A THERMODYNAMIC AND KINETIC APPROACH

TO

DECOMPRESSION SICKNESS

by

Senior Lecturer in Thermodynamics, Department of Chemical Engineering, The University of Adelaide.

A thesis
Submitted for the Degree of Doctor of Philosophy
in the Faculty of Engineering
of the University of Adelaide.

October, 1966.
TABLE OF CONTENTS

Summary
List of Symbols

Chapter

1. INTRODUCTION
 1.1 Perspective.
 1.2 Manifestations of decompression sickness.
 1.3 Factors influencing susceptibility of individuals
 1.4 External parameters determining susceptibility
 1.5 Preventive measures
 1.6 Critical review of theories

2. OUTLINE OF THE PROJECT
 2.1 The object
 2.2 Preliminary calculations
 2.3 The vital issues

3. THE SITE OF BUBBLES PROVOKING MARGINAL SYMPTOMS
 3.1 Quantitative decisions
 3.2 The number of tissue types invoked
 3.3 Intra - vs. extravascular sites

4. MECHANISM OF DEVELOPING SYMPTOMS
 4.1 The marginal condition
 4.2 Suspended transformation in vitro
 4.3 Cavitation in vivo
 4.4 Coalescence
 4.5 The worst possible case

5. TRANSPORT
 5.1 Gas distribution
 5.2 Diffusion vs. blood perfusion
 5.3 Diffusion coefficients
 5.4 Derivation of a general model
 5.5 Model relevant to decompression sickness
 5.6 The inherent unsaturation
 5.7 Transport following decompression
 5.8 Prediction of marginal symptoms
 5.9 Decompression optimisation
6. EXPERIMENTAL

6.1 Perspective
6.2 Cavitation at liquid-liquid interfaces
6.3 Transport
6.4 The inherent unsaturation
6.5 The thermal analogue
6.6 The pneumatic analogue
6.7 Field work
6.8 Decompression optimisation tested in vivo.

7. THE HYPOTHESIS

7.1 General
7.2 Salient features

8. ASSESSMENT OF THE HYPOTHESIS

8.1 Qualitative assessment
8.2 Quantitative correlations independent of time
8.3 Quantitative analyses involving time
8.4 Analyses of no-stage dives
8.5 Analyses of dives with staging
8.6 Fundamental interpretation of constants

9. DISCUSSION

9.1 The controversial issues
9.2 The number of tissue types invoked
9.3 Nucleation
9.4 The driving force for inert gas elimination
9.5 The transport model
9.6 Other kinetic factors
9.7 Correlation of practical data
9.8 Fundamental interpretation
9.9 Conclusions

10. APPENDICES AND BIBLIOGRAPHY

I. Okinawan dives
II. Transient diffusion in perfect geometric shapes
III. Additional facets of the perfusion vs. diffusion controversy
IV. Transient uptake by the linear compartmental model
V. Axial diffusion or conduction in a finite hollow cylinder.

Bibliography
Summary

A THERMODYNAMIC AND KINETIC APPROACH TO DECOMPRESSION SICKNESS

An hypothesis has been developed to explain the mechanism and kinetics of the occurrence of marginal symptoms of decompression sickness. The approach is essentially quantitative, all expressions being derived from fundamental physical and physiological parameters.

The hypothesis attempts to offer a more comprehensive mechanism for processes leading to the onset of pain than do existing theories. It deviates widely from the latter on several major issues by including postulations of:

1. Random nucleation for gas phase separation in tissue.
 This is adopted in preference to the concept of a metastable limit to the supersaturation of tissue by gases which is effectively implied by conventional methods of calculation. Experimental evidence is provided for the random nature of cavitation at liquid-liquid interfaces.

2. Tissue as a two-phase system of irregular internal boundaries. This has provided a satisfactory transport model for describing the transient uptake of gases which is consistent with histological considerations. Data for assessment has been obtained experimentally from the exchange of inert substances in the same tissue both with and without circulation. The relevant model for predicting the occurrence of symptoms is taken as the 'worst possible case'. This refers to considerations of both the random geometry of tissue and the statistical thermodynamics of phase separation.

3. Diffusion as the rate-limiting process in this particular 'worst possible' case.

4. The driving force for inert gas elimination following phase separation to be an 'inherent unsaturation' arising in tissue by virtue of metabolism and the physico-chemical properties of blood.
Experimental evidence is provided for the existence of this 'inherent unsaturation', and its predicted tendency to increase with either oxygen enrichment of inhaled gas or with increased pressure. The latter is the chief source of deviation from existing predictions of the optimal decompression format. Much deeper staging of a diver is suggested. This is shown to be consistent with the purely empirical format devised by pearl divers operating in Australian coastal waters.

The same expressions provide a better quantitative correlation of fifteen different sets of published practical data than do the existing theories. Data analysed include aerial decompressions, repetitive dives, and dives where there is oxygen enrichment, helium inhalation, titrated staging, no staging, working conditions, resting conditions, an effectively infinite exposure, etc.

The hypothesis also appears to be qualitatively more consistent with some twenty-three essentially different aspects of decompression sickness.

A pneumatic analogue has been devised to analyse dives according to the hypothesis. It can simulate radial diffusion and can automatically account for the effects of a phase change upon inert gas transport. Excessive mathematical complexity has been similarly avoided by using a thermal analogue to predict the optimal deployment of decompression time.

These optimisations have shown a saving of at least 35% in the decompression time for equal safety following a dive of 40 minutes at 150 feet, relative to standard tables tested concurrently in vivo. These comparative trials offer the strongest support for the reality of the mathematical expression and synthesis of the hypothesis.