GASEOUS LOSSES OF NITROGEN FROM SOILS BY DENITRIFICATION

A Thesis submitted
by
John Roland Burford B.Ag.Sc., (Hons.), M.Ag.Sc.

to the University of Adelaide
for the degree of
Doctor of Philosophy

Department of Agricultural Biochemistry and Soil Science
Waite Agricultural Research Institute
University of Adelaide

September, 1969.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>xiii</td>
</tr>
<tr>
<td>STATEMENT</td>
<td>xvi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

1. PERSPECTIVES

2. BIOLOGICAL DENITRIFICATION
 2.1. Pathways, products and intermediates
 2.1.1. Biochemical and microbiological studies
 2.1.2. Soil incubations
 2.2. Occurrence in soils
 2.2.1. Historical
 2.2.2. Anaerobic micro-sites

3. CHEMICAL DENITRIFICATION
 3.1. Proposed mechanisms
 3.2. Occurrence in soils

4. DENITRIFICATION LOSSES IN SOIL-PLANT-SYSTEMS
 4.1. Effect of plants
 4.2 Measurements under field and similar systems

5. OBJECTIVES

II. EXPERIMENT I (1966)

1. INTRODUCTION

2. EXPERIMENTAL

3. MATERIALS AND METHODS
 3.1. Experimental site
 3.2. Gas reservoirs
 3.2.1. Description
 3.2.2. Installation
 3.2.3. Depth and location

21

22

23

24

24

25
3.3. Gas sampling 25
3.4. Gas analysis 26
3.5. Ancillary data 27

4. RESULTS AND DISCUSSION 27
4.1. Composition of the soil atmosphere 27
 4.1.1. Nitrous oxide 27
 4.1.1.1. Occurrence 27
 4.1.1.2. Distribution in the soil profile 28
 4.1.1.3. Estimated magnitude of losses 31
 4.1.2. Oxygen, carbon dioxide and nitrogen 37
 4.1.2.1. Oxygen 37
 4.1.2.2. Carbon dioxide 39
 4.1.2.3. Nitrogen 42

4. CONCLUSIONS 44

III. INVESTIGATIONS OF METHODS FOR DETERMINATION OF THE COMPOSITION OF THE SOIL ATMOSPHERE 46
1. INTRODUCTION 46
2. GAS ANALYSIS 46
 2.1. Introduction 46
 2.2. Experimental 47
 2.3. Materials and methods 47
 2.3.1. Column packings 47
 2.3.2. Gas chromatograph modifications 48
 2.4. Results and discussion 49
 2.4.1. Chromatographic separation 49
 2.4.2. Sources of error 50
3. CONFIRMATION OF THE GAS CHROMATOGRAPHIC IDENTIFICATION OF NITROUS OXIDE 53
 3.1. Introduction 53
 3.2. Experimental 54
 3.3. Results and discussion 54
4. GAS SAMPLING
 4.1. Introduction
 4.2. Experimental
 4.3. Materials and methods
 4.3.1. Sampling
 4.3.1.1. Successive sampling
 4.3.1.2. Sampling devices
 4.3.1.3. Diurnal fluctuations
 4.3.2. Gas analysis
 4.4. Results and discussion
 4.4.1. Successive sampling
 4.4.2. Sampling devices
 4.4.3. Diurnal fluctuation
 4.5. Conclusions

IV. NITROUS OXIDE CONCENTRATIONS AND NITROGEN:ARGON RATIOS
 IN THE SOIL ATMOSPHERE OF A RED BROWN EARTH
 1. INTRODUCTION
 2. PART I, 1967 SEASON
 2.1. Experimental
 2.2. Materials and methods
 2.2.1. Experimental site
 2.2.2. Measurement of composition of the soil atmosphere
 2.2.2.1. Installation, location and depth of gas reservoirs
 2.2.2.2. Gas sampling and gas analysis
 2.2.3. Ancillary data
 2.2.3.1. Soil water content
 2.2.3.2. Soil samples
 2.2.3.3. Soil and plant analyses
 2.2.4. Agronomic treatments
 2.3. Results and discussion
 2.3.1. Seasonal conditions
2.3.2. Composition of the soil atmosphere
 2.3.2.1. Nitrous oxide 69
 2.3.2.2. Nitrogen:argon ratios and nitrogen 69
 2.3.2.3. Oxygen and carbon dioxide 72
2.3.3. Magnitudes of losses 75

3. PART II, SECOND SEASON (1968)
 3.1. Experimental 76
 3.2. Materials and methods 77
 3.2.1. Gas sampling and analysis 77
 3.2.2. Soil moisture content, apparent density and nitrate levels 77
 3.2.3. Soil temperature 78
 3.3. Results and discussion 78
 3.3.1. Seasonal conditions 78
 3.3.2. Composition of the soil atmosphere 79
 3.3.2.1. Nitrous oxide 79
 3.3.2.2. Nitrogen and N₂/A ratio 82
 3.3.2.3. Oxygen and carbon dioxide 83
 3.3.3. Magnitude of losses 84

4. CONCLUSIONS 87

V. DENITRIFICATION MECHANISMS IN THE URRBRAE FINE SANDY LOAM 89
 1. INTRODUCTION 89
 2. EXPERIMENTAL 89
 3. MATERIALS AND METHODS 90
 3.1. Treatment of soils 90
 3.2. Incubation flasks 90
 3.3. Sterilization of flasks and equipment 90
 3.4. Commencement of incubation 91
 3.5. Gas analysis 91
 3.6. Mineral nitrogen 92
4. RESULTS AND DISCUSSION

4.1. Gaseous evolutions

4.1.1. Urrbrae A plus nitrate

4.1.2. Urrbrae A plus nitrite

4.1.3. Urrbrae B plus nitrate

4.1.4. Urrbrae B plus nitrite

4.2. Mineral nitrogen at the conclusion of incubation

5. CONCLUSIONS

VI. GENERAL DISCUSSION AND CONCLUSIONS

1. THE OCCURRENCE OF DENITRIFICATION IN AN 'AEROBIC' SOIL

2. SIGNIFICANCE OF THE LOSSES BY DENITRIFICATION

3. FURTHER RESEARCH

APPENDICES

BIBLIOGRAPHY
SUMMARY

The occurrence of denitrification products in the soil atmosphere of the Urrbrae fine sandy loam, a red-brown earth, has been investigated over the three year period 1966-68. Samples of the soil air were obtained from small, permanently installed reservoirs (30 ml capacity) and analyzed by gas chromatography for N_2, N_2O, CO_2, O_2 and A.

The detection of nitrous oxide in the soil atmosphere for periods of 2-6 months in each year demonstrated the normal occurrence of denitrification in this agricultural soil, and confirmed earlier predictions that aerobic denitrification can result in the gaseous loss of nitrogen from agricultural soils in the field: the mean oxygen concentrations in the large soil pores were always greater than 10% and usually greater than 15% in the B horizon and 18% in the A horizon. The mechanism responsible for the losses was that of biological dissimilation at anaerobic micro-sites within the generally well aerated soil.

A preliminary experiment indicated that the dissolution of evolved CO_2 in the soil water could create pressure gradients and the mass flow of soil air; it was shown that estimates of the losses as nitrogen gas could not be obtained from measurements of the nitrogen gas concentrations alone. The use of argon as a reference gas was investigated, but differences in the diffusion rates of N_2 and A prevented measurement of the evolution of N_2 gas from N_2/A ratios.
The nitrous oxide measurements indicated that there were
two main sources of evolution in the soil profile: a zone in the
A_1 horizon at about the 10 cm depth, and one in the B horizon at about
the 60 cm depth. The occurrence of N_2O in the A_1 horizon was
ephemeral and restricted to brief periods when the soil moisture
content was high following rainfall. In contrast, N_2O concentra-
tions were much less variable in the B horizon: in each season the
gas was detected after the initial wetting of the subsoil in late
autumn and levels increased to a peak in mid-winter then decreased
in late winter and early spring.

Calculations based on transfer equations were unsatisfactory
for accurately estimating losses, mainly due to uncertainties in the
values for the air-filled porosity of the soils. However, such
calculations indicated that losses were much greater from the A_1
than from the B horizon, despite the usually brief occurrence of
N_2O in the A_1 horizon. The greatest losses from both horizons were
in winter when soil temperatures were lowest (10 ± 5 C) and soil
moisture contents highest.

Losses under a wheat crop were not markedly different on
two areas with contrasting structure and organic matter status, but
losses underneath a pasture were much smaller than under the wheat
crop.

The application of nitrate fertilizer (100 lb/acre) increased
N_2O evolution 3-10 fold in the A_1 horizon and up to 2.5 fold in the B
horizon, but the estimated maximum diffusive losses were only 0.06-0.67 lb N₂O-N/acre/day from areas sown to wheat and fertilized with nitrogen.