PROTON ELECTRON SPECTROSCOPY OF MOLECULAR GASES

by

Vijay Kumar, M.Sc. (Panjab)
Department of Physics

A thesis
presented for the degree of
Doctor of Philosophy
in the
University of Adelaide
April, 1969.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>(i)</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>(iv)</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>(v)</td>
</tr>
<tr>
<td>CHAPTER I. REVIEW OF PHENOMENA OF PHOTOELECTRON SPECTROSCOPY</td>
<td></td>
</tr>
<tr>
<td>I.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I.2 Early Investigations</td>
<td>1</td>
</tr>
<tr>
<td>I.3 Photoionization Cross-Sections</td>
<td>3</td>
</tr>
<tr>
<td>I.3a Atomic Systems</td>
<td></td>
</tr>
<tr>
<td>I.3a.1 One-Electron System</td>
<td>4</td>
</tr>
<tr>
<td>I.3a.2 Many Electron Atoms</td>
<td>5</td>
</tr>
<tr>
<td>I.3a.3 Comparison between Experimental and Theoretical Cross-Sections</td>
<td>9</td>
</tr>
<tr>
<td>I.3b Molecules</td>
<td>11</td>
</tr>
<tr>
<td>I.3b.1 Theoretical Cross-Sections for Molecules</td>
<td>15</td>
</tr>
<tr>
<td>I.3b.2 Comparison between Experimental and Theoretical Cross-Sections</td>
<td>17</td>
</tr>
<tr>
<td>I.4 Ionization Potentials of Molecules</td>
<td>19</td>
</tr>
<tr>
<td>I.5 Partial Photoionization Cross-Sections</td>
<td>22</td>
</tr>
<tr>
<td>I.6 Autoionization</td>
<td></td>
</tr>
<tr>
<td>I.6a Molecular Systems</td>
<td>29</td>
</tr>
<tr>
<td>CHAPTER II. PHOTOELECTRON SPECTROMETER</td>
<td></td>
</tr>
<tr>
<td>II.1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>II.2 Photoelectron Energy Analyzer</td>
<td>32</td>
</tr>
<tr>
<td>II.2.1 Choice and Construction of the Analyzer</td>
<td>34</td>
</tr>
<tr>
<td>II.2.1a Point Source of Photoelectrons</td>
<td>36</td>
</tr>
<tr>
<td>II.2.1b The Spherical Grid System</td>
<td>38</td>
</tr>
</tbody>
</table>
II.3 Photoelectron Detectors
 II.3.1 Requirements of an Electron Detector
 II.3.2 Choice of the Detector
 II.3.3 The Detector Mounting
 II.3.4 Performance of Channel Electron Multipliers
II.4 Other Details of the Spectrometer
 II.4.1 The Beam Trap
 II.4.2 The Vacuum Chamber
 II.4.3 The Monochromator
 II.4.4 Light Source
II.5 Operation of the Spectrometer
 II.5.1 Grid Voltages
 II.5.2 Electronic Differentiation of the Integral Spectrum
II.6 Performance of the Spectrometer
 II.6.1 Resolution
 II.6.2 Analysis of the Monoenergetic Spectrum
 II.6.3 Electron Collecting Efficiency

CHAPTER III. PARTIAL PHOTONIZATION CROSS-SECTIONS
III.1 Carbon Dioxide
 III.1.1 Photoelectron Energy Spectra
 III.1.2 Unfolding the Spectra
 III.1.3 Branching Ratios
 III.1.4 Partial Photonization Cross-Sections
III.2 Carbon Monoxide
 III.2.1 Autoionization Processes
 III.2.2 Partial Photoionization Cross-Sections
III.3 Nitric Oxide
 III.3.1 Autoionization Processes
 III.3.2 Partial Cross-Sections
III.4 Nitrous Oxide 80
III.4.4 Partial Cross-Sections 83
III.5 Ammonia 84
III.6 Accuracy of Partial Cross-Sections 87

CHAPTER IV. PHOTOELECTRON SPECTROSCOPY IN THE
NEIGHBOURHOOD OF SOME AUTOIONIZING
STATES OF MOLECULAR OXYGEN

IV.1 Introduction 90
IV.2 Experimental Method 91
IV.3 Experimental Results 91
IV.4 Discussion 94

CHAPTER V. FRANK-CONDON FACTORS FOR AUTOIONIZING
TRANSITIONS IN MOLECULAR OXYGEN

V.1 Introduction 97
V.2 Method for Frank-Condor Calculations and
Results 98
V.3 Discussion 103

CHAPTER VI. SCOPE FOR FURTHER STUDY OF PHOTO-
ELECTRON SPECTROSCOPY

VI.1 Partial Photoionization Cross-Sections 107
VI.2 Autonization Processes 109
VI.3 Angular Distribution of Photoelectrons 110

APPENDIX - PUBLICATIONS

BIBLIOGRAPHY
SUMMARY

The photoelectron energy spectra observed for different molecular gases at wavelengths from 584Å to the threshold energy of the electronic ground states of different molecular ions have been described in this thesis. The measurement of photoelectron spectra has been made at 5Å intervals. The branching ratios and hence the partial photoionization cross-sections for different competing processes have also been computed for these gases, viz. carbon dioxide, carbon monoxide, nitric oxide, nitrous oxide and ammonia.

The photoelectron spectrometer used for recording the energy spectra of the photoelectrons was of the retarding potential type, consisting of two concentric spherical grids and a plane grid; an earthed grid, an analysing grid to which a retarding potential of a step-function type was applied, and an anode. An incident photon beam produced by a helium capillary spark discharge lamp was dispersed by a one-metre near normal incidence monochromator with a slit width corresponding to the resolution of 0.6Å. The photoelectrons were produced in a small target area at the centre of the spherical grid system and, after being energetically analysed, were detected by a channel electron multiplier. The
best resolution obtained by the spectrometer was y.

The photoelectron spectra for these gases were obtained at different incident wavelengths and the relative areas associated with each peak in the spectra were measured. This information was combined with total photoionization cross-sections to produce partial cross-sections.

In the spectra of carbon dioxide, the four bands corresponding to $^2\Pi_u$, $^2\Pi_g$, $^2\Sigma_u^+$, $^2\Sigma_g^+$, electronic states of the ion wherever energetically possible, were clearly resolved. In carbon monoxide, nitric oxide and nitrous oxide, a low energy anomalous peak which did not vary in position with incident photon wavelength was observed in addition to peaks corresponding to direct ionization to the different excited states of the respective ions. This anomalous peak in carbon monoxide has been explained on the basis of Franck-Condon principle but in nitric oxide and nitrous oxide, the explanation of fluorescent autoionization is put forward. The photoelectron spectra of ammonia showed peaks corresponding to ground states of NH_3^+, NH_2^+ and NH^+ and also some other unknown peaks which may correspond to the other excited states of NH_3^+. In addition, a low energy anomalous peak was also observed which was explained on the basis of fluorescent
autoionization.

Photoelectron spectra have also been measured with a beam resolution of 1.6Å at wavelengths corresponding to several autoionized resonance states of O₂ in the region above 775Å, and also at neighbouring off-resonance wavelengths. The off-resonance spectra showed a single broad maximum in the strength of the O₂⁺ vibrational structure. However, the resonance spectra had additional features which are characteristic of the vibrational quantum number of the autoionized resonance. The form of these spectra were reproduced theoretically by the calculated Franck-Condon factors for the autoionizing transitions, using equilibrium internuclear distance for the autoionized state as an adjustable parameter.