A PHYSICO-CHEMICAL STUDY OF DILUTE POLYELECTROLYTE SOLUTIONS

Rolf Ludwig Darskus, B.Sc. (Adelaide)

Department of Physical and Inorganic Chemistry
University of Adelaide

Thesis presented for the degree of Doctor of Philosophy

September 1962
CONTENTS

Summary 1
Statement 111
Acknowledgements iv

CHAPTER I

INTRODUCTION 1

CHAPTER II

THEORIES OF POLYELECTROLYTE SOLUTIONS

1. Electrostatic Potential 8
2. Thermodynamic Properties 17
3. Ion Binding 20
4. Polyion Expansion
 (i) Configuration of uncharged polymers 27
 (ii) Configuration of flexible polyions 30
5. Some Criticisms of Polyelectrolyte Theories 35

CHAPTER III

VISCOSITY OF DILUTE POLYELECTROLYTE SOLUTIONS

1. Viscosity of Uncharged Polymers 38
2. Viscosity of Charged Particles
 (i) The classical electroviscous effect 45
 (ii) The secondary electroviscous effect 46
CHAPTER IV

ELECTROCHEMICAL PROPERTIES OF STRONG POLYELECTROLYTES

1. Counterion Binding

 (i) Methods of measurement

 (a) Transference methods
 78
 (b) Tracer diffusion method
 84
 (c) Thermodynamic methods
 85
 (d) Hydrodynamic methods
 87

 (ii) Review of previous work
 87

 (iii) Experimental results and discussion

 (a) Charge fraction

 (1) Effect of electrode reactions
 94
 (2) Effect of field and time of electrolysis
 95
 (3) Effect of sintered-glass partition
 96
 (4) Concentration dependence of degree of association
 96
 (5) An attempted absolute determination of charge fraction
 100

 (b) Activity coefficients
 103

2. Electrophoretic Mobility
 104
3. Conductance 108
4. Effect of Change in Temperature and Dielectric Constant on Electrochemical Properties 111
5. General Discussion 113

CHAPTER V

EXPERIMENTAL

1. Materials

(i) Poly-4-vinylpyridine 121
(ii) Poly-N-vinylimidazole 124
(iii) Polymethacrylic acid 124
(iv) Poly-4-vinyl-N-n-butylpyridinium bromide 125
(v) Polyvinylbenzyltrimethylammonium chloride 126
(vi) Polyvinylbenzyltrimethylammonium hydroxide and polyvinylbenzyltrimethylammonium nitrate 127
(vii) Solvents

(a) Conductivity water 127
(b) Other solvents 128
(viii) Solutions 128

2. Viscosity Measurements

(i) Capillary viscometers 130
(ii) The Couette viscometer 131
(iii) Time dependence of the viscosity 131

3. Spectrophotometry 134
4. Conductance Measurements

5. Transference Experiments
 (i) Measurement of mobility
 (ii) Exchange determinations

6. Potentiometric Measurements
 (i) Counterion activity coefficients
 (ii) Measurement of pH

7. Light Scattering
 (i) Light-scattering apparatus
 (ii) Scattering cell
 (iii) Calibration and measurements
 (iv) Clarification
 (v) Refractometer
 (vi) Treatment of data

REFERENCES
Summary.

A Physico-Chemical Study of Dilute Polyelectrolyte Solutions.

The discontinuous concentration dependence of various physico-chemical properties of polyvinylpyridinium chloride in dilute aqueous solutions was studied by means of viscosity, conductance, ultraviolet absorption, and pH measurements. Light-scattering measurements failed to confirm the previous interpretation of the above phenomena in terms of aggregation of the polyions. An alternative interpretation in terms of variations in the degree of hydrolysis of the polyions is proposed.

The viscosity behaviour of a number of other strong polyelectrolytes at very high dilutions was investigated. Provided that suitable precautions were taken to ensure the purity of the water used to prepare solutions, the reduced viscosities were found to increase monotonically with dilution, and an approximate value of the intrinsic viscosity could be obtained by the use of the empirical Fuoss equation. These extrapolated values were found to be higher than those calculated on the basis of a fully stretched configuration of the polyions. This discrepancy
is attributed to the polydispersity of the polyelectrolyte samples used.

Some electrochemical properties of aqueous solutions of polyvinylbenzyltrimethylammonium chloride (PBTA-Cl) and polyvinylbuty1pyridinium bromide (PVP-Br) were investigated in the concentration range $5 \times 10^{-5} - 3 \times 10^{-3}$ gram molar. Electrophoretic mobilities of the polyions, determined by the Hittorf method, were found to increase on dilution. The degree of counterion binding, obtained by combining conductance and mobility data, was found to be essentially constant over most of the concentration range studied. Similar behaviour was observed for the counterion activity coefficients. Several possible sources of error in the determination of the degree of binding were investigated. The product of solvent viscosity and polyion mobility, as well as the degree of counterion binding, was found to be almost independent of temperature in the range 5 - 55°. The degree of counterion binding in ethanol solutions of PVP-Br was found to be markedly greater than in aqueous solutions. The results of measurements of counterion binding were in qualitative accord with the predictions of several current theories based on a rod-like polyion model.