STRUCTURE AND PROPERTIES OF DIMETHACRYLATE POLYMERS

A thesis submitted for the
Degree of Doctor of Philosophy
in the Departments of Chemical Engineering
and Physical and Inorganic Chemistry.
The University of Adelaide, August 1986.

George Philip Simon, B.Sc.(Hons)
Table of Contents

Summary .. viii
Statement .. x
Acknowledgements ... xi

Chapter 1 Introduction and Summary of Dimethacrylate Polymerization
1.1 Introduction .. 1
1.2 Dimethacrylate Polymerization at Low Conversion 5
1.3 Middle and Late Stages of Dimethacrylate Cure 7
1.4 Inhomogeneities in Dimethacrylates 8
 (1) \(\beta \)-polymer 9
 (2) Chain Transfer 9
 (3) Cyclization 9
1.5 Polymer Inhomogeneity 10

Chapter 2 Experimental Techniques - Theory and Practice
2.1 Sample Sources ... 13
2.2 Purification of Monomers 13
2.3 Sample Caring .. 14
2.4 DSC Techniques 14
 (a) Extent of Cure (DSC) 14
 (b) Glass Transitions (DSC) 15
2.5 Dynamic Mechanical Work 15
 (a) Torsion Pendulum (TP) 15
 (b) Torsion Braid Analysis (TBA) 16
 (c) Pol Torsion Techniques 17
2.6 Nuclear Magnetic Resonance 18
 (a) Solution NMR 18
 (b) Broadline (Wideline) NMR 18
 (c) Magic Angle \(^{13} \text{C} \)-NMR 19
2.7 Fracture .. 24
 (a) Introduction 24
 (b) Short Cylinder Fracture 24
Chapter 3 Partly Cured Networks

3.1 Enthalpies of Polymerisation 28
3.2 Torsion Braid Analysis .. 31
3.3 Pot tetra-EGDMA Analysis 37
 (a) Introduction .. 38
 (b) Experimental ... 38
 (c) Dynamic Mechanical Pot Results 39
 (d) DSC Scan Results of Pot Samples 40
3.4 Compression Modulus ... 43
 (a) Experimental ... 43
 (b) Results and Discussion 44
3.5 Solid State NMR Results 45
 (a) Introduction ... 45
 (b) Solution NMR Peak Assignment and Kinetics 45
 (c) Solid State Spectra and FESOLIQ Results 47
 (d) TSL Experiments on Part-cured tetra-EGDMA 49
 (e) Tm(c) Experiments on Part-cured tetra-EGDMA 51
 (f) Tacticity Effects on Tm(c) and TSL 55
 (g) Correlation with Compression Modulus 55

Chapter 4 Homologous Series

4.1 Introduction .. 54
4.2 Physical Characteristics and NMR Spectra of Fully Thermally
 Cured Samples .. 54
4.3 Dynamic Mechanical Experiments 56
 (a) Glass Transition Region (α-peak) 56
 (b) The β-relaxation ... 60
(c) The γ-relaxation .. 61

4.4 Special Samples of tetra-EGDMA 63

4.5 Broadline NMR ... 65

4.5 Correlation with 13C NMR Relaxation Parameters 66

(a) T_{1L} ... 66

(b) T_{1p} ... 67

4.7 Fracture Properties .. 68

(a) Introduction .. 68

(b) Fracture Results - Hounsfield Impact Tests 69

(c) Fracture Results - IGI Impact Tests 69

(d) Fracture Results - Short Cylinder K_{IC} Values 70

(e) Rubbery Fracture - Discussion 71

(f) Glassy Fracture - Discussion 72

4.8 The Schaefer Ratio ... 73

4.9 Fracture Surfaces .. 77

Chapter 5 Modelling of Polymerisation

5.1 Introduction .. 80

5.2 Survey of Existing Models 80

5.3 Detailed Description - Kinetic Gelation Model (KGM) ... 83

5.4 Characterisation of Polymer of the KGM Model 87

5.5 Computing Details .. 88

5.6 Results of Two-dimensional Polymerisation 90

5.7 Two-dimensional Solvent Addition 93

5.8 Results of Three-dimensional Polymerisation 93

5.9 Results of the Coordination Sphere Modelling 98

5.10 Direct Examination of Polymer Cluster Growth 101

5.11 Comparison of Results - Computer Model and PE-MAS 13C

NMR .. 103

5.12 Conclusions of Modelling Polymerisation 109

Chapter 6 Solvents in Nitroxides

6.1 Introduction .. 112

6.2 Review of Kinetics of Diffusion 112
6.3 Kinetic Studies of Diffusion of Water into Dimethacrylates 117
(a) Introduction 117
(b) Sorption of Water 117
6.4 Sorption Sites of Water in Polymers 121
6.5 Sorption Sites of water in d6-PMMA 121
(a) introduction 122
(b) Experimental and Results 122
(c) Discussion 123
6.6 Sorption Sites in poly 1008-EGDMA 124
6.7 The Effect of Water on the Glass Transition 125
(a) Introduction 125
(b) Experimental 125
(c) Results and Discussion 126
6.8 Effect of Water on the β-peak 131
(a) Introduction 131
(b) Experimental and Results 132
6.9 Solvent Induced Transitions (Tdl) 133
(a) introduction 133
(b) Experimental and Results 133
(c) Discussion 135
6.10 Fracture Properties and Water 138

Chapter 7 Tracer Solvents in Water
7.1 Introduction 140
7.2 Experimental 141
7.3 Results and Discussion 142
7.4 Conclusions 147

Chapter 8 Copolymers
8.1 Introduction 149
8.2 MMA and tetra-EGDMA Copolymers 149
(a) Introduction 149
(b) Experimental 150
(c) Dynamic Mechanical Results and Discussion . 151
8.3 Network Copolymers
(a) Introduction
(b) Experimental
(c) DSC Results and Discussion
(d) Dynamic Mechanical Results - T_g Region
(e) Dynamic Mechanical Results - T_r
(f) Dynamic Mechanical Results - T_{du}
(h) Fracture Results and Discussion
(i) Diffusion of Water - Results and Discussion

Chapter 9 Conclusions

Appendix One

Appendix Two

References
SUMMARY

In this thesis the chemical, physical and engineering properties of members of the tetrafunctional poly (ethylene glycol) dimethacrylate polymer series were investigated and conclusions drawn about the essentially inhomogeneous nature of these radically cured systems. The molecular structure was probed in a number of ways—both experimentally and theoretically (in the form of a Monte Carlo computer simulation).

Dimethacrylate samples (and in particular tetra (ethylene glycol) dimethacrylate) were examined as a function of cure by thermal methods (scanning calorimetry) and torsion braid analysis, both of which indicated an inhomogeneous, multi-stage curing mechanism in which pools of monomer often persist within highly cured regions, even at high conversions. A dynamic mechanical "post" technique was developed to follow the \(T_g \) of samples over a wide range of cures, whilst also providing sufficient material for other characterization techniques to allow property correlation. One such method involved the use of solid state, proton-enhanced, magic-angle-spinning \(^{13}\text{C} \) NMR—both to characterize the material and perform relaxation experiments on the solid polymer. It was found that, surprisingly, these microscopic, molecular mobilities often correlated well with bulk mechanical properties. A pulse sequence developed in this laboratory was applied to these systems to qualitatively determine the nature and relative amounts of different types of unsaturation in these systems, confirming the inhomogeneous nature of the cured resin. A Monte Carlo computer model which simulated curing of tetrafunctional units on a lattice yielded numerical results describing remaining unsaturation which compared favourably with those obtained experimentally by the pulse sequence above. It also proved useful in providing qualitative insights into the nature of dimethacrylate polymerization.

A tracer method developed in this work used a standard, high resolution NMR spectrometer to quantify the remaining mobilities of unsaturated units, providing information on the homogeneity and free volume of the curing systems.

Members of the homologous poly (ethylene glycol) dimethacrylate series were tested for a variety of properties including mobility (by solid state NMR and torsion pendulum) and also by a variety of fracture techniques. It was found that whilst the ethylene glycol chain flexibility largely determined properties such as \(T_g \) and Young's Modulus, fracture results were influenced by the morphology of the system. The shorter
monomers gave the lowest ultimate cure and largest pools of remaining unsaturation (and hence inhomogeneity).

The inhomogeneous nature of the fully cured homopolymers was also examined and quantified by observing the rate and quantity of solvent absorption. The diffusion process proved to be multi-stage, in agreement with the polymer morphology proposed. The dependence of dynamic mechanical properties on the amount of solvent absorbed gave information on polymer-polymer and polymer-solvent bonds. Sorption sites were examined more directly with a wet deuterio-PMMA sample.

Copolymerization of various mono- and dimethacrylates provided a further technique to vary macromolecular mobility and observe the concomitant change in polymer properties.