BIOCHEMICAL ASPECTS OF FUNGAL TAXONOMY,
MORPHOGENESIS AND HOST-PARASITE RELATIONSHIPS

by

B.G. Clare, B.Sc. (Hons.), M.Sc.

Department of Plant Pathology,
Waite Agricultural Research Institute,
University of Adelaide,
South Australia.

A thesis submitted in fulfilment of the requirements for the
degree of Doctor of Philosophy.

February, 1967.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>(1)</td>
</tr>
<tr>
<td>STATEMENT</td>
<td>(iv)</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>(v)</td>
</tr>
</tbody>
</table>

SECTION I

ELECTROPHORETIC STUDIES OF FUNGAL PROTEINS AS AN AID IN TAXONOMY

1. **Introduction**
2. **Materials and Methods.**
 - (a) Fungi used for starch gel electrophoresis
 - (b) Culture procedures
 - (c) Extraction of proteins for electrophoresis
 - (d) Electrophoretic methods
 - (e) Detection of enzymes and other proteins in starch gels
 - (f) Measurement of protein contents and enzyme activities of cell extracts
 - (g) Recording of patterns in starch gels
3. **Results and Discussion**
 - (a) Effect of pH on resolution of gel patterns
 - (b) Extraction procedures
 - (c) Effects of culture media on fungal growth
 - (d) Application of the method in taxonomic studies
 - (i) *Pythium* species
 - (ii) *Phytophthora* species
 - (iii) *Fusarium oxysporum*
 - 87
3. Results and Discussion
 (a) Micromorphology and ultra-structure 111
 (b) Starch gel electrophoresis of *P. pullulans* proteins 120
 (c) Protein disulphide reductase and dimorphism 126

SECTION III

ENZYMIC CHANGES IN WHEAT ROOTS INFECTED WITH *PYTHIUM*

1. Introduction 130

2. Materials and Methods
 (a) Organisms used to investigate host-parasite relations 131
 (b) Culturing methods and harvesting procedures 131
 (c) Preparation of cell extracts 132
 (d) Electrophoretic methods 132
 (e) Detection of enzymes and other proteins in starch gels 132
 (f) Measurement of protein contents and amylase activity in cell extracts 132

3. Results and Discussion 134

APPENDIX 138

1. Enzymic changes associated with induced and natural resistance of sweetpotato to *Ceratocystis fimbriata* 139

2. Peroxidase and resistance to *Ceratocystis* in sweet potato increased by volatile materials 156

3. Increased disease resistance and enzyme activity induced by ethylene and ethylene production by black rot infected sweet potato tissue 158

BIBLIOGRAPHY 177
SUMMARY

I. A method was developed for extraction and electrophoretic separation of soluble proteins from fungi. Isolates of *Fusarium*, *Phytophthora*, *Pythium*, *Saccharomyces*, *Schizosaccharomyces* and *Thanatephorus* (*Rhizoctonia*) species were used. The main soluble proteins were detected by staining with acidic dyes after electrophoresis in starch gels with discontinuous citrate-borate buffers at various pH values from 8.2 to 9.5. Protein patterns differed markedly between different species of the same genus, but variation within a species was so small that the method should be a valuable aid in fungal taxonomy. Alcohol dehydrogenase, (EC 1.1.1.1), malate dehydrogenase (EC 1.1.1.37), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate (EC 1.1.1.43), diaphorases \(\text{NADH}_2: \text{nitroblue tetrazolium oxidoreductases} \), peroxidase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were detected in starch gels after electrophoresis of fungal protein extracts. The patterns obtained can be used in fungal taxonomy but different enzyme patterns have different taxonomic weight even in the same organism. Some patterns may be of value at the sub-specific level, some appear to be characteristic of species and some show interspecific similarities which indicate that they are characteristic of genera.

II. Yeast-like and mycelial (filamentous) forms of *Pullularia pullulans* were grown from single-spore isolates and conditions were
found for isolating both forms in sufficient quantity for biochemical investigation. Protein and enzyme patterns from extracts of the two forms were compared after electrophoresis of the extracts in starch gels. The two forms had qualitatively identical patterns of main soluble proteins, alcohol, glucose-6-phosphate and malate dehydrogenases and "oxidases". Differences between the two forms were found in their isoenzyme patterns of catalase, diaphorase and glucose oxidase (EC 1.1.3.4) activity. An electron-microscopic comparison of the two forms showed appreciable differences; the yeast-like form had convoluted mitochondria and vesicular endoplasmic reticulum not observed in the mycelial form and in addition the yeast-like form had much thinner cell walls. It was not found possible to demonstrate the reduction of cell-wall protein by mitochondrial reductases using published methods. The evidence for the involvement of protein disulphide reductase in fungal dimorphism is discussed and the necessity for a reappraisal of this matter is indicated.

III. Electrophoretic patterns of soluble enzymes and other proteins from wheat roots were measured at various stages of elongation and in various regions of the root. These patterns were compared with those from extracts of *Pythium ultimum* and with extracts of roots infected with this fungus. Differences were found between patterns of amylases (EC 1.2.1.1&2) in different regions of wheat.
roots and in root types at various stages of growth. These patterns were modified as a result of fungal infection; new bands of amylase were found that are not observed in extracts of root or fungus alone.