COMPUTATION OF LATERAL HYDRODYNAMIC FORCES
DURING SHIP INTERACTIONS IN SHALLOW WATER

by

Graeme William King

B.Sc.(Hons.)(Ma.Sc.), University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy

in The University of Adelaide

Department of Applied Mathematics

[Signature] 1st April 1979
CONTENTS

Summary (i)
Signed Statement (ii)
Acknowledgements (iii)

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 STEADY INTERACTIONS BETWEEN A SHIP AND THE BOUNDARY OF THE WATER

2.1 Introduction 5
2.2 Mathematical Formulation 7
2.3 Solution Procedure for General Depth Contours 11
2.4 Numerical Procedure for Solving Integral Equation 13
2.5 Everywhere-Uniform Depth 16
2.6 Motion Parallel to a Vertical Wall in Uniform Depth 18
2.7 Motion Parallel to a Uniform Beach 19
2.8 Sway Force and Yaw Moment 20
2.9 Results 23

CHAPTER 3 STEADY INTERACTIONS BETWEEN TWO OR MORE SHIPS MOVING OVER A FLAT BOTTOM OR NEAR TO A BANK

3.1 Introduction 38
3.2 Derivation of Governing System of Integral Equations 40
3.3 Numerical Procedure for Solving the System of Integral Equations 44
3.4 Everywhere-Uniform Depth 47
3.5 Motion Parallel to a Vertical Wall in Uniform Depth 49
3.6 Results 51

CHAPTER 4 A TWO-DIMENSIONAL MODEL FOR UNSTEADY INTERACTIONS

4.1 Introduction 66
4.2 Derivation of Governing System of Integral Equations 68
4.3 Forces and Moments 74
4.4 Numerical Techniques for Solving System of Integral Equations in Unsteady Problem 75
4.5 Results for Unbounded Two-Dimensional Flow 81
SUMMARY

This thesis considers hydrodynamic ship interactions in shallow water. It is assumed that the ships are slender, the fluid is inviscid and incompressible, and that free surface effects can be neglected.

Four separate interaction problems are considered. The first is the interaction of a ship with some depth contour. Only steady interactions are considered, so the ship is moving at a uniform velocity parallel to any depth contours. Two particular contours, namely, a vertical wall and a beach of uniform slope, are considered and results presented.

The model is generalized to include the interaction of two or more slender ships in shallow water, moving in such a manner that the problem is steady. The cases of a flat bottom of uniform depth and a flat bottom with a vertical wall are considered. The results obtained for a wall are of particular interest when applying experimental results to actual ship interactions.

An unsteady model for two dimensional airfoil interactions is formulated next. This provides insight into the significance of unsteady effects in ship manoeuvres, when the bottom clearance is negligible. This work is then extended to provide a model for the unsteady interactions between two or more ships in unbounded shallow water, with underkeel clearance effects included.

Each of the above problems leads to an integral equation, or a system of integral equations, which has to be solved. A suitable algorithm is described in each case and used to compute results. Comparison with experiments shows that the algorithm is useful for computation of the sway force and yaw moment in practical problems. Where possible, qualitative discussions of these results are presented.