DIGITAL TECHNIQUES IN DELTA MODULATION

BY

CORNELIS JAH KINKERT, B.E. (Hons.)

A Thesis
Submitted to the Faculty of Engineering
of the
University of Adelaide
for the Degree of
Doctor of Philosophy

FEBRUARY 1972
INDEX

TITLE PAGE I
TABLE OF CONTENTS II
SUMMARY VIII
STATEMENT X
ACKNOWLEDGEMENT XI
LIST OF ABBREVIATIONS XII

CHAPTER 1 INTRODUCTION 1
 1.1 Code Modulation 1
 1.1.1 Pulse Code Modulation 1
 1.1.2 Differential Pulse Code Modulation 2
 1.1.3 Delta Modulation 3
 1.2 Quantization Noise 3
 1.3 Historical Review 4
 1.3.1 The Development of Delta Modulation 5
 1.3.2 Instantaneous Companding 6
 1.3.3 Syllabic Companding 8

CHAPTER 2 THE MEASUREMENT OF THE PERFORMANCE OF 11
DELTA MODULATION AND RELATED SYSTEMS 11
 2.1 Introduction 11
 2.2 Review 11
 2.3 Measurement of Signal to Quantization 14
 Noise Ratio for Random Input Signals 14
CHAPTER 3 THE DEVELOPMENT OF NONLINEAR DIGITAL

DELTA MODULATION

3.1 Introduction

3.2 Instantaneous Companding

3.2.1 Principles of Instantaneous Companding

3.2.2 Dynamic Range Considerations

3.2.3 Nonlinear Instantaneous Companding

3.2.4 Improvement of Stability

3.2.5 Error Performance

3.2.6 Summary of Companding Strategy

3.3 Optimization

3.3.1 Aims of Optimization

3.3.2 Selection of Parameters
3.3.3 Accuracy Considerations 36
3.4 Practical Realisation 39
3.4.1 Hardware 39
3.4.2 Results 40
3.5 Extensions 41
3.6 Conclusions 42

CHAPTER 4 DIGITAL SYLLABIC COMPANDED DELTA MODULATION 43

4.1 Introduction 43
4.2 Syllabic Companding 43
4.2.1 Companding with Incomplete Control 44
4.2.2 Companding with Complete Control 45
4.3 Companding with Complete Control,
Applied to Delta Modulation 46
4.3.1 Detection of Normalised Input Power 47
4.3.2 Linear Companding 48
4.3.3 Logarithmic Companding 50
4.3.4 Semilogarithmic Companding 52
4.4. Discussion of Parameters 54
4.4.1 Selecting the Companding Ratio 54
4.4.2 The Effect of Transmission Errors 55
4.4.3 Stability Considerations 58
4.5 The Design of a Digital Syllabic
Companded Delta Modulation System 59
4.5.1 Selection of Parameters 59
4.5.2 Computer Simulation 61
4.5.3 Hardware
4.6 Extension to Other Modulators
4.7 Conclusions

CHAPTER 5 COMPUTER SIMULATION
5.1 Introduction
5.2 Particular Examples of Simulation
 5.2.1 Simulation of Delta Modulation
 5.2.2 Simulation of Speech
5.3 Results

CHAPTER 6 CONCLUSIONS

APPENDIX 1 METHODS FOR EVALUATION OF THE PERFORMANCE
OF DELTA MODULATION
A1.1 Intelligibility Tests
A1.2 Equivalent White Noise Method
A1.3 Notch Filter Method
A1.4 Frequency Analysis Method
A1.5 Cancellation Method
A1.6 Intermodulation Distortion Method

APPENDIX 2 HARDWARE
A2.1 Introduction
A2.2 Measuring Equipment Hardware
A2.3 Nonlinear Digital Delta Modulation Hardware
A2.3.1 Hardware of the Modulator
A2.3.2 Demodulator Hardware
A2.4 Digital Syllabic Companded Delta Modulation
A2.4.1 Circuitry of the Modulator
A2.4.2 Circuitry of the Demodulator

APPENDIX 3 COMPUTER PROGRAMS

A3.1 Main Program
A3.2 Delta and Pulse Code Modulation Subroutines
A3.2.1 Single Integration Delta Modulation
A3.2.2 Digital Syllabic Companded Delta Modulation
A3.2.3 Nonlinear Digital Delta Modulation
A3.2.4 Digitally Syllabic Companded PCM
A3.3 Digital Filtering Subroutines
A3.3.1 Filter Testing Program
A3.3.2 Subroutines to Design the Speech Filter
A3.3.3 Speech Filter Subroutine
A3.3.4 Subroutine to Design a 4th Order Low Pass Butterworth Filter
A3.3.5 4th Order Low Pass Butterworth Filter Subroutine
A3.3.6 General Filter Design Subroutine
A3.3.7 General Filter Subroutine
A3.4 Other Subroutines

A3.4.1 Subroutine to Generate a Pseudo Random Sequence

A3.4.2 Subroutine to Calculate the Rms Power

A3.4.3 Subroutine to Calculate the Average Signal

A3.4.4 Subroutine to Calculate the Relative Occurrence of Control Words

A3.4.5 Subroutine to Calculate the Group Delay

APPENDIX 4 ASSOCIATED MATHEMATICS

A4.1 Digital Filtering Theory

A4.2 Leaky Integrator Simulation

A4.3 Delay of an RC Network

A4.4 The SNR Obtained from the Notch Filter Method when Slope Limiting Occurs

APPENDIX 5 PUBLISHED PAPERS

A5.1 Patent: A Method for Improving Modulation Efficiency

A5.2 Digital Techniques in Delta Modulation

A5.3 Measurements of Quantization Distortion for Random Inputs

REFERENCES

BIBLIOGRAPHY
SUMMARY

During the last twenty years delta modulation has received considerable attention as a simple but inefficient method of coding analogue signals into binary signals. Companding is used to improve the efficiency of the delta modulation process, but it gives added complexity to the hardware, so that a compromise is usually made between the performance and complexity of the delta modulator.

Recently, with the advent of integrated circuit (IC) technology it became apparent that firstly, the hardware was becoming cheaper and secondly, the cost of the IC was not strictly related to the complexity of the IC, but rather to the number of IC's made.

Because the input to the demodulator is a binary signal delta modulation is ideally suited to the use of digital techniques in the demodulation process. Further advantages of digital techniques are; stability, noise immunity, tolerance to power supply and temperature variations, a higher yield during the manufacture of the IC and the ability to reproduce exactly the same signal at two different locations.

An efficient and therefore complex delta modulator, using digital techniques, will thus in the near future be a economical proposition.

This thesis is mainly concerned with the development of delta modulators using the above features. Furthermore
the delta modulators are specifically designed for speech transmission in telephone applications.

Two delta modulators are described in the thesis, one using instantaneous companding, the other using syllabic companding. It will be shown that the use of digital techniques in instantaneous companding can achieve a better transmission error performance, an improved stability, a wider dynamic range and a better matching of the companding laws at the transmitter and the receiver than can be obtained by using analogue methods.

The use of digital techniques in syllabic companding enables the dynamic range to be chosen at will. The syllabic companded delta modulator described in this thesis has a 60dB companding ratio which is far more than can be obtained using analogue methods. Furthermore, digital techniques enable the modulation depth to be determined accurately, so that the companding takes place at the optimum performance of the modulator.

Computer simulation was used to optimize the delta modulators when speech is used as input.