STUDIES ON THE ENDOCAINE DEVELOPMENT OF NEMATODES

by

ROGER D.W. DENNIS B.Sc. (Hons.), M.Sc.

Department of Plant Pathology
Waite Agricultural Research Institute
The University of Adelaide
South Australia

Thesis submitted to the University of Adelaide
in fulfilment of the requirements for the
degree of Doctor of Philosophy
September, 1975
TABLE OF CONTENTS

SUMMARY vii
STATEMENT ix
ACKNOWLEDGEMENTS x

I. GENERAL INTRODUCTION 1

II. INSECT MORPHOGENETIC HORMONES AND DEVELOPMENTAL MECHANISMS IN THE NEMATODE, NEMATOSPIROIDES OBLIVUS

II.1 Introduction 4
II.2 Materials and Methods 6
 A. Culture of nematode (determination of time of the final moult) 6
 B. Effect of hormones and inhibitors on the last stage moult 7
 C. Effect of hormones on egg-laying 8
 D. Effect of the Na⁺/K⁺ ratio on moulting 8
 E. Statistical analysis 8
II.3 Results 8
 A. Time of moulting 9
 B. Hormones and moulting 9
 C. Feeding 10
 D. Egg-laying 10
 E. Na⁺/K⁺ ratio 13
II.4 Discussion 13
II.5 Conclusion 22

III.A. ASPECTS OF THE EXTRACTION OF NUCLEIC ACIDS AND INTACT POLYRIBOSOMES FROM THE NEMATODES, APHELENCUS AVENAE AND PARAGRELLUS REDIVIVUS 20

III.A.1 Introduction 28
III.A.2 Materials and Methods 29
 A. Mass culture of A. avenae 29
 B. Mass culture of P. redivivus 29
C. Purification of total nucleic acid of A. avenae
D. Extraction and purification of polysomes of P. redivivus
 (i) Extraction
 (ii) Purification
E. Extraction of RNA from polyribosomes
F. Sucrose-density gradient centrifugation
 (i) A. avenae
 (ii) P. redivivus
G. 2.5% polyacrylamide + 0.5% agarose gel electrophoresis (PAGE)

IIIA.3 Results
A. Problems of polyribosome integrity
B. S-values of RNA species by density-gradient centrifugation
C. S-values and molecular weights estimated by polyacrylamide-agarose gel electrophoresis

IIIA.4 Discussion

IIIB RIBOSOMES AND POLYSOMES OF THE NEMATODE, PANAGRELLUS REDIVIVUS AND THEIR RESPONSE TO INSECT MORPHOGENETIC HORMONES

IIIB.1 Introduction
IIIB.2 Materials and Methods
 A. Mass culture of P. redivivus
 B. Double-labelling of ribosomal RNA
 C. Quenching
 D. Extraction of 70S and 80S ribosomes from Nicotiana glutinosa leaves
 E. Purification of tobacco ringspot virus from cucumber (TRSV)
 F. Electron microscopy
 G. In vitro amino-acid incorporation
 H. Insect growth hormones
 I. Autoradiography
IIIB.3 Results
A. S-values of nematode ribosomes
B. S-values of polysome units
C. Estimation of ribosomal purity
D. Structure
I. Free polysomes
F. Electron microscopy of polysomes
G. In vitro amino-acid incorporation by polysomes
H. Effect of insect growth hormones on nematode polysomes

IIIB.4 Discussion

IIIB.5 Conclusion

IV. STUDIES ON THE α-ECODYSEON-STIMULATED ENZYME LEUCYL NAPHTHYLAMIDASE OF APHELENCHUS AVENA

IV.1 Introduction

IV.2 Materials and Methods
A. Mass culture of A. avenue
B. Homogenisation procedure
 (i) Preliminary studies
 (ii) Purification studies
C. Chemical assay
D. Polyacrylamide gel electrophoresis (PAGE) - protein and enzyme detection
 (i) Proteins
 (ii) Enzymes
E. Protein estimation
F. Incubation with α-ecdysone
G. Localization of leucyl naphthylamidase
H. Subcellular localization of leucyl naphthylamidase
IV.3 Results

A. PAGE of nematode proteins and enzymes (soluble) 71
B. Chemical assay of leucyl naphthlamidase following incubation with 3'-ecdysone 72
C. Partial characterisation of leucyl naphthlamidase
 (i) Enzyme kinetics 73
 (ii) Effect of modifiers 75
D. Enzyme localisation 81
E. Subcellular localisation 82
F. Attempted purification of leucyl naphthlamidase
 (i) Problems of leucyl naphthlamidase purification - preliminary studies of fractionation 84
 (ii) Preliminary studies of purification 83
 (iii) Purification of enzyme-method adopted 96
G. Molecular weight estimation of leucyl naphthlamidase 103

IV.4 Discussion 103

IV.5 Conclusion 117

V. INVESTIGATIONS ON THE PRESENCE OF EC DysONE-BINDING PROTEINS AND EC DysONE-LIKE MATERIAL IN THE NEMATODES, PANAGGELLUS REDIVIVUS AND APHELENCUS AVENAE 119

V.1 Introduction 119

V.2 Materials and Methods 121

A. Mass culture of P. redivivus 121
B. Mass culture of A. avenue 121
C. Methods for the detection of 3'-ecdysone cytosol receptors
 (i) Sucrose-density gradient centrifugation 121
 (ii) Polyacrylamide gel electrophoresis (PAGE) 122
 (iii) Charcoal-Dextran binding assay 123
D. Protein estimation
E. Preparation of β-ecdysone 6-(O-carboxymethyl) oxime (β-ecdysone-6-CMO)
 (i) The method of Fritz
 (ii) The method of Erlanger
F. The preparation of testosterone 3-(O-carboxymethyl) oxime (testosterone-3-CMO)
 (i) The method of Fritz
 (ii) The method of Erlanger (Erlanger et al., 1957, 1967)
G. Preparation of β-ecdysone-6-CMO-bovine serum albumin (BSA) conjugate (antigen)
H. Antibody production
I. Radioimmunoassay
J. Extraction of ecdysone-like material
K. Quenching

V.3 Results
A. Detection of β-ecdysone cytosol binding proteins
 (i) Sucrose-density gradient centrifugation
 (ii) PAGE
 (iii) Charcoal-Dextran binding assay
B. Characterisation of the hapten testosterone-3-CMO
 (i) Yield
 (ii) UV spectrum
 (iii) Molar extinction coefficient (ε)
 (iv) M.P. of testosterone-3-CMO
C. The hapten β-ecdysone-6-CMO
D. Radioimmunoassay (RIA)
APPENDIX

Publication:
SUMMARY

The results obtained in this work can be interpreted in terms of the following working hypothesis; growth and developmental control mechanisms in nematodes are similar to or the same as those in insects. This implies that the endocrine factors themselves are the same or closely related.

Various physiological and biochemical events of morphogenetic processes in the Nematoda, superficially similar to those in the Insecta, were examined to determine any relationships in the control mechanisms. The nematode, *Nematodiridae dubius*, reacted in an analogous physiological manner to insect growth hormones at definite stages of the life-cycle. Moulting was stimulated by
\[
\alpha\text{-ecdysone and inhibited by synthetic juvenile hormone (SJH), whilst egg-laying by females was unaffected by the former but stimulated by the latter terpenoid. The stimulation by } \alpha\text{-ecdysone of the activity of the leucyl naphthylamidase (Induction Ratio 1.709 at 24 hr post-infection) located in the body-wall of } \textit{Aphelenchus avenae}, \text{ indicated a possible hormonal correlation between moulting and this enzyme. The purification of the enzyme by } (\text{NH}_4)_2\text{SO}_4 \\
\text{fractionation, ion-exchange and gel filtration chromatography was unsuccessful due to its instability, with an enzyme purification of 27-fold but an equivalent protein purification of 514-fold. The properties of the crude enzyme extract resembled those of the mammalian (leucyl) naphthylamidases. The enzyme required a thiol group for activity, was inhibited by the sulphydryl reagent } \beta\text{-hydroxymercuribenzoate and puromycin, had a neutral pH optima, and was unstable.
following (NH₄)₂SO₄ and DEAE-cellulose chromatography. Evidence is presented that it may be a Zn-dependent metalloenzyme.

If the mechanism of action of the control of translation of protein synthesis (gene expression) by juvenile hormone was at the level of the polyribosome, then it was not by altered profiles in Panagrellus redivivus. The ribosomes, polyribosomes and polyribosomal RNA's of P. redivivus were considered "normal", following physical, chemical and biochemical comparison with other invertebrates. Also, the cytoplasmic RNA's of A. avenae showed the expected S-values and R.N.'s.

Direct evidence for the presence of morphogenetic hormones of the MA-type (moulting hormone) has been shown by radioimmunoassay for 5-ecdysone, and ecdysone-like substances have been shown to occur in the nematodes, P. redivivus and A. avenae. The yield was consistently greater in the latter animal. Indirect evidence from the effect of various Na⁺/K⁺ ratios, in the absence of Ca²⁺, on the moulting of fourth-stage larvae of H. dubius also suggests this conclusion. The effect of such hormones on insects is mediated by the alteration of the ionic balance of the haemolymph, including the above cations (Kroeger, 1963). No ecdysone-specific binding proteins were detected in the cytosol fraction of P. redivivus. From equivalence with the properties of the mammalian steroid hormone receptors, this would have given added physiological evidence to the above findings.