THE KINETICS OF THE RENATURATION OF DEOXYRIBONUCLEIC ACID
DENATURED IN THE PRESENCE OF COPPER(II) IONS

Lynette Ruth Holman (nee Martin),
B.Sc. Hons. (Adelaide)

Department of Physical and Inorganic Chemistry,
University of Adelaide,
South Australia

A Thesis submitted for the degree of
Doctor of Philosophy

June, 1971
CONTENTS

I INTRODUCTION

II THE INTERACTION OF COPPER(II) IONS WITH DNA

1. Introduction 17

2. Interaction of Cu^{++} ions with native DNA 17
 a. Effect of Cu^{++} on the UV spectrum of native DNA 19
 b. Other techniques used to determine the site of Cu^{++} interaction with native DNA 27
 c. Proposed sites 30

3. The formation of the denatured DNA-Cu^{++} complex 33
 a. The effect of Cu^{++} concentration 34
 b. The mechanism of formation of the denatured DNA-Cu^{++} complex 37

4. The structure of the denatured DNA-Cu^{++} complex 39
 a. The site of interaction: Mononucleotides 40
 b. The site of interaction: Polynucleotides 45
 c. The site of interaction: DNA 49
 d. The conformation of the strands 50

5. The renaturation of the denatured DNA-Cu^{++} complex 53
 a. Comparison with renaturation of DNA in the absence of Cu^{++} 55
 b. Hypotheses to explain the renaturability 57

References 60
III THE RENATURATION OF THE DENATURED DNA–Cu++ COMPLEX
BY INCREASING THE IONIC STRENGTH: SPECTROPHOTOMETRIC
RESULTS

1. Introduction 65
2. Experimental procedure 65
 a. Solutions 65
 b. Denaturation 66
 c. Renaturation 66
3. Renaturation in 0.15 M KNO\textsubscript{3} at 25°C 67
 a. Effect of slow cooling the denatured solution 68
 b. Kinetic analysis 68
 c. Accuracy and reproducibility 69
 d. Effect of DNA and Cu++ concentrations 76
4. Renaturation in 0.10 M KNO\textsubscript{3} at 25°C 76
5. Effect of the time of standing on the denatured DNA–Cu++ solution 77
 a. Viscosity measurements on the denatured DNA–Cu++ solution 78
6. Effect of temperature on the renaturation rate 79
 a. 35°C 79
 b. 15°C 80
 c. 5°C 80
 d. Arrhenius plot 82
7. Effect of solution viscosity on the renaturation rate 83
 a. Calculation of viscosity of sucrose solutions 84
 b. Preparation of solutions 84
 c. Results 85

References 86
IV THE RENATURATION OF THE DENATURED DNA–Cu++ COMPLEX
BY INCREASING THE IONIC STRENGTH: CHANGE IN FREE
Cu++ ION CONCENTRATION

1. Introduction 87

2. The specific cupric ion activity electrode 88
 a. The Cu++ ion activity 89
 b. Calibration of the Cu++ ion electrode 90

3. Experimental procedure 92
 a. Measurement of potential 93
 b. Denaturation and renaturation 94

4. The renaturation as followed by the Cu++ ion electrode 95
 a. Relative positions of the renaturation curves 96
 b. Reproducibility 97
 c. The spectrophotometrically observed reaction
 under the same conditions 98
 d. Calculation of the total EMF change on
 renaturation 99
 e. Comparison between the renaturation data
 from the Cu++ ion electrode and the spectrophotometer 103

5. The renaturation in high viscosity solution as
 followed by the Cu++ ion electrode 104

References 106

V THE RENATURATION OF THE DENATURED DNA–Cu++ COMPLEX
BY ETHYLENE DIAMINE

1. Introduction 107

2. Experimental procedure 109
3. Renaturation at an ethylene diamine/Cu\(^{++}\) ratio of 1:1
 a. Kinetic analysis
 b. First order rate constants
 c. Correction for the absorbance of the Cu\(^{++}\)-EDA complex

4. Effect of the EDA/Cu\(^{++}\) ratio on the renaturation rate

5. Reactions followed by the stopped-flow rapid reaction apparatus
 a. Results
 b. Analysis of the data

6. Effect of solution viscosity on the renaturation rate

Reference

VI GENERAL DISCUSSION AND CONCLUSIONS

1. Reaction scheme for the renaturation brought about by increasing the ionic strength

2. Reaction scheme for the renaturation brought about by ethylene diamine

3. The rate-determining step

4. The viscosity dependence

5. The time dependence

6. The renaturation brought about by ethylene diamine
VII MATERIALS AND METHODS

1. Cleaning of apparatus 142

2. Preparation of solutions 142
 a. DNA solutions 142
 b. Cu(NO₃)₂ solutions 143
 c. KNO₃ solutions 144
 d. Other solutions 144

3. Spectrophotometer 144
 a. Description 144
 b. Calibration 146
 c. Use of the instrument for renaturation reactions 148

4. Procedure for renaturation by increasing the ionic strength 149
 a. Denaturation 150
 b. Renaturation 151
 c. Experiments at 5°C and 15°C 151

5. The Cu²⁺ ion electrode measurements 152

6. The stopped-flow rapid reaction apparatus 153
 a. Optical and recording systems 153
 b. Operating procedure 154

References 155
SUMMARY

The transition between the double helix and the random coil configuration of deoxyribonucleic acid (DNA) is of great biological significance and in spite of considerable study over recent years, the physical chemistry of this transition is not well understood. The helix to coil transition, termed denaturation and its reverse process, renaturation, can be observed in aqueous solutions of DNA under a number of experimental conditions, but in this study, the particular case of the presence of Cu(II) ions was employed. It has been previously shown that Cu\(^{++}\) ions cause the helix-coil transition of DNA to occur at a much lower temperature than in their absence. DNA denatured under these conditions can be renatured on dissociation of the Cu\(^{++}\)-DNA complex by increasing the ionic strength of the solution or by adding a Cu\(^{++}\)-complexing agent. This renaturation reaction, proceeding rapidly to completion under conditions unfavourable for the renaturation observed in the absence of Cu\(^{++}\) ions, appeared likely to give valuable information concerning the helix-coil transition of DNA.

The rate of the renaturation brought about by increasing the ionic strength and followed by the change in UV absorption was found to depend on the ionic strength, the Cu\(^{++}\) concentration, the temperature, and on the time elapsing between denaturation and the commencement of renaturation. The data could be fitted to first order kinetics for a considerable extent of the reaction. It was found that the rate constant decreased markedly as the bulk viscosity of the solution was increased.
The renaturation was also followed by measuring the rate of increase in free Cu$^{++}$ ion concentration using a specific cupric ion activity electrode. The rate determined by this method agreed well with that obtained by spectrophotometry.

Ethylene diamine, a complexing agent for Cu$^{++}$ ions, was also used to bring about the renaturation. In this case, the reaction was observed to obey first order kinetics, to be time dependent, but to be independent of the solution viscosity.

The interpretation of these results in terms of the interaction between Cu$^{++}$ and DNA and the possible mechanism for the renaturation reaction is discussed.