A STUDY OF FLOWER INITIATION IN APPLE
WITH PARTICULAR REFERENCE TO THE ROLE OF LEAVES

Gordon R. Edwards, B. Ag. Sc. (Adel.) M.S. (Calif.)

Department of Plant Physiology
Waite Agricultural Research Institute
University of Adelaide
South Australia

Thesis submitted for the Degree of
Doctor of Philosophy
1969
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>iv.</td>
</tr>
<tr>
<td>STATEMENT</td>
<td>v1.</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v1i.</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>v2.</td>
</tr>
<tr>
<td>The annual growth cycle of apple in temperate climates</td>
<td>v2.</td>
</tr>
<tr>
<td>PREVIOUS WORK ON FLOWER INITIATION IN APPLES</td>
<td>v4.</td>
</tr>
<tr>
<td>The Extension Effect</td>
<td>v5.</td>
</tr>
<tr>
<td>The Root Effect</td>
<td>v7.</td>
</tr>
<tr>
<td>The Fruit Effect</td>
<td>v8.</td>
</tr>
<tr>
<td>The Leaf Effect</td>
<td>v10.</td>
</tr>
<tr>
<td>The Chemical Control of Flower Initiation in Apples</td>
<td>v14.</td>
</tr>
<tr>
<td>C/Y Ratio</td>
<td>v16.</td>
</tr>
<tr>
<td>Nitrogenous Compounds</td>
<td>v18.</td>
</tr>
<tr>
<td>Exogenous Growth Regulators</td>
<td>v20.</td>
</tr>
<tr>
<td>Endogenous Growth Regulators</td>
<td>v23.</td>
</tr>
<tr>
<td>Summary</td>
<td>v26.</td>
</tr>
<tr>
<td>GENERAL METHODS</td>
<td>v33.</td>
</tr>
<tr>
<td>REPRESENTATION AND RESULTS</td>
<td>v33.</td>
</tr>
<tr>
<td>1. WHOLE PLANT FACTORS AFFECTING SHOOT ELONGATION, LEAF EMERGENCE, AND FLOWER INITIATION</td>
<td></td>
</tr>
<tr>
<td>1. Root Volumes</td>
<td>v36.</td>
</tr>
<tr>
<td>2. Rootstocks</td>
<td>v50.</td>
</tr>
<tr>
<td>3. The Interaction of Rootstock and Root Volumes</td>
<td>v72.</td>
</tr>
<tr>
<td>4. "Food" Supply per Growing Point</td>
<td>v72.</td>
</tr>
<tr>
<td>a. Winter Heat Treatment</td>
<td>v75.</td>
</tr>
<tr>
<td>b. Number of Growing Points</td>
<td>v81.</td>
</tr>
<tr>
<td>c. The Effect of Gibberellic Acid</td>
<td>v87.</td>
</tr>
</tbody>
</table>
II. THE EFFECT OF FRUITS ON LEAF GROWTH AND FLOWER INITIATION

1. Leaf Development on Fructing, Deblossomed and Vegetative Spurs
2. The Effect of Crop Load on Whole Tree Leaf Area
3. The Effect of Flower Removal on Leaf Growth and Flower Initiation
4. Time and Level of Flower and Fruit Removal
5. The Chemical Nature of the Fruit Effect on Flower Initiation
 a. Organic Nutrients
 b. Growth Regulators

General Discussion and Conclusions on the Fruit Effect

III. THE EFFECT OF LEAVES ON LEAF GROWTH AND FLOWER INITIATION

1. The Effect of Leaf Removal on Flower Initiation
2. The Chemical Nature of the Leaf Effect on Flower Initiation
 a. Organic Nutrients
 b. Growth Regulators

General Discussion and Conclusions on the Leaf Effect

IV. FACTORS AFFECTING THE EMERGENCE OF LEAVES AFTER DEPILATION

1. The Effect of Age and Position of Leaves Subtending the Apex
2. The Effect of Chemicals on Leaf Growth Following Depilation
 a. Organic Nutrients
 b. Growth Regulators
3. The Interaction of Leaf and Fruit Effects on Leaf Growth
 a. First Experiment
 b. Second Experiment

General Discussion and Conclusions on Leaf Growth in vivo
V. FACTORS AFFECTING LEAF EXPANSION IN VITRO

Materials-Methods

Results

1. Growth of Whole Leaves
2. Comparison of Leaves from Spurs and Long Shoots
3. Growth of Apple Leaf Discs
4. Comparison of Disc Growth in Vitro and in Vivo
5. The Effect of Cultured Discs upon each Other
6. The Effect of Exogenous Growth Inhibitors on Apple Leaf Disc Expansion

General Discussion and Conclusions on leaf Growth in Vitro

VI. ENDENEOUS FACTORS CONTROLLING APPLE LEAF EXPANSION

1. Development of a Biosynthetic
2. Comparison of Biosynthesis and Extraction Procedures
3. Comparison of Leaves
4. The Chemical Nature of the Inhibitor in Apple Leaves
 a. Abscisic acid
 b. Phloridzin
 c. Floretic acid

General Discussion and Conclusions on Endogenous Control of Leaf Growth and Flowering

GENERAL DISCUSSION AND CONCLUSIONS

Flower Initiation in Apple
Aberrant Flowers
The Flowering Process in Plants in General
The Photoperiodic Classification of Plants
'Trigger'
Future Work
Final Comment

LITERATURE CITED

APPENDIX

The growth of apple leaf discs.
SUMMARY

Several factors correlated with flower initiation in apple were examined.

Dwarfing rootstock and root restriction reduced elongation growth and promoted flower initiation, the differences between rootstocks being reduced by root restriction. However, elongation growth was not invariably inversely correlated with flower initiation, suggesting the two processes may be independently controlled. It is proposed that elongation is regulated by the supply of factor(s) either from reserves or developing roots.

As fruit number increased on whole trees, branches or individual spurs, there was a corresponding reduction in leaf area and/or number, and flower initiation. Sporadic increases in flower initiation, in the presence of fruit, in response to injected organic nutrients suggested that the fruit effect may result from competition between fruit growth and leaf growth for nutritional factors in the first few weeks of the growth cycle. The possibility of hormonal control of nutrient utilization is not dismissed however.

A potent positive effect of leaves on flower initiation was confirmed and selected as the most direct influence for further investigation. The leaf effect on flower initiation very closely paralleled the inhibitory effect of leaves on leaf primordium development. An hypothesis was developed that the leaves subtending an apex promote flower initiation by inhibiting the development and expansion
of leaf primordia within the apex.

Culture of apple leaf tissue _in vitro_ was developed with the dual objective of examining the effect of chemicals on leaf growth and the bioassay of leaf extracts.

A search for endogenous regulators of leaf expansion revealed that conventional extraction and purification procedures produce artefacts from apple tissue rendering bioassay results meaningless.

By circumventing these problems, it was established that mature apple leaves contain one compound which opposes gibberellin-stimulated processes, including apple leaf expansion and the level of this compound correlates with the incidence of flower initiation.

The compound is tentatively identified as phloretic acid.

An explanation of flower initiation in apple is proposed which invokes the inhibition of leaf primordium development by a leaf-produced regulator of the type isolated, in the presence of continued meristematic activity of the apex. This proposal is discussed in relation to current concepts of the physiology of flowering in photo-period-sensitive plants.