A STUDY OF THE CHEMICAL AND PHYSICAL PROPERTIES
OF WHEAT ENDOSPERM PROTEINS

A.C. Jennings, B.Sc.(Hons.)(Sydney), M.Sc. (Adelaide)

Department of Agricultural Biochemistry and Soil Science,
Waite Agricultural Research Institute
University of Adelaide

A thesis submitted to the University of Adelaide
in fulfilment of the requirements
for the degree of
Doctor of Philosophy

May, 1967
TABLE OF CONTENTS

Summary vii

Statements x

Acknowledgements xi

LITERATURE REVIEW

Proteins of Wheat Flour

(i) Classification, fractionation and properties 1

(ii) Disulphide bonds 7

(iii) Alkylation and carbamylation 12

(iv) Recent fractionations 15

(v) Electrophoretic separations in gels 18

(vi) Characterisation by miscellaneous techniques 20

(vii) Molecular interactions and rheological behaviour 21

Urea and Protein Denaturation 28

Protein Structure 29

Amino Acid Composition and the Configuration of Proteins 40

Controlled Chemical Degradation of Proteins 45

Disaggregation of Protein Complexes 50

EXPERIMENTAL SECTION 53

1. Materials and Methods 53

(i) Materials 53

(ii) Methods 54

(a) Separation and treatment of the morphological fractions of grain 54

(b) Preparation of homogenates 55
(c) Dispersal of aggregates 55
(d) Chemical methods of analysis 55

2. The Development and Validity of Procedures for the Extraction, Recovery and Fractionation of Wheat Flour and Endosperm Proteins (Tables 1-4) 57

A. Quantitative Procedures 57
(i) Extraction and recovery of protein 57
(ii) Factors affecting the recovery of nitrogen in the Kjeldahl procedure 62

B. Physical Methods for the Separation of Proteins 67
(i) Gel Electrophoresis 68
(a) Acrylamide 68
(b) Starch 71
(c) Thin layer starch 73
(d) Thick Slab starch 74
(e) Buffer pH and electroosmotic water movement 76
(ii) Paper Electrophoresis 77
(iii) Paper Chromatography 79
(a) Chromatographic separation of column effluent fractions 79
(b) Chromatographic study of wheat proteins 80
(iv) Column Chromatography 83
(a) Sephadex G-200 84
(b) Sephadex G-75 85
(c) Sephadex G-25 87
(d) Cellulose 87
(v) Summary 89
3. Electrophoretic Separation of Wheat Flour Proteins in Gels
 (i) Extracts and gels studied
 (ii) Summary

4. The Controlled Chemical Degradation and Modification of Wheat Flour Proteins
 (Schemes 1 and 2; Tables 5 to 18; Figure 1)
 (i) Effect of Oxidative Sulphitolyis
 (ii) Treatment with Cyanogen Bromide followed by Oxidative Sulphitolyis
 (a) Procedure
 (b) Control Extraction
 (c) Results
 (iii) Hydrolysis with Dilute Acid
 (a) Rate of Release of Amino Acids
 (b) Preparative Hydrolysis
 (c) Fractionation and Chromatography of Hydrolysates
 (iv) Summary

5. Differential Extraction of the Proteins of Wheat Flour and Developing Endosperm
 (Schemes 3 to 6; Tables 19 to 29; Figure 2)
 (i) Fractionation by Differential Centrifuging
 (ii) Fractionations Based on Differential Solubility
 (iii) The Effect of Urea on Wheat Protein Solubility
 (iv) Fractional Extraction of Proteins with Mixtures of Phenol-Acetic Acid-Water
 (v) Summary
6. Fractionation of Wheat Endosperm Proteins by Column Chromatography
 (Table 30; Figures 4 to 6)
 (i) Sephadex G-200
 (ii) Cellulose
 (iii) Summary

7. Determination of the Average Molecular Weight of Wheat Flour Proteins
 (Tables 31 to 34)
 (i) Preparation of the Extracts
 (ii) Summary

8. Ratios of Amino Acids
 (Tables 35 to 39)
 (i) Summary

DISCUSSION

Aim of Project

Experimental Approach

Effects of Chemical Modifications
 (i) Oxidative sulphotolysis
 (ii) Cyanogen bromide and oxidative sulphotolysis
 (iii) Dilute hydrochloric acid

Intermolecular Disulphide Bonds

'Protein Bodies' - in vivo and in vitro

Dissociation of Proteins
 (i) Sodium bromide and aggregation
 (ii) Effects of phenol and acetic acid

Characterisation of the 'Glutenin' Proteins
(1) Gel electrophoresis
(ii) Amino acid composition
(iii) Protein synthesis
(iv) Rates of accumulation

Amino Acid Composition and Physical Properties
Mechanisms of Aggregation
Conclusions

APPENDICES

1. Tables 1 to 3
2. Figures 1 to 10
 Supporting evidence - Addenda 1 to 5
3. Addendum 1
 Jennings, A.C. and Morton, R.K. (1963 a)
 "Changes in Carbohydrate, Protein and Non-Protein
 Nitrogenous Compounds of Developing Wheat Grain"

4. Addendum 2
 Jennings, A.C. and Morton, R.K. (1963 b)
 "Changes in Nucleic Acids and other Phosphorus-
 Containing Compounds of Developing Wheat Grain"

5. Addendum 3
 "Cytological Studies of Protein Bodies of Developing
 Wheat Endosperm"
6. Addendum 4

Jennings, A.C. and Morton, R.K. (1963 a)
"Amino Acids and Protein Synthesis in Developing Wheat Endosperm"

7. Addendum 5

Jennings, A.C. and Watt, W.B. (196-)
"Extraction of Proteins and Nucleic Acids from Plant Tissues. Isolation of Protein Fractions Containing Hydroxyproline from Broad-Bean (_Vicia Faba L._) Leaves"
Submitted to: _J.Sci.Food Agric._

BIBLIOGRAPHY
SUMMARY

Physical and chemical procedures have been used to study the proteins of wheat endosperm and flour.

The proteins were chemically modified by oxidative sulphotolysis and degraded by treatment with cyanogen bromide or by hydrolysis with dilute hydrochloric acid. The amino acid compositions of several fractions obtained in these treatments were determined.

The proteins were fractionated and characterised by physical methods. These methods included gel electrophoresis, differential extractions with various solvents, column chromatography and average molecular weight determinations.

The results of these studies were supported by a consideration of the ratios of combinations of amino acids found in various protein fractions.

The acidic and basic amino acids appear to be fairly uniformly distributed throughout the polypeptide chains. It seems unlikely that some polypeptide chains are composed predominantly of one amino acid, as the rather high levels of glutamine and proline might indicate.

The results indicate that most, or all, of the proteins found in the 'salt-soluble' and high speed supernatant fractions are storage proteins. It also appears that the proteins in the 'salt-soluble' and 'glutenin' fractions are identical or rather similar, although the
relative proportions of the individual proteins in each fraction may differ.

Two distinct groups of storage proteins appear to be synthesised by the wheat endosperm.

One group is characterised by relatively high electrophoretic mobilities in gels and contains the proteins predominantly found in the 'salt-soluble' and 'glutenin' fractions.

The other group, characterised by relatively low electrophoretic mobilities in gels, contains the proteins predominantly found in the 'gliadin' fraction.

The conclusions of earlier authors, that the synthesis of the 'gliadin' proteins is commenced at a later stage of development of the endosperm and proceeds independently of, and at a faster rate than, the synthesis of the other storage proteins, was confirmed.

The results also indicate that intermolecular disulphide bonds are not present in wheat endosperm proteins or formed during the preparation of dough. A mechanism is proposed to explain the effects of small molecules on the physical properties of doughs. This involves changes in protein conformation induced by physical or chemical interactions with compounds of low molecular weight.

The evidence suggests that the 'gliadin' proteins interact and aggregate independently of the 'glutenin'
proteins, and that intermolecular hydrogen bonds are mainly formed in these interactions. It is also suggested that the 'salt-soluble' proteins may interact specifically and stoichiometrically either with negatively charged molecules or with compounds which alter the conformation of these proteins, so that interaction and aggregation can occur, primarily through hydrophobic bond formation, to give the 'glutenin' fraction.