THE ISOLATION AND CHARACTERIZATION
OF CHICKEN HISTONE GENES

A thesis submitted to the
University of Adelaide,
for the degree of Doctor of Philosophy

by

RICHARD PAUL HARVEY, B.Sc.(Hons.)

Department of Biochemistry,
University of Adelaide,
South Australia.

June, 1982.
SUMMARY

THE ISOLATION AND CHARACTERIZATION OF CHICKEN HISTONE GENES

1. The work in this thesis is directed towards an understanding of the structure and the control of eukaryote genes. In particular, it describes aspects of the chicken histone gene system.

 The histone gene system although complex, offers several relevant pursuits in the study of gene expression. The genes are reiterated, and both protein and DNA sequences have been shown to be highly conserved. The different histone types are coordinately expressed. The existence of cell-cycle and developmentally regulated variant sub-types, argues for nucleosomal heterogeneity and a role for histones in differential chromatin structure and perhaps control of gene expression. Questions relating to co-ordinate gene expression, gene evolution and the influence of chromatin architecture on gene control may therefore be addressed through a detailed analysis of histone genes.

2. A cDNA probe was prepared from mRNA derived from 5-day chick embryos and assessed for its usefulness as a vertebrate histone gene probe. This probe was used to screen a chicken recombinant genomic DNA library. Positive plaques were screened with a "negative" probe containing globin, ribosomal and 4S RNA sequences to eliminate recombinants selected with known contaminants of the cDNA probe. After plaque purification, there were four possible histone gene containing clones.
3. One recombinant (λ7.4; λCH-01) was chosen for further analysis. This clone was shown to contain histone genes on the basis of three criteria: used as probe, λCH-01 could detect histone genes in total sea urchin DNA; λCH-01 cross-hybridized with a sea urchin histone gene recombinant, λ55; shotgun DNA sequencing revealed histone H2A gene sequences within a coding domain of λCH-01.

4. The organization of the genes within λCH-01 was determined using homologous and cross-species gene-specific DNA probes. Genes detected with embryo cDNA which did not hybridize with the gene-specific probes available were identified by DNA sequencing. The overall arrangement of histone genes within λCH-01 was distinctly disordered.

5. Another recombinant (λ1-6; λCH-02) was also shown to contain histone genes and the gene arrangement was determined. A disordered situation was also found for this clone.

6. Southern blotting analysis was performed to confirm the observations of "disordered arrangement" of chicken histone genes. No evidence for a conserved repeating cluster of histone genes was obtained from Southern blots of chicken DNA.

7. To examine the microstructure of chicken histone genes, two H2B genes were completely sequenced. The two genes coded for the same H2B protein sub-type yet were divergent.
in nucleic acid sequences outside the protein coding portion. The implication to the evolution of histone genes is discussed.

A sequence of 9 bps was found in the 5′-region of both H2B genes which is conserved in all histone H2B genes that have been sequenced. This sequence is therefore implicated in the control of transcription of these H2B genes.

Other flanking sequences common to histone and other eukaryote genes were recognized, and their presence is discussed.

8. Based on the observations made on chicken histone genes, a proposal is put forward to explain the evolution of histone genes from a highly ordered to a considerably disordered state.
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT</td>
<td>(i)</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>(ii)</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>(iii)</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Introduction ... 1

1.2 The variable gene activity theory of cell differentiation ... 2

1.3 Determination .. 4
 1.3.1 Accumulative commitment 4
 1.3.2 Cytoplasmic localization 6
 1.3.3 Intercellular interactions 7
 1.3.4 Extracellular interactions 9
 1.3.5 Nuclear events ... 11

1.4 Differentiation ... 13
 1.4.1 Evidence for transcriptional control 14
 1.4.2 Gene amplification ... 16
 1.4.3 Gene rearrangement ... 17
 1.4.4 Movable genetic elements 19
 1.4.5 Post-transcriptional control 20

1.5 Levels of transcriptional control 21
 1.5.1 The Britten and Davidson Model of gene control 22
 1.5.2 Intervening sequences ... 23
 1.5.3 Pseudogenes ... 26
 1.5.4 RNA polymerases ... 26
 1.5.5 Hormone action .. 27
 1.5.6 Phasing of nucleosomes 29
 1.5.7 DNase sensitivity of active genes 30
 1.5.8 DNA Methylation .. 30
 1.5.9 Eukaryotic promoters: polymeraseII genes 31
 1.5.10 The extent of promoter sequences 32
 1.5.11 Eukaryote promoters - polymeraseIII genes 33
1.6 The Histone Gene System ... 34
 1.6.1 The Histone Proteins ... 34
 1.6.2 Histone Modifications 34
 1.6.3 Primary structure subtypes 36
 1.6.4 Histone mRNA .. 37
 1.6.5 The Histone Genes ... 39

1.7 Aims of the Project .. 44

CHAPTER 2: MATERIALS AND METHODS

2.1 Materials ... 46

2.2 Methods ... 47
 2.2.1 Preparation of RNA .. 47
 2.2.2 Restriction enzyme digestion and analysis of DNA 49
 2.2.3 In vitro synthesis of labelled DNA 51
 2.2.4 Subcloning of DNA fragments 53
 2.2.5 Large-scale preparation of recombinant plasmid DNA 54
 2.2.6 Isolation of clones from a recombinant gene library plating and screening (Benton and Davis, 1977) 57
 2.2.7 Gilbert and Maxam DNA sequencing procedures 59

CHAPTER 3: APPROACHES TO THE ISOLATION OF CHICKEN HISTONE GENES - SELECTION OF RECOMBINANTS

3.1 Introduction .. 62

3.2 Results ... 65
 3.2.1 Preparation of chick embryo RNA 65
 3.2.2 Synthesis and use of 5 day embryo 7-11S cDNA 68
 3.2.3 Primary selection of recombinants 70
 3.2.4 Negative screening and plaque purification 72

CHAPTER 4: IDENTIFICATION OF A CHICKEN HISTONE GENE RECOMBINANT

4.1 Introduction .. 75
4.2 Results .. 75
 4.2.1 Subcloning λ55 insert into pBR322 75
 4.2.2 Identification of coding regions in λ7.4 76
 4.2.3 Hybridization of λ7.4 probes to genomic DNA 77
 4.2.4 Shotgun sequencing to identify histone genes 80

4.3 Discussion ... 82

CHAPTER 5: THE CODING REGIONS OF λCH-01

5.1 Introduction .. 85

5.2 Results .. 86
 5.2.1 Location of the H2A gene in the 3.3 Kb coding domain 86
 5.2.2 Other coding regions within pCH3.3E 86
 5.2.3 The orientation of the 3.3 Kb coding domain within λCH-01 88
 5.2.4 The coding regions of the 3.75 Kb coding domain 89
 5.2.5 The orientation of genes within λCH-01 90

5.3 Discussion ... 90

CHAPTER 6: THE CODING REGIONS OF λCH-02

6.1 Introduction .. 91

6.2 Results .. 91
 6.2.1 The coding domains of λCH-02 91
 6.2.2 The coding potential of λCH-02 92
 6.2.3 The H3 coding domain of λCH-02 93
 6.2.4 The H2B coding domain of λCH-02 95
 6.2.5 The arrangement of genes in λCH-02 97

6.3 Discussion ... 98

CHAPTER 7: SOUTHERN ANALYSIS OF CHICKEN DNA

7.1 Introduction .. 101

7.2 Results .. 101

7.3 Discussion ... 102
CHAPTER 8: THE MICROSTRUCTURE OF CHICKEN

HISTONE GENES

8.1 Introduction 105
8.2 Results 105
 8.2.1 Sequencing procedures using the chemical degradation method 105
 8.2.2 The H2B gene of pCH3.3E 111
 8.2.3 The 5'-leader region of the pCH3.3E H2A gene 114
 8.2.4 DNA sequencing procedures using the enzymatic chain termination method 115
 8.2.5 The H2B gene of pCH4.6E 118
8.3 Discussion 121

CHAPTER 9: FINAL DISCUSSION

9.1 Introduction 131
9.2 Chicken histone genes 132
9.3 Histone variant genes 132
9.4 Chicken variant-histone genes 134
9.5 The evolution of "early" histone genes 136
 9.5.1 Homogenization of reiterated genes 136
 9.5.2 Histone gene number 138
 9.5.3 Histone gene organization and evolution 140

POSTSCRIPT 143

BIBLIOGRAPHY 146