GIBBERELLIC ACID-INDUCED CHANGES IN THE RESPONSE OF

AVENA SATIVA STEM SEGMENTS TO TEMPERATURE

by

MANFRED JUSAITIS

B.Ag.Sci.

Department of Plant Physiology
Waite Agricultural Research Institute
University of Adelaide
South Australia

Thesis submitted for the degree
of Doctor of Philosophy
June 1978
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>xv</td>
</tr>
<tr>
<td>1. Mechanism of action of gibberellins</td>
<td></td>
</tr>
<tr>
<td>1.1 Mechanisms and modes of action</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Effects on auxin metabolism</td>
<td>1</td>
</tr>
<tr>
<td>1.3 GA-regulated enzyme activity</td>
<td></td>
</tr>
<tr>
<td>1.3.1 DNA synthesis</td>
<td>2</td>
</tr>
<tr>
<td>1.3.2 Histone binding to DNA</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3 Transcription</td>
<td>4</td>
</tr>
<tr>
<td>1.3.4 Translation</td>
<td>5</td>
</tr>
<tr>
<td>1.3.5 Inhibitory effects of GA$_3$ on enzyme activity</td>
<td>5</td>
</tr>
<tr>
<td>1.3.6 GA-mediated enzyme activation</td>
<td>7</td>
</tr>
<tr>
<td>1.3.7 Effect of GA$_3$ on enzymes of phospholipid synthesis</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Involvement of c-MMP</td>
<td>10</td>
</tr>
<tr>
<td>1.5 GA$_3$ effect on the cell wall</td>
<td>14</td>
</tr>
<tr>
<td>1.6 Time sequence studies</td>
<td>14</td>
</tr>
<tr>
<td>1.7 Effects of GA$_3$ on membranes</td>
<td>17</td>
</tr>
<tr>
<td>1.7.1 Features of hormone action in relation to a membrane mechanism</td>
<td>19</td>
</tr>
<tr>
<td>1.7.2 Effects of GA$_3$ on membrane composition</td>
<td>20</td>
</tr>
<tr>
<td>1.7.3 Effects on membrane structure</td>
<td></td>
</tr>
<tr>
<td>1.7.3.1 Effects of steroid hormones</td>
<td>23</td>
</tr>
<tr>
<td>1.7.3.2 Effects of GA$_3$ on model membranes</td>
<td>24</td>
</tr>
<tr>
<td>1.7.3.3 Effects of GA$_3$ on natural membranes</td>
<td>28</td>
</tr>
</tbody>
</table>
2. Effects of low temperature acclimatization on membrane composition
 2.1 Low temperature effects on lipid composition
 2.1.1 Mechanism of desaturation in response to low temperature
 2.2 Low temperature effects on membrane protein composition
 2.3 Low temperature effects on sterol composition of membranes
 2.4 The regulation of cellular function by temperature-induced alterations in membrane composition
 2.4.1 Regulation of membrane fluidity
 2.4.2 Regulation of permeability and barrier functions of membranes
 2.4.3 Regulation of catalytic functions of membranes

3. Phase transitions, displaced thermal responses, and gibberellic acid
 3.1 Thermal transitions in model systems
 3.2 Extrapolation from the model to the living system
 3.3 Effect of GA₃ on thermal responses of natural systems
 3.3.1 Evidence for thermal transitions in natural systems
 3.3.2 Effect of GA₃ on responses at low temperature
 3.3.2.1 Senescence, membranes and gibberellic acid
 3.3.3 GA₃ and displaced thermal responses

II. MATERIALS AND METHODS

1. Materials
 1.1 Plant material
 1.2 Chemicals and reagents
 1.3 Solvents
 1.4 Equipment

2. Methods
 2.1 Culture of plants
 2.2 Environmental control
 2.3 Chemical treatment of plants
 2.3.1 Gibberellic acid (GA₃)
 2.3.2 Sandoz 9785
2.4 Harvest of stem segments
 2.4.1 Selection of segments
 2.4.2 Cutting the segments
2.5 Culture and measurement of stem segments
 2.5.1 Preparation of GA₃-sucrose solutions
 2.5.2 Incubation in Petri dish
 2.5.3 Incubation in flask
 2.5.4 Measurement of segment growth
 2.5.5 Micro-growth measuring apparatus
 2.5.5.1 Construction
 2.5.5.2 Experimental details
 2.5.6 Cell counts of segments
 2.5.7 Preparation of cross-sections for microscopy
2.6 Lipid and sterol extraction procedure
2.7 Thin layer chromatography (T.L.C.)
 2.7.1 T.L.C. of phospholipids
 2.7.2 T.L.C. of sterols
2.8 Preparation of derivatives for Gas-liquid chromatography (G.L.C.)
 2.8.1 Fatty acid methyl esters
 2.8.2 Sterol tri-methyl silyl ethers
2.9 Gas-liquid chromatography of fatty acids
 2.9.1 Preparation and packing of the column
 2.9.2 Conditioning of the column
 2.9.3 Operating conditions
 2.9.4 Quantitation of fatty acids
2.10 G.L.C. and mass spectroscopy of sterols
2.11 Statistical treatment of data

III. RESULTS AND DISCUSSION
1. Effects of gibberellic acid and temperature on growth and lipid composition of Avena stem segments
 1.1 Lipid analysis of the node, sheath and internode portions of stem segments
 1.2 Effect of in vivo application of GA₃
1.3 The effect of GA$_3$ on segments grown in vitro
 1.3.1 Effect on growth
 1.3.2 Effect on lipid composition
1.4 Discussion

2. The influence of GA$_3$ on the growth rate of Avena stem segments at different temperatures
 2.1 The effect of GA$_3$ on the thermal response of Avena stem segment growth rate
 2.2 Discussion

3. Correlations between lipid composition and the GA$_3$-induced growth response of segments
 3.1 Control of lipid composition by growth temperature
 3.1.1 Lipid composition of segments grown at different temperatures
 3.1.2 Growth response of segments grown at different temperatures
 3.1.2.1 Effect of GA$_3$ concentration on final length of segments
 3.1.2.2 Time course of growth of segments at different incubation temperatures
 3.1.2.3 Response of segment growth rate to GA$_3$
 3.2 Alteration of lipid composition by a brief change in growth temperature
 3.2.1 Effect of temperature change on lipid composition
 3.2.2 Effect of temperature change on GA$_3$-induced growth of segments
 3.3 Alteration of 18:2/18:3 ratio by Sandoz 9785 treatment
 3.3.1 Plants grown at 10$^\circ$C
 3.3.1.1 Effect of Sandoz 9785 on lipid composition
 3.3.1.2 Effect of Sandoz 9785 on GA$_3$-induced growth of segments
 3.3.2 Plants transferred from 30$^\circ$ to 10$^\circ$C
 3.3.2.1 Effect of Sandoz 9785 on lipid composition
 3.3.2.2 Effect of Sandoz 9785 on GA$_3$-induced growth of segments
3.4 Correlations between lipid parameters and GA₃-induced growth

3.5 The effect of growth temperature on cell number in stem segments

3.6 Discussion

IV. GENERAL DISCUSSION

V. BIBLIOGRAPHY
SUMMARY

Stem segments isolated from *Avena sativa* plants, were used to explore various aspects of the mechanism and mode of action of Gibberellic acid (GA$_3$). Although prolonged treatment of oat plants with GA$_3$ produced marked changes in phospholipid and sterol composition of stem segments, these changes did not always accompany the GA$_3$-induced growth response of the segments. Treatment of stem segments with GA$_3$ for only 20 hr produced a significant growth response with little or no effect on lipid composition, suggesting that neither the mechanism nor the mode (at least in the short term) of hormone action in this system involves an alteration of lipid (membrane) composition.

A micro-growth measuring technique was used to measure the growth response of stem segments to a variety of GA$_3$ concentrations over a range of incubation temperatures. It was found that the growth rate varied with GA$_3$ concentration, temperature at which the rate was measured, and the growth temperature of the plants prior to excision of the segments. The sigmoid curves relating segment extension rates to temperature were affected by GA$_3$ such that the linear portion of the curve was shifted to higher rates as GA$_3$ concentration was increased. The results were compared with, and may be analogous to, GA$_3$-induced shifts of thermally-induced phase transitions in glucose leakage from liposomes, observed by Wood and Paleg (1974).

Stem segments taken from plants grown at different temperatures, were found to vary in their lipid composition depending on the growth temperature; as growth temperature was lowered, there was a shift towards
a greater proportion of unsaturated fatty acids. Significant increases were observed in the concentration of linolenic acid (18:3) and in the sitosterol/stigmasterol ratio as growth temperature was lowered. Growth temperature prior to excision of segments was also found to affect subsequent growth response of segments to GA$_3$. Generally, as growth temperature was lowered, segments responded less in terms of hormone-induced elongation rate or final length attained in response to GA$_3$.

The lipid composition of segments was manipulated in various ways in order to establish whether there were correlations between responsiveness of the tissue to GA$_3$ and specific lipid parameters. High correlations were obtained between growth and total phospholipid, individual phospholipids and fatty acids (except for 18:3), total saturated fatty acids, stigmasterol content, and the unsaturated/saturated fatty acid ratio. However, it was concluded that although the lipid composition, and particularly the total saturated fatty acid content, may be important contributory determinants of the GA$_3$-induced growth response in this system, they are not obligatory prerequisites, nor the only endogenous factors capable of influencing the response. The hypothesis that the membrane is the primary target for hormonal action in plants is discussed.