from which these elements had been carefully eliminated.

The effects of chlorine on the photosynthetic activity of isolated chloroplasts as on the growth of the intact plant have been studied. However, and unfortunately, according to Ligon (1934), it seemed that chlorine might act as a component in the Hill reaction of photosynthesis. Anson and Minshull (1940), however, grew paper beat and chard in nutrient solutions without chlorine and obtained excellent growth. They isolated chloroplasts from these plants and found that they showed only weak photosynthetic activity. Later, Anson and Minshull and Ligon, they were reactivated in the addition of chlorine. They concluded that chlorine was not required for the activity of chloroplasts in vivo, but that it was necessary in isolated chloroplasts to protect some essential photosynthetic factor which was otherwise irreversibly destroyed in the light.

Ligon (1934), Anson (1941), and Ballew (1940) have described experiments in which small applications of chlorine-containing salts increased plant growth in water culture, but it was not until late in 1954, during the progress of this work, that Bryner et al. showed decisively, that chlorine is an essential micronutrient element for several species. To accomplish this, they used highly purified salts, and grew plants in a greenhouse in which the air had been cleansed by passing it through activated charcoal.
Sodium has been shown to be an essential element only for the blue-green algae, *Anabaena cylindrica*, by Alston and Alston (1959). When this alga was grown in nutrient cultures, the nutrient salts were purified by recrystallization, and glass-distilled water was used in the growth experiments in which "optimal growth" was obtained when the sodium concentration of the culture media was 0.05 g/l or higher. Lithium, potassium, rubidium, or cesium were not able to replace the alga's sodium requirement. The effects of sodium on higher plants, however, appear more complicated. In many past observations, the dry weight production of plants growing in the field or in soil culture has increased following the application of sodium to roots. The literature dealing with such observations has been adequately reviewed by House and House (1942), Lear (1952), and Sauer (1957). Although the results of these investigations are of considerable economic significance, they are outside the scope of this work, as they give little information on the actual role of sodium in plant nutrition. Such increases in field crops have been due to the effects of the salt in either modifying the soil, or in increasing the uptake of other ions, or to the action associated with the sodium being involved in the activities of the plant.

It has been shown that increase in dry weight occurs following the application of mashes of sodium to various higher plants growing in low-potassium culture solutions (Rasnake 1944). This seems to indicate that sodium may partially replace the function of potassium in some species. There are also suggestions in the literature that the dry weight of some plants, mostly members of Cichoraceae, increases in solutions containing adequate potash following the application of sodium (Sauer et al. 1955; Lear 1949). This latter evidence, confirmed as it is, suggests that sodium may have an independent role as a nutrient element. This thesis presents
a series of experiments designed to clarify this problem.

The description of this investigation is in 5 parts. The methods used to obtain sodium, and/or chlorine-free culture conditions, and the analytical techniques used throughout the study are given in Part 2. In Parts 3 and 4, a series of experiments are described from which evidence was obtained that sodium is an essential element for the bladder saltbush, *Atriplex vesicaria* Heward ex Benth. This species occupies large areas of arid Australia, and was chosen for investigation as it accumulates large quantities of sodium chloride in its leaves (Wood 1965).

Part 5 describes a series of preliminary experiments in which the effects of sodium on other species were examined.

Experiments described in Part 3 were carried out in an ordinary glasshouse, but the experiments described in Parts 4 and 5 were conducted in a pressurised greenhouse.

In this thesis, the chief objective has been to show the development of the subject rather than to present an account immediately suitable for publication.