THE UNIVERSITY OF ADELAIDE

FACULTY OF AGRICULTURAL SCIENCE

WHEAT : BARLEY HYBRIDIZATION AND THE PRODUCTION AND
CHARACTERIZATION OF ADDITION LINES

by

A.K.M. Rafiqul Islam
B.Sc., M.Ag. (Dacca)

Thesis submitted for the degree of Doctor of Philosophy

Department of Agronomy
Waite Agricultural Research Institute
Glen Osmond, South Australia
July, 1980

Awarded 5th Dec 1980
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Statement of Originality</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Summary</td>
<td>v</td>
</tr>
</tbody>
</table>

CHAPTER 1: GENERAL INTRODUCTION | 1 |

CHAPTER 2: LITERATURE REVIEW | 5 |

2.1 Taxonomic relationships in the Triticeae | 5 |

2.2 Broad genetic relationships and cross compatibilities in the Triticeae | 8 |

2.3 Wide crosses involving *Hordeum* | 11 |

a) Intergeneric crosses | 11 |

b) Interspecific crosses | 14 |

2.4 Wide crosses involving *Triticum* | 17 |

a) *Triticum* x *Secale* crosses | 17 |

b) *Triticum* x *Aegilops* crosses | 20 |

c) *Triticum* x *Agropyron* crosses | 24 |

d) *Triticum* x *Haynaldia* crosses | 26 |

e) *Triticum* x *Elymus* crosses | 27 |

2.5 Hybridization of *Hordeum* with *Triticum* | 28 |

2.6 Addition of alien chromosomes to hexaploid wheat | 38 |

CHAPTER 3: ADDITION OF INDIVIDUAL BARLEY CHROMOSOMES TO WHEAT | 44 |

Introduction, Materials and Methods, Results, Discussion.
CHAPTER 4: ISOLATION AND CHARACTERIZATION OF EUPLASMIC WHEAT-BARLEY CHROMOSOME ADDITION LINES
Summary, Introduction, Materials and Methods, Results, Discussion.

CHAPTER 5: MEIOTIC RESTITUTION IN WHEAT-BARLEY HYBRIDS
Abstract, Introduction, Materials and Methods, Results, Discussion.

CHAPTER 6: PRODUCTION OF DISOMIC WHEAT-BARLEY CHROMOSOME ADDITION LINES USING HORDEUM BULBOSUM CROSSES
Introduction, Materials and Methods, Results, Discussion.

CHAPTER 7: IDENTIFICATION OF WHEAT-BARLEY ADDITION LINES WITH N-BANDING OF CHROMOSOMES
Abstract, Introduction, Materials and Methods, Results, Discussion.

CHAPTER 8: CYTOLOGICAL ABNORMALITIES IN WHEAT-BARLEY HYBRIDS AND THEIR DERIVATIVES
Abstract, Introduction, Materials and Methods, Results, Discussion.

CHAPTER 9: GENERAL DISCUSSION

CHAPTER 10: LITERATURE CITED
SUMMARY

This thesis reports work on wheat:barley hybridization and the subsequent isolation and characterization of addition lines having individual pairs of barley chromosomes added to the chromosome complement of hexaploid wheat.

It was found that wheat and barley can be hybridized without difficulty when barley is used as the female parent and self-sterile \(F_1 \) hybrids with 28 somatic chromosomes were obtained using \textit{in vitro} culture of embryos. Although no fertile sectors were produced after treatment of the \(F_1 \) hybrids with colchicine, some backcross (BC\(_1\)) seeds were obtained after pollinating them with wheat pollen. The majority of the backcross progeny were 49-chromosome heptaploids which evidently originated from fertilization of egg cells which had restituted at meiosis. Putative monosomic addition lines were isolated in the second backcross (BC\(_2\)) progeny of the self-sterile BC\(_1\) plants. However, these plants were all self-sterile and exhibited pistillody due to an unfavourable interaction between barley cytoplasm and the wheat genome.

To overcome this problem of pistillody the more difficult reciprocal cross was attempted and although 20 hybrids were obtained in 8133 crosses, only one of them possessed the expected complement of 28 chromosomes which exhibited 28' at meiosis. The others possessed chromosome numbers varying from 21 to 36 in different plants. Presumably these abnormal plants originated from disruption of normal spindle activity during early divisions of the zygote. The 28-chromosome normal wheat x barley hybrid behaved similarly to the reciprocal hybrids in the BC\(_1\) and BC\(_2\) generations, except there was no evidence of pistillody and most of the BC\(_2\) plants were self-fertile with this
cross. Five different monosomic addition lines were detected among
BC₂ progeny and all of these plants were self-fertile. Disomic
addition lines were isolated from among the progeny of these
43-chromosome monosomic additions and some other 44-chromosome double
monosomic additions. Altogether five disomic and six ditelosomic
additions were obtained from the progeny of these plants. Another
disomic and a ditelosomic addition were obtained separately from
three unusual hybrids exhibiting 22', 21' + 1" and 25' + 1'". at meiosis.

In this work, a new method for producing disomic addition lines
from monosomic additions, was developed using Hordeum bulbosum
crosses. The monosomics were crossed with H. bulbosum and 22-
chromosome aneuploids were selected from among the progeny and
disomic additions were then obtained directly from them by colchicine
doubling.

The six disomic addition lines were initially designated A to F
according to their sequence of isolation. Later N-banding was
applied to barley chromosomes and it was found that each chromosome
has a distinctive pattern, and furthermore, these patterns are all
different from those exhibited by wheat chromosomes. Thus by
studying the N-banding pattern of the chromosomes in the addition
lines it became possible to determine which standard barley chromosome
was present in each line. It was found that addition line A, B, C, D, E, F
possesses standard barley chromosomes 4, 7, 6, 1, 2 and 3 respectively.

The remaining addition line (5) could not be obtained in disomic
form, because chromosome 5 of barley when added to wheat results in
cytological disturbances such as mosaic pollen mother cells and multi-
pore pollen grains, and lines carrying it are self-sterile. The
isolation of a fertile line carrying a translocation chromosome with
cross. Five different monosomic addition lines were detected among BC₂ progeny and all of these plants were self-fertile. Disomic addition lines were isolated from among the progeny of these 43-chromosome monosomic additions and some other 44-chromosome double monosomic additions. Altogether five disomic and six ditelosomic additions were obtained from the progeny of these plants. Another disomic and a ditelosomic addition were obtained separately from three unusual hybrids exhibiting 22', 21' + 1'' and 25' + 1''', at meiosis.

In this work, a new method for producing disomic addition lines from monosomic additions, was developed using Hordeum bulbosum crosses. The monosomics were crossed with H. bulbosum and 22-chromosome aneuploids were selected from among the progeny and disomic additions were then obtained directly from them by colchicine doubling.

The six disomic addition lines were initially designated A to F according to their sequence of isolation. Later N-banding was applied to barley chromosomes and it was found that each chromosome has a distinctive pattern, and furthermore, these patterns are all different from those exhibited by wheat chromosomes. Thus by studying the N-banding pattern of the chromosomes in the addition lines it became possible to determine which standard barley chromosome was present in each line. It was found that addition line A,B,C,D,E,F possesses standard barley chromosomes 4,7,6,1,2 and 3 respectively.

The remaining addition line (S) could not be obtained in disomic form, because chromosome 5 of barley when added to wheat results in cytological disturbances such as mosaic pollen mother cells and multipore pollen grains, and lines carrying it are self-sterile. The isolation of a fertile line carrying a translocation chromosome with
the short arm of chromosome 5 of barley joined to an unidentified arm of a wheat chromosome, showed that the sterility factors must be located on the long arm of chromosome 5.

It is evident that six out of the seven possible disomic additions and seven out of the 14 possible ditelosomic additions have been obtained. These addition lines will be useful in assigning genes controlling barley characters to particular barley chromosomes and also in determining the genetic similarity of individual barley chromosomes with wheat chromosomes. Furthermore, such addition lines could serve as the source material for transferring desirable characters from barley to wheat.