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SUMMARY .

The work described in this thesis represents part of a programme
undertaken with the aim of obtaining a better insight into the mechanism
associated with the generation of wall pressure fluctuations in turbulent

shear flows with and without mean streamwise pressure gradients.

Reliable routine procedures were developed for the calculation of the
wall pressure fluctuations and results are presented for the boundary layer
with zero mean pressure gradient. These were based on the assumptions
that:-

(1) turbulence/mean-shear interaction contributes mainly to the
pressure fluctuations. ‘

’(2) the boundary layer exhibits statistical stationarity in time and
homogeneity in planes parallel to the boundary.

(3) the boundary layer grows sufficiently s}owly so that the mean
velocity parallel to the boundaxry, and the root mean square velocity

fluctuation normal to the boundary are functions only of the co-ordinate

normal to the boundary.

The boundary layer models which have been employed allow an
examination of the effects of the changes of the specification of the
mean shear, the eddy scales and the correlatidn coefficient on the overall
values of the mean sguare pressure fluctuations. The variation of these

pressures with Reynolds number was also esxamined.

It is shown that the correct interpretation of contributions of
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various regions of a turbulent boundary layer to the space-time covariance
of the pressure fluctuations at the wall requires consideration of the
"joint contributicn density function". This function represents the joint
contribution of a pair of infinitesimally thin strata of the boundary
layer, parallel to the wall, per unit thickness of each to the space-time
covariance. It is essentially a second spatial derivative, and its use
leads to the conclusion that earlier interpretations based on functions
which are only first derivatives are liable to error. Contributions of
finite regions can be obtained in terms of this function, but must be
carefully defined. Representative calculated values of the function are
given for the case of the mean square wall pressure fluctuation, and it is
shown that the inner region of the boundary layer accounts for the major

contribution to the pressures.

The results also indicate that

(1) A single representative value of p'/Tw obtained in previous
calculations is typical of only a limited range of Reynolds number, and
that over the Reynolds number range for which lO3 < Rea* < lO7 the
variation in contribution of the turbulence/mean-shear interaction to p'/‘rw
is from 1.10 to 6.51, Over the limited Reynolds number range for which
experimental results are available, the variaticn of the calculated values
of p'/rW is in accord with that of experimental results.

(2) At low Reynolds numbers, the small eddies make a dominant

. ] 2 3 . .
contribution to <p" > (over 90% at Re.* = 10"). The proportion of the

8
contribution falls off with increase in Reynolds number to a value of about

20% at Rea* = 107.
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(3) The variation of the total value of <pz> with Reynolds number is
predominantly a reflection of the variation of the value of the large eddy
contribution with Reynolds number and is a functicn also of the
correlation scales assigned to the eddy structure in the tufbulence.

(4) The value of the mean square pressure is sensitive to the choice
of the eddy scales and the correlation function. Slight variation in the
specification of the mean shear in the transition region has an
insignificant effect on the overall value.

(5) For a two-dimensional incompressible turbulent boundary layer,
turbulence/mean-shear interaction is the dominant process in the generation
of the wall pressure fluctuations, and accounts for about 80% of the
overall mean square value.

(6) Comparison of the calculated autc-covariance and the frequency
power spectral density distribution with experimental results from various
sources show that the caiculated values fall within the range covered by the
experimental curves. This lends further weight to the credibility of the
assumption that the turbulence/mean-shear interaction plays a dominant
role in the generation of the wall pressure fluctuations.

(7) The experimental results for which good transducer resolution at
the higher frequancies is claimed indicate that the high frequency
characteristics of the theoretical medel may not be representative of that
in the actual boundary layer. This could be due to & daficiency of the
model and/or the neglect of the other pressure source terms which provide

relatively small but not negligible contributicns to the pressures.

Measurements were made of the mean flow properties and of the spectral
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density distributions of the wall pressure fluctuations in a constant
prassure turbulent boundary layer. The good agreement between the present
results and those of previcus investigators confirms the validity of the
present results and proves the proper functicning of the experimental

equipment.

The root mean sduare values of the wall pressure fluctuations obtained
from the integration of the spectral density distributions indicate that
p'/Tw varies from 2.3 to 2.5 over the Reynolds number range of
7.0x103 < Rea* < l.5x104. It is found that the effect of the transducer
size on its resolution at the high freguencies is not negligible for the

*
present measurements for which 0.14 < 4/8§ < 0.30.

It is believed that the bpressure gradient results presented in this
thesis represent the first measurements of the wall pressure fluctuations
in an equilibrium turbulent boundary layer under the effects of a mean
streamvise pressure gradient. The measurements were made in an adverse
pressure gradient layer for which the pressure gradient parameter £ = 1.37
and were limited to the spectral density distributions at two locations in
the working section of the wind tunnel. The relatively small size of the

x*
transducers used resulted in a wvalue of d4/§ of approximately 0.06, a
value which iz believed the smallest to date. The results indicate that

(1) The spectral density distributicn for the pressure gradient
layer is similar to that of the constant pressure layer in the frequency

Lk . *
range for which 1 < wé /U_ < 3. For frequencies where w8 /UOo > 3 or
* .
wé /U°° < 1, the spectra from the adverse pressure gradient layer are

higher than those of the constant pressure layer.



(2) The root mean square value of the wall pressure fluctuations
expressed as p'/'rw is greater in the adverse pressure gradient layer than

that in the constant pressure layer.

(3) For Reynolds numbers, Reé*, in the region of 3X10? p'/’rW has the

value of 4.2 although the corresponding value of p'/q_, namely 7.OxlO_3, is

not much greater than the value of 6.3xlO—3 for the constant pressure layer

at ReG* = l.5x104.
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PRINCIPAL NOTATIONS.

a, b, c

C(a,b)

f(r)

Q. (1)

R (£,1)
r,T
pp '

t, t°

constants
skin friction coefficient

contribution to the pressure covariance from sources
within the region a < y2 <b

diameter of transducer sensing element
frequency

longitudinal velocity correlation coefficient in
isotropic turbulence

Clauser boundary layer family parameter
boundary layer shape parameter = 6*/6

tensor notation suffices

mean shear = BUl(yé)/axz

shock Mach number

pressure (generally denotes fluctuating value)
root mean square pressure

auto-covariance of the fluctuating pressure
pressure source

Reynolds number based on boundary layer displacement
thickness = G*Um/v

velocity correlation coefficient

space-time pressure correlation coefficient

. - -
separation vector = z - ¥y
eddy scale B
temperature

time and retarded time



(A

oy

1

pp

ix

velocity component in the x,-direction (generally
denotes fluctuating value)

root mean sguare velocity fluctuations
mean velocity in direction of free stream
convection velocity

friction velocity

free stream velocity

usually denotes field point co-ordinates
= XZUT/V

usually denotes source point co-ordinates
= yUT/v )

anisotropy factor

pressure gradient parameter

ratio of specific heat of a gas at constant pressure

to the specific heat at constant temperature
Clauser thickness

boundary layer thickness

boundary layer thickness at wnich 8U1/31n y = 1/k
boundary layer displacement thickness
thickness of viscous sublaver

boundéry layer thickness at which u,-U =10
e x2/6

boundary layer momentum thickness

von Karman constant

longitudinal integral scale

£luid kinematic viscosity .

->

>
x' - x

field point separation vector =



w(z)

<.e04>

Coles's profile parameter

fluid density

time delay = t' - t

integral time scale

wall shear stress

frequency power spectral density
covariance of the fluctuating pressure
circular frequency

Coles's wake function

denotes statistical mean value
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1. REVIEW OF PREVICUS WORK AND OBJECTIVES OF TEE DPRESENT R.'ESEARCH.\\{;_[S?—‘ ”

1.1 Introduction.

The initial concept of turbulence in fluid flow can be attributed to
Reynolds (1883) in his study of pipe flow. Since then, and particularly
in recent years, much effort has been spent in the study of the structure
and characteristics of turbulent fluid motion. Turbulent motion, whether
it be the idealised homogeneous isotropic type considered by, for example,
Batchelor (1953) or the homogeneous anisotropic category of which the
turbulent shear flow treated by, for example, Townsend (1956) is a
particular example, is a complex phenomenon and the progress in the
development of the theory was restricted until Taylof ((1921) and (1935))
showed that statistical theory could be used to a great advantage in this
field. However, due to the complexity of the mathematical equations
involved, the development has been limited to the formation of general
principles and hypotheses concerning the nature of the turbulent motion

through the accumulation of experimental data.

Further, the experimental data are predominantly those relating to
velocity fluctuations, mainly as a result of the fact that the hot-wire
anemometer has been the only instrument capable of measuring fluctuating
quantities in the flow without creating significant additional disturbance

of its own.

While welocity fluctuaticns are obviously quantities of primary



interest, experimental results for other qguantities could be just as
significant if they could be obtained. Pressure fluctuations could weil

be included in this category.

There are, in fact, two very good reasons for investigating the
properties of the fluctuating pressure field in a turbulent flow:

(a) to improve understanding of the mechanisms operating in
turbulent flows, and

(b) to provide data for the solution of practical engineering

problems to which pressure fluctuations may give rise.

The experimental investigation of pressure fluctuations is difficult
because virtually the only reliable means of measuring the fluctuating
pressure is in the use of small microphones or transducers mounted flush
with a solid surface as it has been claimed (see Hodgson (1962)) that the
use of such devices in the midst of the flow region invariably creates a
major flow disturbance whose frequencies are about the same as those to be
measured with a relative amplitude of at least an order of magnitude
higher. Hence, the available results have been limited to surface or wall
pressure fluctuations obtained from boundary layer as well as wall jet
(see Lilley and Hodgson (1960)) measurements. It should be noted, however,
that the argument referred to above is not universally accepted - the
author has been informed that recent work at the University of Toronto
indicates that useful pressure fluctuation measurements within a turbulent

low may well be possiblef However, even though most existing pressure

fluctuation measurements zre limited to those made at the solid surface

*
Siddon, T.E. 1885 OnthefResponse of Pressure Measuring Instrumentation in Unsteady Fiow.
Uriversity of Toronto, U.T LA.S., Report No. 136



under a boundary laver oxr a wall jet, they are applicable to several areas
of considerable engineering importance, including , for examprls, boundary
layer noise generation at both rigid and flexible suxfaces, fatigue of

aircraft structures, aud underwater detection.

1.2 Survey of Previous Work on Turbulent Pressure Fluctuations,

1.2.1 Isotropic Turbulence.

The early investigations into pressure fluctuations in turbulent flows
were reported by Heisenberg (1948), Obukhoff (1549), and Batchelor (1951)
and were limited to the case of isotropic turbulence. It was assumed that
the joint probability function for the velocity fluctuations at any two
points was Gaussian thus simplifying the relationship between the fourth
order and the second order correlations and at the same time making
equivalent to zero all odd order correlaticns. The resultant expression

for the pressure covariance was given by Batchelor (1951) as

=]

2
> - > > 4 2
o) = <p®)px+r)> = 2u'" [ (y- ) {£'»}° ay ... (l.2.1)
rp . Y
s
o Af (y) v : ;
where f£'(y) = r u' is the root mean square velocity fluctuations,

oy

<...> represents the statistical mean value and f(r} is the correlation
scalar of the homogeneous isotropic turbulence. When £{r) obtained by
Proudman (1951) from measurements behind a grid ir a uniform flow was

used, the root mean square pressure was obtained by Batchelor as

2
p' = 0.58 pu' ) veo(1.2.2)



where p is the fiuid density.

Uberoi (1953) argued that simple relationships for the correlation
functions could be aszsumed without invoking ths Caussian condition for the
joint probability Function for the fluctuating velocity components and

obtained

1.0 pu'2 - for low Reynolds number
p' = 5 v (1.2.3)
0.55 pu'" = for high Reynolds number

1.2.2 Turbulent Shear Flow with Zero Mean Pressure Gradient.

The late 1950's and early 1960's were a period of fairly intense
activity in both theoretical and experimental investigations of pressure

fluctuations in turbulent shear flow with zerc mean pressure gradient,

The experimental work established fairly well the general
characteristics (mean square pressure, spectra, space-time correlations
and convection properties) of the wall pressure field in subsonic
turbulent boundary layers. However, there were, and remain, experimental
problems such as that of adequate spatial resolution of the pressure
transducers, a problem fifst treated by Corcos (1243) and later by
Willmarth and Roos (1965). The results obtained were very valuable as
engineering data, but were also important in relation to the identification
of the flow processes contributing to the generation of pressure

fluctuations.



The first attempt to calculate the statistical properties of the
pressure fluctuations in turbulent shear flow was made by Kraichnan
({1956a) and (125%b)). The mathematical models which were used represented
homogeneous isotzoupic and homogeneous anisotropic torbulence with a super-
imposed mean shear structure. KXraichnan's work was aimed at estimating the
order of magnitude of the mean square wall pressure fluctuation in a two-
dimensional incompressible turbulent bkoundary layer and determining which
velocity interactions are mainly responsible fcxr it. To this end, the
approximation to the turbulent boundary layer flow was taken as an
homogeneous anisotropic turbulence with a "mirror flow" characteristic.
Laufer's (1954) experimental data were used in his analysis and he
concluded that the interactions between the turbulence and the mean shear,
through the gradient normal to the boundary of the mean velocity component
parallel to the boundary and the gradient in the streamwise direction of
the fluctuating velocity component normal to the boundary, was the dominant

effect in producing wall pressure fluctuations. This "dominance of

turbulence/mean-shear interaction” has been used extensively by later

workers as the basis for further calculations of the statistical
properties of the wall pressure fluctuations. Kraichnan himself estimated

the turbulence/mean-shear contribution to the pressure fluctuations as

?; = 6 , ... (1.2.4)
w

where TW is the wall shear stress.

Kraichnan's ¢alculations were refined and extended by Lilley and
Hodgson (1960) and Hodgson {1962) on the basis cof the assumption of the

dominance of the turbulence/mean-shear interaction. They gave estimates



of the ratio of the root mean square wall pressure fluctuation to the mean
wall shear stress which were in considerably better agreement with
experimental values than those obtained by Kraichnan, and also an
indication of which region of the boundary layer is the most important in
generating wall pressure fluctuations. The value obtained by Lilley and

Hodgson was

Pl
el 3 ...(1.2.5)
w

= 3.1 . ... (1.2.6)

Hodgson, on the assumption that the correlation coefficient for the
fluctuating component of the velocity normal to the boundary can be taken
as

<u, (y2) u, (yz;;)> —rz/yz
) = = e F cee (1.2.7)

2 =02, =%
[u2 (yz)J I:u2 (yz.r)J

where u2(y2) is the rormal velocity component at a distance Y, from the
>
boundary and r is the separation vector between the points, obtained the

value

Pl

-— = 2.56 . ees(1.2.8)
Tw

As the result of a re-calculation, Hodgson, in a private communication,

revised this wvalue to

) ...(1.2.9)



These values are of about the same magnitude as those measured

experimentally.

Hodgson also concluded that the major contribution to the calculated
wall pressure came from the region 0.02 < y2/6 < 0.4, where § is the
boundary layer thickness. From an idealised model of the boundary layer
velocity field, Hodgson calculated the one~dimensional wave-number spectra
and space-correlations of the wall pressure field resulting solely from
turbulence/mean-shear interaction, and found that the longitudinal integral

scale and the integral time scale represented by

A
( l)pp

RPP(El,O,O) dEl ... (1.2.10)

-—l0

and

T = R (0,0,7) 4t ' ce.(1.2.11)
pp

—CO
respectively, gave zero values, and the lateral correlation Rpp(0,€3,0)
was positive for all 53. (Here RPP(El,EB,T) has been written for the

. .. > ool 2. ., .
correlation coefficient <p(x,t)p(x+f,t+1)>/<r"> in a homogeneous field).
Hence, the longitudinal space-correlation, which is positive at all small gl,
should:be necative at large il, and the positive and negative areas under .
the curve should be equal. Hodgson's own measurements of the longitudinal
space-correlation and to a lesser extent those of Bull (1967) and Blake
(1970) show these characteristics, and in each case the lateral space-
correlation is positive for all 53, indicating that a significant part of

the mean square pressure does result from turbulence/mean-shear interaction,



Willmarth and Weoldridge (1963) report measurements of correlations
between the wall pressure fluctuations and the turbulence velocity
components. They found that these correlations also take the forms which
would be expected if the wall pressure fluctuations were mainly due to

turbulence/mean-shear interaction.

However, Corcos (1964) using Willmarth's and Wcoldridge's data has
produced evidence to the contrary. His calculations which include the
turbulence/mean-shear source terms as well as some of the other terms
neglected previously gave resuits of the mean square wall pressure
fluctuations which were about 32% only of the observed values with the
contributions confined to the high frequency region of the pressure power
spectrum and with the most significant contribution coming from the region
of the boundary layer between the boundary surface and y2/6* = 1.0 (y2/5 of
about 0.12), that is, from a much narrower region of the boundary layer
than indicated by Hodgson's calculations, with a peak contribution in the
vicinity of yz/G* = (0.2 (y2/6 of about 0.025), where 6* is the
displacement thickness of the boundary layer given by

% U

§ = (1 - —3 dy, ee.(1.2.12)
U

oo
[¢]

Ul is the mean velocity in the boundary layer and U_ is the free stream
velocity. He therefore concluded that the turbulence/mean-shear interaction
makes_a_significant contribution to the wall pressure fluctuations, but

that it is not the dominant effect. The results cf Bull (1967) appear to

be consistent with Corcos's conclusion on the location of the turbulence/



mean-shear interaction sources as they indicate that the motion in the
constant stress layer (where y2/6 1s less than about 0.2) is responsible
for the high frequency portion (w6/Uoo > 2, where w is the frequency in
rad/sec) of the pressure power spectrum which amounts to about 75% of the
mean square pressure, and that significant contributions come from the
innermost part of the fully turbulent region of the constant stress layer
and probably alsc from sources located in the transition region

(5 < yzUT/v < 30, where UT e (1'W/,0);i is the friction velocity and v is
the kinematic viscosity). However, the general character of the results
tends to be that of a pressure field with a dominant contribution
(certainly greater than 32% of the mean square pressure) from the

turbulence/mean-shear interaction,

So the work referred to does not clearly resolve the question of the

dominance of turbulence/mean-shear interaction.

In none of the theoretical work was any attempt made to calculate
the effects of Reyrolds number on the wall pressure fluctuations. A
Reynolds number effect on the wall pressure fluctuations in turbulent
boundary layers was observed by Bull (1267} whose experimental results
showed p'/'tW increasing at the rate of about the 0.17 power of the
Reynolds number, from 2.1 to 2.8 over the Reynolds number range

3 . 5
6x10” < Re . * < 4x107, where Re

é $

displacement thickness. This was given a measure of support by the

* is the Reynolds number based on the

results of Harrison (1958), Willmarth (19592), Skudrzyk and Haddle (1960),

Bull and Willis (1961), Willmarth and Wooldridge (1962) and Serafini (1963)
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although these data were very scattered as a result of variaticns in the
resolution of the pressure transducers used in the various experiments.
This is in direct contrast to the results obtained by Corcos (1964) and
Bakewell et. al. {1962) which indicate a monotonic decrease in p'/'rw with
increasing Reynolds number from their fully developed pipe flow data.
However, in the case of the pipe flow experimernts, it has been assumed that
variations in pipe Reynolds number, obtained by varying the velocity in a
given pipe, should have no effect on the resolving power of the same
transducer, but, if one considers that the increase in Reynolds number
causes the thickness of the viscous region to decrease, with presumably an
increase in the frequency of the pressure fluctuations generated by this
portion of the flow, the assumption may not be correct, and the observed
decrease of p'/Tw with increasing Reynolds number may possibly be a

transducer resolution effect.

The results of a series of experiments in low speed wind tunnels and

onn a glider wing led Hodgson (1962) to conclude that

= 2.2 . ... (1.2.13)

The recent work of Blake (1970) gave

Lo

= 3.6 , ... (1.2.14)

"

w
where the experimental measurements were made with the use of a pinhole
microphone to give a better high frequency resolution. Richards, Bull and
Willis (1960), in their summary of earlier works on subsonic turbulent

boundary layers, showed that there were wide differences in the experiment-
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ally derived values for the mean square wall pressure fluctuations. It

can be seen that this situation has not improved to any great extent and
the question of the dominance or otherwise of the turbulence/mean-shear
interaction in the contribution to the wall pressures and of Reynolds
number effects are stili open to conjecture. However, out of the scatter
of the results, it has been possible to establish the order of magnitude of
the fluctuating pressure and the form of its frequency power spectral
density. It has also been deduced from correlation measurements that the
convection velocity of the pressure field varies from about 0.5U to

0.80_ , the lower velocities being attributed to eddies in the inner part

of the layer where the mean velocity is correspondingly lower.

1.2.3 Turbulent Shear Flow with Finite Mean Pressure Gradient.

For reasons of computational as well as experimental expediency,
practically all previous effort in the study of wall pressure fluctuations
have been concentrated on that resulting from the constant pressure or
zero mean pressure gradient layers. One of the first theoretical
treatment of boundary layers under the effects of mean pressure gradients
was reported by Wnite (1964). His results included calculated and
experimental values of the longitudinal and lateral cross-spectral density
of the wall pressure fluctuations, and the effect of spacing on the
convection velocities. The latest report of work on pressure fluctuations
due to boundary layers generated under the effects of mean pressure
gradients was by Schloemer (1967). His effort covered the conditions of

both mild adverse and mild favourable pressure gradients in the mean flow
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in a low turbulence wind tunnel (ué/Uw £ 0.2%). The results for the
adverse pressure gradient case indicate an increase in the spectral
density, the effect being more marked at the low frequency end, that is;
for ch*/Uco < 0.25, where f is the frequency in Hz. The effect of the
mild favourable pressure gradient was found to be a marked reduction of
the high freguency portion of the spectral density and the increase of

the convection velocity.

1.3 Objectives of the Present Work.

The work reported in this thesis represents part of a programme
undertaken with the aim of obtaining a better insight into the mechanism
associated with the generation of wall pressure fluctuations in turbulent

shear flows with and without mean streamwise pressure gradients.

The specific objectives, all related to turbulent boundary layer flow,

were as follows.

(1) The first cokjective was to develop reliable routine procedures for

in flows with zero and ncn-zero pressure gradients
the calculation of wall pressure fluctuations/%ith the aid of the more
powerful digital computers which have become available since previous
calculations were made. The calculation programme was to be based on the
assumption of the dominance of turbulence/mean-shear interaction, but
otherwise kept as general as possible to allow the inclusion of the most

representative turbulent velocity field data available and to allow

investigation of the effects of the various flow parameters such as Reynolds
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(2) The second objective was to find, from the calculated results, which
regions of the boundary layer make the most significant contributions to
the wall pressure fluctuations.

In the course of the work, this soon led to the realisation that in
the past expressions such as "the contribution made by a region of the
boundary layer to the wall pressure fluctuations"” have tended to be used
in rather a loose way, and that it is necessary to define quite carefully

exactly what is meant by such expressions.

(3) The third cbjective was the measurement of the properties of the
fluctuating wall pressure field in equilibrium turbulent boundary layers
developed under the effects of various mean streamwise pressure gradients.
To this end, a subsonic boundary layer tunnel was to be built and equipped
with the necessary instrumentation and their associated calibration rigs.
It was decided to use piezo-electric pressure transducers and tc aim at
achieving as small a value of the ratio of d/G* as possible (where 4 is
the diameter of the sensing element of the transducer) to prevent
excessive attenuation of the pressure signal at the higher frequencies
(see Corcos (1963)).

theoreticaily and experimentally,
(4) The fourth objective was to establish/%he variation of various wall

pressure fluctuation parameters, in particular p'/rw, with Reynolds number.

(5) The fifth objective was to obtain a firm indication of whether or not
turbulence/mean-shear interaction is the dominant process in the production

of the wall pressure fluctuations, by comparing calculated mean square



pressure, spectra, and correlations with measured values, for a variety

of pressure gradient conditions.

The objectives stated above imply a very extensive theoretical
investigation and an equally extensive experimental one. It was
appreciated at the onset that if both of these investigations were to be
carried out carefully and thoroughly, it was unlikely that both, or
perhaps either, could be completed in the time available. However, since
the two aspects of the problem are complementary and are very much
interdependent, it was considered that work on the two should proceed in
parallel, even if this meant that one or both investigations would not be

as complete as the achievement of all the set objectives would require.

As will be seen later, both investigations were limited. The
complexity of the required numerical calculation procedures dictated that
the theoretical work be confined to boundary layers with zero mean pressure
~gradient in the stream direction, although some indication of the
applicability of these procedures to layers developing in non-~zero
pressure gradients is given. The experimental work was restricted to
measurements of the root mean sguare value and frequency spectrum of the
wall pressure fluctuations for two self-preserving koundary layers, one

with zero mean pressure gradient and one with an adverse pressure gradient.
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2. THE EQUATIONS FOR THE FLUCTUATING COMPONENT CF THE PRESSURE AND

THE CONTRIBUTIONS MADE BY VARIOUS REGIONS OF THE BOUNDARY LAYER

TO THE WALIL PRESSURE FLUCTUATIONS.

2.1 The Equations for the Fluctuating Pressure.

The Navier-Stokes equations of motion wihich express the conservation
of momentum, and the continuity equation which describes the conservation
of mass form the basis of the theoretical study. For a turbulent fluid
moving under the influence of some external force F and wherein the
compressive effects are sufficiently small as to have negligible effect

on the density p, these equations take the form

9 (U,+u,) (U.+u.) 8 (U,+u,) . 3 (P+p)
NS S S R R SR S SR (U;+u,) + F,
ot x, ° ax, .
J 1
eels(2.1.1)
and
8(U.+ui)
A T S ... (2.1.2)
9%,
1

where P and Ui represent respectively the mean pressure and the mean
velocity in the xindirection at the point whose position vector is §, P
and u, represent the corresponding time dependent quantities, and i and j
taking the values of 1, 2 and 3 so that xl, x, and x_ form an oxrthogonal

2 3

set of axes. The kinematic viscosity of the fluid is represented by v.

In most situations of interest, the extraneous force F denoting the



16

gravitational influence throughout the mass of the fluid may be neglected.
The relation between the pressure and the velocity fields obtained by
taking the divergence of Equation (2.1.1) and then using the condition set

by Eguation (2.1.2) can be written as

52 (p+p) 52 (U, +a,) (U +a,)
_ = - ) ; % a1, (2krll. 3)
8x2 0x, 939X
k i 3
Since
sz 82(P+p) 32<P+p>
: == - X 5 = 3X2 . c..{(2.1.4)
*x *x k

where <.....> denotes the statistical mean value, the fluctuating component

of the pressure can be obtained from Equation (2.1.3) to give

2
9 p N
SR = -oq(x,t) , «s.(2,1.5)
9x
k
where
N 3Ui ou. Bui ou, Bui ou,
alx,t) = 2———3L 4+ 21 . =1 ...(2.1.6)
X, 0oX, 0xX. 90X, 9X, 90X,
J 1 J 1 J i

Consider now the flow over a boundary surface formed by an infinite
plane with a co-ordinate system set up such that %, denotes the distance
in the direction of the free stream, x2 denotes the distance perpendicular
to the boundary suxface apd X, representing the distance in the direction
orthogonal to both x. and x,. It has been justified by Kraichnan (1956b)

1 2
and by Lilley and Hodgson (1960) that the gradient of the fluctuating
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pressure (generated by the turbulent boundary layer formed on the plane)
in the direction ncrmal to the koundary can be taken to be zero at the
boundary, that is,

he

(—) = 0 . e (2.1.7)

sz x2=

The solution of the wall pressure fluctuations given by Equation (2.1.5)
can then be obtained with the aid of the aprpropriate Green's function to
give

av (y)

p&,t) = —[q(y,t) ’ ve.(2.1.8)
x-y

vhere dV represents a volume element.

The space-time covariance of the pressure fluctuations at two points

-> -
x and x' on the boundary surface is then given by

av(y) av(z)

> +| . p > ->
<plx,t)pkx',th)> = — <qly.t)qlz,t")> S
]x—y x'~
... (2.1.9)
where,
aU, 4dU du. oJu au, du. du, du
<qly,t)qz,t')> = 4—= K L By o, o J_ Kk _m,,
Byj 3zm Byi sz Byj 3yi Bzm sz
aU du, ou, ou du, du. 9 du
g X L _J B,y L 3 % > -
Bzm Byj Byi sz Byj 8yi Bzm sz
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Bui ou, Buk Bum
- < 1 < >, ... {2.1.10)

ayj ‘yi Bzm sz

> ->
and all derivatives at y are for time t and all at z are for time t'.

2.2 Contribution to the Wall Pressure Fluctuation made by Turbulence

in a Stratum Parallel to the Boundary.

As we are mainly concerned with either the overall value of the
space-time covariance or the variation with distance from the boundary of
the contribution to it, it will be an advantage to formulate the
mathematical expressions which will facilitate the physical interpretation
of the mechanisms giving rise to the fluctuating pressures. The covariance
given by Equation (2.1.9) is a double Qélume integral and as such the
overall value obtained cannot give any detail of the parts played by the
various sources throughout the boundary layer. Previous attempts to
provide an insight into the contributions to the space~-time covariance of
the wall pressure fluctuations have been through the formaticn of a first
spatial derivative of the expression for.the pressure in the direction
normal to the boundary. It is realised that although the intended
meaning of the derivative has been sufficiently well defined, the
expression itself cannot be interpreted in a way that will give a physical
insight into the contributions. Since meaningful expressions for the
contributions have yet to be formulated and precisely defined, in what
follows, an attempt will be made to define contributions from regions of
the boundary layer and to keep attention focussed on the physical

interpretation of the various mathematical expressions.
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An examination of Equation (2.1.5) which is analogous to the equation
relating electrostatic potential and electrostatic charge (p being
analogous to the potential and pg to the electrostatic charge density per
unit volume), allows us *to write the contribution to the instantaneous
wall pressure fluctuations p(;,t) made by the turkulence within a
volume element (dyldyzdy3] at ; as

a7, t)
Z_Tr _I-;(;:?I_ dy, dy, dy3 ; eee(2.2a1)
This expression for the contribution can also be obtained by the direct

consideration of Equation (2.1.8).

Consider now a stratum of the bounaary layer and let it be
infinitesimally thin and parallel to the boundary. The term "stratum" has
been chosen to designate such a slice of the boundary layer in preference
to "layer", which might lead to confusion with the boundary layer itself,
or "lamina", which has strong associations with non-turbulent flow. The
contribution to p(§,t) made by a stratum within a boundary layer at a

distance Y, from the boundary and of thickness dy2 is therefore

q(y,t)
- y3 > >
X=y

>
= pfl3(y2,x,t) dy2 i ees(2.2.2)

Il

>
dp(x,t)

where
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q(YIt)
(y ,x t) = — dy ay3 5o A e (2.2.3)
|-

Note that, although the contribution to p has been 2esignated dp, it is
not permissible to form from Equation (2.2.2) a derivative Sp(g,t)/ayz;
this is in fact a meaningless expression since *he fluctuating component
of the wall pressure is fhe value of the definite integral in Equation

(2.1.8) at a particular value of x_ ( =0), and is not itself a function of

2
X, Or ¥,.

2.3 Joint Contribution of Two Strata to the Space-Time Covariance of

the Wall Pressure Fluctuations.

Because, in the expression for the space-time covariance of the wall
pressure fluctuations, Equation (2.1.9), each spatial co-ordinate direction
enters twice, in considering the contribution of various strata of the
boundary layer, it becomes necessary to consider the joint contribution
made by pairs of strata each of which may be at a different distance from

the boundary.

The stratum or layer of pressure socurces of thickness dy2 at a
distance y2 from the boundary, by Equation (2.2.2), contributes

> -
pt (y2,x,t)dy2 to the wall pressure fluctuations at x at time t, and

13

- ->
pfl3(y2,x',t')dy2 toc the pressure at x' at time t'. There wil; be two

similar expressions with z, replacing Y, for the corresponding contributions

from the stratum of thickness dz2 at a distance z2 from the boundary.
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> -
The joint contribution of the two strata toc the product p(x,t)p(x’,t')

is therefore

0% [£. (., %,t)E. (z.,%',t") + £._(z_, %, )E. _(y.,x',£")} dy. dz
2’ 7 13 r r 3 14 r 13 2,  Bad 2 2 r

»ee(2.3,1)

13 2 1 2

and the joint contribution to the space-time covariance (resulting from
statistical space-time correlation between the turbulent velocity

fluctuations in the two strata) is

2

> >
o] Gl3(y2,zz,x,x',t,t') dy2 dz eee(2.3.2)

9 7
where
o ' o o 1 i 5y [
Gl3(y2'22'x'x E,ET) = Fl3(y2'22'x'3 ‘Itlt ) + F (z ryzrxrx L,t) 7

1372
... (2.3.3)

and

B (YorZ. 1%, %' E, ") = <F. (Y., %X, E)E._ (2, X", £")> . ...(2.3.4)
132 e 1327 i3t Y

As we are most concerned with variations normal to the boundary, we shall

i to F
abbreviate F and G o} 13(y2'22) and G

cti
13 13 (y2,22) respectively and take

13

> >
as understood that they are also functions of x, x', t, and t'.

It can be seen that G13 is a symmetric function of y2 and Z,e Since

it represents the joint contribution to the space-time covariance of the
wall pressure fluctuations of a pair of strata, at distances from the

boundary of Y, and z_ respectively, per unit thickness of each of these

2

strata, it can therefore be referred to as the "joint contribution density
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function".

The important point is that in considering contributions to the
space-time covariance of the wall pressure fluctuations it is necessary,
in general, to consider the joint contributions of pairs of strata of the
boundary layer rather than the contribution of a particular stratum, and

these contrikbutions are correctly represented by G The total space-time

13°

covariance will be obtained by taking account of all possible pairs of

strata.

Only if it so happens that the values of G13 are very large for

Y, = 2, and fall rapidly as y, and 22 become increasingly different might

it become justifiable to speak of the contribution of one stratum (or a set
of strata which have a total thickness small compared with the total

thickness of the boundary layer), in which case G ) would be the

13(Y21Y2
value of the joint contribution density function characterising the
contribution of the stratum at X, = y2 (as a result of correlation of this

stratum with itself).

2.4 Contribution of a Finite Region of the Boundery Layer to the

Space-Time Correlation of the Wall Pressure Fluctuations.

We shall now attempt to look into the possibility of representing, in
a meaningful way, the contribution of a finite set of strata to the
space-time covariance. It should be noted that in considering the
contribution of a region of finite thickness to the space-time covariance

of the wall pressure fluctuations it is necessary to define carefully what
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is meant. We shall, therefore, define the contribution of the region

a £ x, < b as that resulting from correlation of every elementary pressure

source within this region with every other elementaxy pressure source
within the regicn. It should be particularly empheasised that this does not
include any contribution to the space-time covariance resulting from
correlation between scurces within the finite region considered and sources

within some other finite region of the boundary layer.

The correlation between sources in the stratum at x and all

2 =~ ¥y

other strata (at x. = 22) located between this particular stratum and one

2

at a distance x, = a from the boundary (where a < y2) gives rise to the

> >
contribution to <p(x,t)p(x',t')> which can be obtained from the expression

(2.3.2) as

P

2

p dy2 d G, . (Y,,2.) ’ ees(2.4.1)

2y P13¥5r %y

a
and the contribution of all pairs of strata at distances from the bocundary

between x2 = a and x2 = Db (a < b) as a result of correlation cf sources

within the region a g x2 < b with all other sources within this region is

-~

b y2

38}

C(a,b)

il

p dy2 dz ,z2) P e (2,4.2)

2 6130,

a a

o . . > > .
Like G and F C is also a function of x, x', t, and t'. Equation

13 13’

(2.4.2) may also be written, by reversing the order of integration, as
b b

Cla;b) = p dz2 dy2 G ,zz) A eeel(2.4.3)

135
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-> - .
Similarly, the contribution to <p(x,t)p(x',t')> can also be considered as

that resulting from correlation between sources in the stratum at X, =Y,

and all other strata between vy, and X, = b and is
b
: dy dz_, G, _{ z.) (2.4.4)
P a4y 2 “13¥pr%) v seef2e e
Y5

and the contribution resulting from correlations among all strata within

the region a ¢ X, < b is

b b

C(a,b) = p dy2 d22 G13(Y2'22) . «es(2.4.5)
a v,

This may also be written as

b -
z2 )
2
C(a,b) = p fdzZ/ dy2 Gl3(y2,zz) P ce.(2.4.6)
Y2 a

The Equations (2.4.5) and (2.4.6) could have been obtained formally
from Equations (2.4.3) and {2.4.2) respectively simply by interchanging

the (dummy) variables Y, and z, and making use of the fact that Gl3(y2,z2)

is symmetrical with respect to y2 and zz. However, the longer procedure

has been given in the endeavour to preserve the physical picture.

In the same way, the overall space-time covariance of the wall
pressure can be obtained by first considering the correlation among
sources in the stratum at X, = y2 and all other strata either between the

boundary and y2 or more remote from the boundary than y2, and then

integrating over all Yy This results in the expressions for the overall
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space-time covariance of the wall pressure fluctu=ations, similar to the

expressions (2.4.2) and (2.4.5), as

<p(F,B)px',t")> = c0,) = p2 | ay. | dz. 6. (v.,z.)
<P \X, pPix, - ’ = p Yzj 22 13 y2' 2
0 o
. (2.4.7)
[ee] o0
= 02 | a dz. G. {y.,z.) (2.4.8)
P Y2 22 13\_‘1/2, 2 . »eo o,
0 y2

These equaticns also follow directly from Equations (2.4.2) and (2.4.5) by
putting a = 0 and b = », There will alsc be two similar relations to
Equations (2.4.7) and (2.4.8), analogous to Equations (2.4.3) and (2.4.86),

with the order of the Y, and z, integrations reversed.

2
It is important to note here that the overall space-time covariance,
as given by Equation (2.4.7) cannot be obtained simply by summing the
C(a,b) terms over a series of regions of finite thickness whose total
thickness encompasses the boundary layer. This restriction exists due to
the fact that as soon as two regions are combined, there enters, as well
as the direct contribution represented by the C terms resulting from
correlation within each of the regions, an additional contribution
resulting from correlation of sources in one region with those in the
other. As an illustration, consider the combination of two regions, one
a € x, € b and the other b £ x, € ¢, to form the larger region a £ x_ <€ c.

2 2 2

From Equaticn (2.4.2) we have

C Y2
2
C(a,c) = p fdyzf d22 G13'(Y2'zz)
a a
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b vy c vy
2 ? 2 [ ?
E=3 % +
o j ay, | @z, 6 (v,02,)) + 0 dej a2, Gy, (¥,:2,)
a a b b

c b
2
+p / dyz‘[dz2 G13(12122)
b a

c b
2
= C(a,b) + C(b,c) + p /‘dyz'/dz2 Gl3(y2,zz) cee{2.4.9)
b a

Here C(a,b) represents the contribution of the finite region a &£ x2 £b

and C(b,c) the contribution of the finite region b < x2 £ ¢ as a result of
correlation within each of the respective regions, while the third term
represents the effect of correlation of sources in the former region with

those of the latter. The example could clearly be extended to any number

of finite regiomns.

This emphasises, in the general case, the difficulty, or, to be more
precise, the impossibility of defining satisfactorily the contribution of
a finite region of the boundary layer to the space-time covariance of the
wall pressure fluctuations, even though the procedure given above leads to
the correct overall value for this covariance. In general, therefore, it
really only makes sense, in talking of contributions of various regions of
the boundary layer to the space-time covariance of the wall pressure
fluctuations, to consider not the contributions of finite regions but the
joint contributions made by pairs of infinitesimally thin strata. These

are correctly represented by the funtion G The point may be made here,

13°
however, that it may be convenient in certain cases to use the expressions

given above for the contribution of a finite region of the boundary layer.
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In such cases, it is permissible only so long as care has been taken to

define clearly what is meant.

But, even so, some qualifications need to be made. As in the case of
the joint contribution to the space-time covariance of the wall pressure
fluctuations resulting from a pair of strata, it is possible to envisage a
situation where the contribution to the space-time covariance made by a
finite region a < x2 £ b of the boundary layer, as defined above, becomes
essentially the total contribution of this region, even when correlation
between sources within it and outside it is taken into account. 1In this
case, the total contribution comes almost entirely from the correlation
within the region itself, and again this implies that the function G13

must be large for y2 = 22 and fall rapidly to insignificant values as 22

differs from Y,- (Quantitatively, this implies that

a b o b
w? | a dz. G. (v.,z.) + 0> | a dz. G._ (y.,z.)} << C(a,b)
P Yy 2 “13'¥27%; P Yy 2 1350 %y U
0 a b a

... (2.4.10)
where the first and second term on the left hand side result from
correlation of sources in the region a < X, € b with those in the regions

0 < X, € aand b g X, £ respectively.)

Equations (2.4.2), (2.4.3), (2.4.5) and (2.4.6) could have been
obtained more directly although more formally and without considering in
detail the contributions of various strata, in the following way. For
source terms confined to the region a € x_ < b, Equation (2.1.9) written in

2

full, gives for the contribution of this region (defined in the same way
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as above) to the space-time covariance of the wall pressure fluctuations

@ b o) ) b o
- -
r <gly,t)q(z,t')>
— | @, | av, | av, dzljr1z2 dzy g
x-y| |x'-z

C(a,b)

b b

22

= p j dyzfd l3(y2,z ) ... (2.4,11)
a a

b b
2 | a dz_ F._(z ) (2.4.12)
Yy 2 T13'%51Y, e ek S
a a

with the use of Equations (2.2.3) and (2.3.4). To show that Equations

(2.4.5) and (2.4.11) are equivalent, we have from Equation (2.4.11)

b y2
/dy2/6z2 Fl3(y2,z2) + p / f Z, 13(y2.z )
f j F13(2,ry,) +p / f 2 F13(¥502))

f / g F13(Zpr¥y) + 0 / f Zy Fi3lyyezy)
/dzz [dz 13(y 'z, )

which is Equation (2.4.5). In a similar way, Equations (2.4.2), (2.4.3)

C(a,b)

and (2.4.6) could be obtained.

2.5 Representation of the Joint Contribution of Two Strata to the

Space-Time Covariance cf the Wall Pressure Fluctuations as a

Derivative,
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It was pointed out earlier that any attempt to formulate a derivative
from Equation (2.2.2) would not result in a meaningful expression. This
applies equally well to the expression (2.3.2) which represents an
elementary contribution to <p(§,t)p(§',t')>. However, the function G13

itself may be represented as a derivative of a function which is closely

related to the space-time covariance of the wall pressure fluctuations.

;2 . s .
Let P(yz,zz),p be any indefinite integral of G13(Y2’22) over y, and

z2 so that

2
9 P(erzz) 2
—_— = p G

'ZZ) o cee (2.5.1)
3y2 822

13,

Like Gl3' P will be a symmetric function of y2 and z, and 1is written in the

\

abbreviated form. It then follows from Equations (2.4.7) and (2.4.8) that
-> > .
<px,t)px',t")> = ¥P(»,®) + %P(0,0) - P(0,®) . ee.(2.5.2)

Consider now the more specific definition of P given by

Yo 2
2
P(yz,zz) = dy dz G13(y,z) i e..(2.5.3)
0 0
Also, let
Ys %
* 2
P (y2,zz) = p dy dz Fl3(y,z) ’ ces{2.5.4)
0 0

so that by Equation (2.3.3)

* *
P =
(YZ,ZZ} P (y2,22) + P (ZZ’YZ) . ... (2.5.5)
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With the preceeding definitions, we have, instead of Equation (2.5.2),
> - *
<p(x,t)px',t")> = XP(e,®) = P (v,®) = C(0,%). ...(2.5.6)

From Equation (2.5.3) we have (taking z_ > y

2 for convenlence)

2
¥, ¥ Zy 3

P(y,,2,)

|
©

2 A
dy fdz G, (y,z) +p dy [dz G;;(y,2)

0 0 0 Y
Zy 2y
- 02 d dz G, _(vy,2z)
Y2 b4

C(O,yz) + C(Orzz) - C(Yzazz) '

contribution of " contribution of

i < < i < S
region 0 < X, £ Y, L-reglon 0 < X, $ z,
- reczzzribu:izn o . .25

gion ¥, = Xy ¥ %

Thus P represents a combination of the contributions of three finite
regions of the boundary layer (as defined in Section 2.4) to the space-time
covariance of the wall pressure fluctuations. The function P* represents
the contribution to the space-time covariance of the wall pressure

fluctuations resulting from correlation of sources in the region

0 £ x_ ¢ Y, with sources in the region 0 € x

£ z_.
2

27 72
In considering the mean square wall pressure fluctuation <p2> =
> > . 2 %
<p(x,t)p(x,t)> and the root mean square fluctuation p' = <p >°, Corcos
(1964) and Bull and Lim {(1968) have used the nomenclature (in the notation

2
presented here) "3<p >/ay2" and "ap'/ayz“, and shown distributions of these
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quantities across the boundary layer; the values at a particular yz have
ther been broadly interpreted as giving the contributions of a stratum at
that Y, to the mean square wall pressure fluctuation and the rcot mean
square wall pressurs fluctuation respectively. Although in both cases the
meaning intended by the authors is probably fairly clear, it is also clear,
following what has already been said in Section 2.2, that, strictly, the
"Jerivatives" referred to have no meaning. This can perhaps be clarified
by expressing these functions in terms of functions which have been

clearly defined above.

It will be implied in the following that various functions, such as

*
F13 and P , which have been written in the abbreviated form as functions

of y2 and z2 only, are in this case evaluated for ; = ;' and t = t'.
Hence,
I'la<p2>ll 2
= p dz2 F13(y2,z2) ce.(2.5.8)
8y2
0
*
op (Y21°°)
= — .+.(2.5.9)
3y2
and
b
2IIB<P2>II =
dy = P (yz,w) : ... (2.5.10)
9y
0

The second quantity can be written

T P T
{P(yz,)}

3Y2 8y2

L ... (2.5.11)
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*
9P (y.,%)
= T % L " z ...(2.5.12)
2{P (Y2,°°)J‘ 3_‘[2
and
y
2
1" apl 1} * ;2
£ gy = {p (yz,oo)} , e..(2.5.13)
J dy
0

Thus it will be seen from Equation (2.5.8) that, in fact,
" 3<p2>/3y2 “.dy2 represents the contribution to the mean square wall
pressure fluctuation resulting from the correlation of sources in a stratum
at Y, with the sources in all cther strata in the boundary layer. From
Equations (2.5.11), (2.5.12) and (2.5.13) it is clear that the
interpretation of " Bp'/ay2 " has to be made in a very specialised way
indeed, but it also contains contributions from all strata in the boundary
layer. This raises a second objection to the use of these "derivatives",
which is that, quite apart from the guesticn of nomenclature, they are
first derivatives rather than second derivatives, and as such already
contain contributions from all strata in the boundary layer; in consequence
their use to characterise contributions to <p2> or p' from particular
regions of the boundary layer could be very misleading. This brings us
back to our earlier conclusion that, in general, the most satisfactory way
of considering contributions from various regions of the boundary layer is
by considering the joint contribution of pairs of strata as represented by
the function G, .

13

The variation of G13 over the boundary layer will be shown later for



a particular case as ar illustration of the correct representation of the
contributions of various strata of the boundary layer to the mean square
wall pressure fluctuations. The G13 values presented will be those
calculated on the bas’s of the assumptions that the boundary layer grows
slowly in the streamwise direction, that the turbulence is statistically
stationary in time and homogeneous in planes parallel to the boundary, and

that the turbulence/mrean-shear interaction gives rise to the dominant term

of the source function, gq (Equation (2.1.6)).

2.6 G13 for a Slowly Growing Boundary Layer with Statistically Homogeneous

Strata and Dominance of Turbulence/Mean-Shear Interaction.

The source function g giving rise to the fluctuating component of the

wall pressure is given by Equation (2.1.6) as

N 9U. oJu. Bui ou. du. Ju.
qg(x,t) = 2 = + Lo L1 .

dX. 9%, 0xX., 90X, 3x, dx.

J 1 J 1 J i

If it is assumed that the rate of boundary layer.growth is sufficiently
slow for the mean velocity parallel to the boundary Ul (in the xl—direction)
to be taken as a function only of the co-ordinate normal to the boundary,
and that the interaction between the mean shear and the turbulence gives
rise to the dominant term in the source function (see Kraichnan (1956a),
and Lilley and Hodgson (1960)), then

BUl 3u2

q = 2= ...(2.6.1)

8x2 Bxl

where u2 is the fluctuating component of the velocity normal to the

boundary. The corresponding approximation for the covariance of g is then

taken directly from Equation (2.6.1) and it will be regarded as that
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resulting from turbulence/mean-shear interacticn. The terms consisting of
the product of one mean shear term and a covariance formed from the product
of three fluctuating texms which would otherwise arise in forming
covariances of g from Equation (2.1.6), and which could also be regarded as
arising from turbulence/mean-shear interaction, are ignored on the ground
that third order correlations are usually very small. We therefore get

2 > >
o <u2(y,t)u2(z,t )>

<ay, 0@, t)> = 4 Ny, M) e (2.6.2)
Byl le
where
U, (x.)
M(x.) = —=—2_
2 9xX
2

With the assumption of statistical homogeneity in planes parallel to the
boundary and stationarity in time, and using Equations (2.2.3), (2.3.4)

and (2.6.2) we may write

P (Y.,Z 1%, %', E,t") P (Y. 12 ,E,7)
Y,r 1 XX ,C, 13Y21211

13 72" 2 ;
(e ow ) =] =]
M(yz) M(Zz)
= —_— dy a ol d oes
it 1] F3 ] B %3
—00 -0 -0 -0
2 > >
3 <u2(y,t)u2(z,t')> 1 1
- s > > - > ’
- -
ayl 8zl x~y| |x'-z
eee (2.6.3)
> > > .
where £ = x' — x and 1 = t' - t. Integration of Equation (2.6.3) by parts
leads to

3 © © @
M (3 M
F (v .z !EIT) = ""ij_z')__'_('z_z')_ oy d a < v Z,t
13 ) 2 _n_2 yl ys Zl dZ3 'L12 (y,t)u2 (Z,t )>-..
- -—C -C0 -—
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3|§¥; = alx -z z|™t
. w e (2.6.4)
Byl le

On the basis of the assumptions made, we may also write

<u_ (y,6)u, (z,t")> = (Y r2,,7) (2.6.5)
u2 vel u2 Z, = Q22 y2, 2,r ’ eoe .0,

> -> ->
where r = z - y.

Following Hodgson (1962) we then have

TN SR Ul Wi W 1 ar, 0 (y,,r
13 ¥Hr, 8T = 2 rlj 3 Qo TprEe™) -ne
-00 -0
a|§-§ B P ‘
- . ve.(2.6.6)
Brl
Hodgson showed that
> > =1 > > =
le—y alx —y—rl -
dyl = 2ﬂ913(y2,i,r) . ... (2.6.7)
r
1
where
(§.-r )2(2 +r_+2m)
> > 1%y ¥,
g (Y £4x) = 1- / m{2y_+r_-+m)
1372 m? (2y_+r_+m) 2 2
¥y7 55 1
ee.(2.6.8)
and
2 2 2 2
= + - -—
m (2y2 rz) + (El rl) + (53 r3) . .. (2.6.9)

Hence Equation (2.6.6) becomes



© [+
N 2M(y,)M(z,)
Fl3(yzizzlng) = "—___::‘_*__ drl dr3 Q22(Y2122:r17r31T) SO
-0 -—
>
e 913(Y2122,rl,r3,§) . ees{(2.6.10)
where now
(E.-r )2(y +z_+2m)
z , 11 2 2
g, . ¥, 12X ,T ,8) = 1- / |m(y. +z +m)]
132" 2771 '3 2 2 2
m (y +z_+m)
2 2
ees(2.6.11)
and
2 2 2 . 2
m = (y2+zz) + (El )T (&g r3) . ... (2.6.12)

Introducing a space-time correlation coefficient for the velocity

fluctuations normal to the boundary, given by

<u_ (y,t)u, (z,£')>
u2 Y, .u2 Z,

<u (§)>%<u§ &>

Ry =

we can write, for the present case,

-5

->
RpaWp =™ = Ryp(WprZyr¥yesyr™) uly,) wi(z,)
2\ ¥y Uyi2,
Q22(Y2,221r1rr3'T)

= ' vee(2.6.13)
u2(Y2) u2(zz)

where ué is the rcot mean square velocity fluctuation normal to the

boundary. Equation (2.6.10) then becomes

2

-
Fl3W,r2,0Ee) = ;‘M(Yz)M(Zz)ué(Yz)ué(zz)113(y2,z2,g,1) , ... (2.6.14)
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where

[

>
j dro | drg Ry, (yo,2y0%y,T0T) 9y3(9502,,7.75,8)

I

I Z,
13(y21Z2’blf)

-0 -0
...(2.6.15)
From Equation (2.3.3) we then have
G4 (y,:2,,8,T) = g'M( IM(z Jul(y ul(z )|, (v, ,2 ET)+I (z_.,v ET)
13 ¥pr%gr5r m MY M2 0, (Y ) u, (2, ) | 2y 3 e 2y Sy 1382077501 s

... (2.6.16)
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3. CALCULATIONS FOR CONSTANT PRESSURE LAYERS.

3.1 Boundary Layer Model.

The space-time covariance of the wall pressure fluctuations is given

by Equation (2.4.7) as

- - 2
<p(x,t)p(x',t")> = p ‘[dyzf d22 G13(Y2'zz) ; ... (3.1.1)
0 0

where, from Section 2.6, it has been shown that under the assumption of
the dominance of turbulence/mean-shear interaction in the generation of
the pressure fluctuations and for a boundary layer which is slowly growing
within which the turbulence exhibits statistical stationarity in time and
homogeneity in planes parallel to the boundary, G13(y2,22) (written in.the

abbreviated form here) is given in full by Equation (2.6.16). In the

-

> >
special case when x = x'" and t = t', £ = 17 =0, and R becomes a space

22

correlation only. The mean square wall pressure fluctuations is then
given by

o«
Y2
2 > > 2
<p> = <p,t)px,t)> = p dy, | 42, 645,

0 0

IZ2) P c..(3.1.2)

—
where G13 is now understood to be evaluated at § = T = 0.
The evaluation of Equation (3.1.1) or (3.1.2) requires the
specification of the distributions across the boundary layer of the

turbulence intensity ué, the mean shear, and the spatial correlation
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coefficient of the fluctuating velocity component a,.

3.1.1 The Turbulence Intensity.

The values of ué/UT are based on the experimerital measurements of
. . } 4
Klebanoff (1955) which were made in a boundary layer with Rea* = 107,
together with those of Laufer (1954) which were made close to the wall in

. * *
turbulent pipe flow, where Re_ * is the Reynolds number § Um/v, § 1is the

8
boundary layer displacement thickness, U_ is the free stream velocity, v is
1
the kinematic viscosity, UT = (Tw/p)i is the friction velocity at the wall
0 2 _>. 0 .
pressure covariance datum point x, TW is the wall shear stress and p is the

fluid density. The two sets of data are shown in figure 1, and it can be

seen that they are fairly consistent in the region in which they overlap.

*
(x,. = szT/v)

*
If we regard the distrxibution of ué/UT as a function of x 5

2
over the constant stress layer and a function of x2/6 outside this layer,
where § represents the boundary layer thickness, then we can obtain the

*
constant stress layer variation for 0 < x, < about 600 and the outer layer

variation for 0.2 g x2/6 < 1 from figure 1 (since x; = 600 is equivalent to
x2/6 = 0.2 at the Reynolds number of Kiebanoff's experiments).

Experimental measurements of the mean velocity distribution show significant
deviations from the logarithmic variation for values of x2/6 greater than
about 0.2, and it seems reasonable to define the outer edge of the constant
stress layer as the point where this deviation has reached some chosen
value. If we accept Coles's (1956) mean velocity profile, then the

deviation of Ul/UT from the logarithmic variation is simply Hw(xz/dc)/K,

(where w(xz/ﬁc) is Coles's wake functicn, Gc is the value of x2 in the
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ovter part of the layer where B(Ul/UT)/Bln(xz/dc) = 1/x, I is Coles’'s
profile parameter and k is the von Karman constant. A given deviation will
therefore occur at a particular value of x2/6 at all Reynolds numbers. The
outer edge of the constant stress layer will therefore be taken as

x2/6 = 0.2 at all Reynolds numbers.

To obtain the u; distribution at Reynolds numbers higher than that of

%
Klebanoff's measurements the variation for 0 £ x, £ 600 and 0.2 £ x2/6 <1

&

will be taken from figure 1, but some assumption still has to be made for

*
the region between x_ = 600 and x2/6 = 0,2. The assumption which has been

2
made is that over this region ué/UT is constant and equal to the maximum
value measured by Klebanoff. The resulting variation of the ué/UT
distribution with Reynolds number is then as shown in figure 2, and the

empirical expressions used to represent the data in the calculations are

given as follows:

*2
ué 0.00921x2 *
-~ = - > for 0 < x2 <10 ,
U 1 - 0.0361x, + 0.01328x
T 2 2
*
0.0838x22 %
= - 2 for 10 < x2 < 600 ,
1+ 0.922x9 + 0.0771x2
* *
= 1.06 for x2 > 690 and x2/6 < 0.2 ,

1.06 exp [—2.23(x2/6 - 0.2)2] for x./8 > 0.2 . .. (3.1.3)
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2,1.2 The Mean Shear.

The variation of the mean velocity U1 with distance from the boundary
in an incompressible, constant pressure, two-dimensional turbulent boundary
layer, in the region of the boundary, is given by the law of the wall as

U *
U
T

*
Many proposals for the form of the function f(xz) have been made and it
*
has been shown by Bull (1969b) that in the region x2 < 33, the mean shear
which is given by the gradient of the mean velocity in the direction normal

te the boundary can be taken as

* * * 2 * 5 N

vM(xZ) x2 x2 17x2 x2
2 = 1+ —+5(-) + —-9 exp (- —) ., ... (3.1.4)

UT a a b a a

*

with a = 4.0 and b = 1300. Further from the boundary than X, = 33 and

extending very nearly to the edge of the boundary layer, the mean velocity
takes the form of the logarithmic distribution plus Coles's (1956) wake

function. The mean shear for this region has been given by Bull as

GM(XZ) 1 I x2

= + ——-wg(—-ﬁ ...(3.1.5)
U; K(xz/é) cK cé

*
for x_, > 33 and xz/G € 0.837. Here c = 0.837, w_(£) = dw(§)/df and w(&)

2 g

is Coles's wake function. Bull (196%9a) suggested a form of the velocity
distribution that eliminated the discontinuity which occurs near the edge
of the layer when Coles's original wake function is used. He presented a

power law for the mean velocity profile which matches Coles's profile at



the point in the wake region where the gradient of the profile is equal to
that of the logarithmic region, and also satisfies the condition that
BUl/sz = 0 at x2/6 = 1. With this representaticn, the mean shear in the
region 0.837 ¢ x2/5 € 1 is given by
n-1
61.1(}{2] 1 1- X2/6

—————— = ...(3.1.6)

U cK 1-¢
T

where n = 1.67. The variation with Reynolds number of the distribution of
6M(x2)/UT across the boundary layer, given by Equations (3.1.4), (3.1.5)

and (3.1.6), is shcwn in figure 3.

3.1.3 The Correlation Function.

Particular values of the correlation coefficient R22(x2,r) have been

measured by Grant (1958) and more recently by Tritton (1967). We have
information on R22(x2;r1,0,0), 22(x2 O,r ,0) and R (x2;0,0,r3). Lilley
and Hodgson (1960) in their calculation of p'/Tw represented the boundary

layer velocity field by a superposition of large and small eddies randomly

distributed over all space. The large eddies were described by

v = -(1 - a2 ) exp (—a2r2/2) ’
1 3
%
A 2
v2 = azalr (1 a3 ) exp (- a r /?) %
_ A - _ 2 2
v3 ula3rlr3(1 uztz) exp (- r /2) ,

where Vyr V2 and v3 are the velocities in the xl, X, and x3 directions
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respectively, and,

2 2

= a2r2 + or? + o2r2
er = 0% 2%2 Brg &

and the small eddies being taken as isotropic.

The correlation functions are then,

s = of ri + ri
R22(X2:IJ = (1 - az) (£ + el ) ves(3.1.7)
for the small eddies and
2 2 4 4
a_r a.r 2 2
Lo~ 171 2.2 373 o’r
R22{r) = a2(l ) (1 a3r3 + 13 ) exP ( jzfﬂ ; «e.(3.1.8)
for the large eddies, where
2 2 2. %
= + +
r (r1 r2 r3) =

The resultant correlation function is then the sum of these two functions,

that is,

x.,7) = R°.(x_,7) + R (@) (3.1.9
R22 xz,r = 22 xz,r 22 r i ees(3.1.9)

The function f appearing in the small eddy correlation function gives a
good representation of the experimental data if it is taken as exp(-r/s),
where s is an appropriate length scale associated with these eddies. The

correlation function due to the small eddies can thel be written as

2
BB = (-a) - I +=2 (~ z/s) (3.1.10
o (Ko = a, 25 T ors ) ©XP r/s . e+ (3.1.10)

Lilley and Hodgson represented the correlation throughout the layer
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by the above function with values of constants chosen to suit Grant's
measurements close to the boundary. The same representation has been used
here, but an attempt has been made to represent the variation of the scale
s with distance from the boundary in a manner whtich will be discussed in
more detail later. For the large eddy contribution the values alGO = a260
= 3.73, a360 = 11.1, as used by Lilley and Hodgson, and a, = 0.085

(somewhat less than used by Lilley and Hodgson) have been used for all

values of x_, where 6_ is the value of x_ at which U, = U = U . 1In the
2 0 2 1 o T

present work, 60/6 has been taken as 0.683 so alG = azd 5.46 and

§ = 16.26.
%3

It can be seen from the definition of R22 given in Section 2.6 that

the calculation of the auto-covariance of the wall pressure fluctuations

> - ) .
<p(x,t)p(x,t')> requires a knowledge of the values of the space-time
correlation coefficient of the velocity fluctuations normal to the boundary
at non-zero values of time delay, although the special case of the
evaluation of the mean square pressure fluctuations requires only R22 values
at T = 0.

As no extensive experimental data for R2 5 with non-zero time delay
are available, this correlation coefficient has been evaluated by making
use of the empirical foxmulation of R22 with zero time delay (the space
correlation) which was developed for mean square pressure calculations.

To do this the well known hypothesis due to Taylor (1938) is used, where,
at least for time delays which are not large, the velocity fluctuations in

any plane parallel to the boundary can be regarded as "frozen", and as

being convected parallel to the boundary. 1In principle, it is then
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possible to transform the space correlation function into the required

space-time correlation functicn by means of the relationship

R22(y2122rrlrr3lr) = R22(y2'22'rl-UCT'r3'0) ’ ese(3.1.11)

where Uc is the convection velocity of the velocity field in a plane at a
distance z2 from the boundary, if a point in the plane at distance v, is

regarded as the datum point.

But, the convection welocity will vary with distance from the
boundary and Equation (3.1.11) will give a different result depending on
whether the datum point is taken to be that at y, or that at Z,e This is
élearly at variance with reality. However, this inconsistency can be
avoided by adopting the procedure detailed in Section 3.1.4. There, the
scale of the R22 correlation is taken as that corresponding to the plane
at a distance (y2 + z2)/2 from the boundary. Similarly, here, the

convection velocity Uc is taken as the velocity for the plane at a

distance (y2 + zz)/2 from the boundary.

Several previous investigations of the space-time correlations of
the velocity fluctuations in turbulent boundary layer flows in planes
parallel to the boundary - for example Favre, Gaviglio and Dumas (1957),
Willmarth and Wooldridge (1963), Bull (1967) - have shown that the
convection velocity of the velocity field is essentially equal to the
local mean velocity, although Morrison (1969) has shown that this is no
longer true for planes very close to the boundary (y; less than about 20).

In the calculations for the auto-covariance of the wall pressure
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fluctuations, the convection velocity has therefcre been taken as the

mean flow velocity at a distance of (y2 + 22)/2 from the boundary; so that

) . ..+ (3.1.12)

In the outer part of the boundary layer this value will not differ
significantly from either Ul(y2) or Ul(ZZ)' However, in the inner part of
the layer, the convection velocity given by Equation (3.1.12) will give
rise to values of Uc markedly different from Ul(yz) or Ul(zz), but in the
light of Morrison's findings the errors will be less than might otherwise

have been expected.

It should alsc be pointed out that, for the model used for these

calculations, the maximum value of Rzé-for given values of y2, Z., and r

2 3

will in general occur for T = rl/Uc and in particular for 1 = 0 when

r, = 0. This is not in accord with the experimental results of Favre,
Gaviglio and Dumas (1957). The results from their investigations of the
correlation of streamwise velocity fluctuations indicate that the maximum
correlation occured at a value of T somewhat different from rl/Uc.

However, scrutiny of the details of the calculations indicates that this

discrepancy does not give rise to any significant errorx.

3.1.4 The Reciprocity Relationship and Eddy Scales.

It is important to note that Equations (3.1.8) and (3.1.10) correspond
basically to turbulent flows in which the scale of the large eddies (as

determined by a_, o and a3), the scale of the swmall eddies s, and <u2>

1’ 2! 2
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are all constant. However, in boundary layer flows <u§> certainly varies
with distance from the boundary surface, and even if the large eddy
correlation is represented by Equation (3.1.8) (in which case its scale is
not a function of the distance of the datum point frcm the boundary) the
length scale s of the small eddies can be expected to be very small close
to the wall and to increase with increasing distance from the boundary. It

was therefore initially assumed that
s = s(x2) . ee«(3,1.13)

A similar assumption has been made in previous work, for example in

Hodgson's (1962) calculations based on R _ = exp (- r2/x§). Based on the

22
data of Grant and Tritton, Equation (3.1.13) has been given the specific

form

Il

s/x 0.570 for 0 £ x2/6 < 0.2 ,

2
...(3.1.14)

s/6

n

0.114 for 0.2 ¢ x2/6 £ 1.0 .

The correlation curves chosen as the best fits to Grant's and Tritton's
data within the framework of Equations (3.1.8) and (3.1.10) are shown as
dashed curves in figure 4. For these curves the abscissae are given in
terms of § and not 60 as used in the original presentations of the data.

The variation of the scale is shown in figure 5.

However, any equation of the form of (3.1.13) leads to an
inconsistency in the boundary layer model. The model chosen should satisfy

the following reciprocal relationships:



101
X Grant (i938)
] — — — Best fit curve
Using xales according toFig.b
i
1 O |1
¥
\

\
\t\ %,/6 =0.052
\

-0.2




52
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Fig. 4 Comparison of Experimental and Assumed

Velocity Correlations.(Best Fit' curves are
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framework of Equations (3-1-8) and(3-110)),
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-+ - > >
<u_ (y,t)a_(z,t")> = <u_(z,t")u, (y,t)> ce.(3.1.15)
2 2 2 2
or, equivalently,
W @ul(z) R (¥,z,tt) = u @ul®@ R _(2,7,t,t), ..(3.1.16)
2 2 2240 2 2 22 '
and also
R._(y,2,£,£') = R__(2,9,t',t) (3.1.17)
22 YeZ,C, 22 1Yo r . cen o S

In these equations the expressions on the left hand side is the covariance
for which ; is understood to be the fixed datum point, and that on the
right hand side a covariance for which Z is the datum point. These
reciprocal relations must be satisfied by the real flow; for the model, if
the small eddy correlation is as given by Equation (3.1.10) when t = t',
Equations (3.1.15), (3.1.16 and (3.1.17) will not be satisfied if the small
eddies have a scale variation of the form given by Equation (3.1.13) (since
the scale chosen will depend on whether ; or Z is regarded as the datum
point). The lack of reciprocity resulting from a scale choice according to
Equation (3.1.13) can be avoided by modifying the equation so that for

correlation between two points ; and z we take
= + - - ® @ - .
s s [%(y2 zz)] (3.1.18)

Equation (3.1.14) can then be modified to

]

s/[%(y2+zz)] 0.570  for 0 g %(y,+z,)/6 5 0.2 ,

... (3.1.19)

s/§ 0.114 for 0.2 ¢ %(Y2+zz)/6 < 1.0 .

Using Equation (3.1.18) or (3.1.19), the scale of the small eddies will



56

now be associated with the point midway between § and Z, and the model will
satisfy Equations (3.1.15), (3.1.16) and (3.1.17). This alsc means that,
while s is independent of the two co~ordinates parallel to the boundary, it
will vary with the separation distance normal to the boundary between the
two points considered, and for any given datum peoint this variation will
not be symmetrical about the zero separation point - the scale will
decrease with increasing separation distance cn the boundary side of the
datum point and increase on the side of the datum point remote from the
boundary, a behaviour which seems to be acceptable from the physical point

of view.

It should be noted, however, that the definition of R22 given above
and in Section 2.6 is not the only possible one. For example, in
presenting his experimental data, Grant (1958), for convenience, used an
alternative form of the coefficient defined by

> -
<u2(y,t)u2(z,t')>

R = , ...(3.1.20)
L <ul @)>

.
where y is the datum point. If this procedure is followed, it is clear
that, although the basic reciprocity relationship, Equation (3.1.15),
should still be required to be satisfied, Equation (3.1.16) must be

modified to
2 > > > . 2 > > >
<u2(y)> R22(y,z,t,t )y = <u2(z)> R22(z,y,t',t) : ... (3.1.21)

and Equation (3.1:17) must be dispensed with. In this case, if the space

correlation coefficient is still represented by Equations (3.1.8), (3.1.9)



and (3.1.10), Eguations (3.1.15) and (3.1.21) will not be satisfied (as a

e 2 . .
result of the variations of = and <u2> with the distance from the
boundary;, and the boundary layver modsl will not have thas reciprocity

property.

Figures 6(a) and 6{b) show the variation of the space correlation
coefficient of thes U, velocity fluctuations for the datum point at two
distances from the boundary (y2/6 = 0.040 and 0.45 respectively), for both
definitions of R22 - as in Section 2.6, and as in Equation (3.1.20) - with

R22 expressed by Equations (3.1.8), (3.1.9) and (3.1.10) in each cases, for
seven angular directions from the datum point. Curves are shown for both
forms of scale representation for the small eddies, Equaticns (3.1.14) and
(3.1.19), and where possible the experimental data of Grant (1958) are
also shown. When R22 is as defined in Section 2.6, the data of Grant have
been modified so that they conform to this definition; the modification
has been effected using the ué/UT distributicon detailed in Section 3.1.1
for the Reynolds number corresponding to Grant's experiments (Rea* = 104),
and it has been assumed (as appears from Grant's paper to be the case)

that in the experiments the second correlation point was always further

away from the boundary than the datum point.

In concluding this section, we might note that the scale variation
represented by Equation (3.1,14) is very slightly different from that
chosen for the calculations previously presented by Bull and Lim (1963},
A discussion of the choice of scale in that case and detailed compariscns

with the data of Grant and Tritton are given in that paper.
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3.2 Calculation of the Autc-Covariance and the Msan Square of the

Wall Pressure Fluctuatiqgi.

The equation of the covariance of the pressure fluctuations has been
given in Secticn 2. In this section, we are priwarily concerned with the
calculation of the overall values of the auto~-covariance and the mean
square of the wall pressure fluctuations in a constant pressurs turbulent
boundary layer as given by Equations (3.1.1) and (3.1.2). The

determination of the auto-covariance aiffer from that of the mean square

5
=

value only in as much as in the former case £ = 0 and in the latter,

& = 1 = 0. Under normal circumstances, & general numerical procedure
would have been devised for the evaluation of these values. However, due
to the great extent of machine computing time otherwise required for the
accurate evaluation of each of these values, the computational requirements
have been broken down not only to a combination of machine and manual
procedures but also to the extent of having separate optimised computer

programmes.

3.2.1 Calculation Procedures.

The nurerical evaluation was carried out on the C.D.C. 6400 digital
computer in the University of Adelaide. To make possible a mutual check on
consistency and accuracy of results, two different procedures were adopted,
although, in fact, the check has been applied only to the calculations for

the mean square pressure. The two methods are as follows.

Method 1l: The computer programme which is described and given in



detall in Appendix A~I is dssigned to give the value of the three-fold
inteyral
[eel]
%
BP (.Z)F ) 2
—_————eee = z F Yar2.) ... (3.2.1
P az,, 13(y2, o) r ( )
3y2 J
' 0
(F13 itself being, 0of course, a double-integral in (rl,r3) space as given

by Equations (2.6,14) and (2.6.15), where, from Section 2.5, we define

*
P (Yz'zz) as
z
¥y %
~ \ 2 f 3z T 2 P
P (yzgzz, = 0 .} dy | dz Lls(y,z) . e (3.2.2)
o "o
The final integration over y2,

oo *
r3P (v.,%)
<p2> = —_— dy2 3 .0.{3.2.3)
3y2

0

is carried out manually.

Mzthod 2: First, in the determination of the mean square wall

pressure fluctuations, (y2,z2), the small eddy contribution to I is

<3
113 137

calculated according to Equation (2.6.15), a process which requires only

. . . . s
one machine integration, since, when R

99 is represented by Equation

(3.1.10), the double-integral of Equation (2.6.15) can be reduced to a
single-integral (see Appendix B). The walues of Ii3 obtained in this way
are independent of Reynclds number, so that, for a particular boundary
layer model, calculation of them has to be made only once. This is

. . S
followed by the calculation of G

13 28 in Equation {2.6.16) and the machine
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. . . s I .
integration over z_ to give 3P (yﬂ,w)/ayz, for the particuiar Reynolds
< A

. . 8 - . .
number being considered. 9P (yz,w)/ay2 corresponding to the large eddies
is obtained ky the same procedure as in Methed 1 using Egquations (2.6.14),
(2.6.15), and {3.2.1Y. The computer programmes devised to perform these
calculations are given in Appendix A~IV and A-V. The final integrations of
a-;s 0 a = '\P’Q’ {v ) n v v 3 T e I 3 2 = g
F (yz, Y/ y2 and o \12, )/ay2 over }2, as in Eguation (3.2.3), are agailn

. . = N . 2

done manually, resulting in the small and large eddy contributions to <p >

. . . .2
respectively., Summation gives the overall wvalue of <p >.

3.2.2 Cases Considered.

(1) Mean Sguare Wall Pressure Fluctuations.

Four sets of calculations will be referred to; those previously given
by Bull and Lim (1968) will be designated Set I, later calculations based
on the same model will be designated Revised Set I, and two mpdditional sets
to be presented here will be designated as Set II and Set IV. The details
of the boundary laver model and the calculation procedure for Set I can be
found in the original paper; the conditions for the Revised Set I, Set II

and Set IV cairulations will now be detailed.

Revised Set I: The results presented by Bull and Lim (1968), which
apparently gave overestimates of the mean square wall pressure fluctuations,
has subsequently been found to suffer from certain defects (some of which
were alsc inherent in earlier work). These are that the boundary layer
model taken does not satisfy the reciprocity relationships discussed in

Secticn 3.2; that in the numerical integration processes inadequate region



105), a point

W

sizes were taken at the higher Reynolds numbers <REG*
discussed in greater detail in Section 3.2.3 below; and that the correlation
coefficient, intended o be given by Equatiors (3.1.8), (3.1.2) and

(3.1.10) as in the prcsent work, was incorrectly gepresented in the

computer programme. The fcorm of the correiation coefficient actually used

in the Set I calculations is

2 2 2 2
e, r a_r r p
R, (v,,5) = la(l-—8 exp (- =53 + (1-a)(1-—2) exp (- =
22 Yo7 ® = 18 2 P 7 2 = OXP AT E 'l
[ o2z r
272 2
- 4 - - — -
- a2 exp ( 7 Y + (1 a2) exp ( . R
] ot a2 ¥ r
Ja @ -ok2 + 223 exp - 22 + (1 - a)(l - D) exp (- =
o 2 373 2 . 2 2s s
]

eea(3.2.4)
It was felt that repeating the Set I calculations with the same

boundary layer model, despite the fact that this did not correspond to
that originally intended, but with adequate integz':ation region sizes, would
give an indication of the effect of the form of the correlation function
on the calculated values of <p2>. Hence, for the Revised Set I
calculations, the boundary layer model is such that the turbulence
intensity, mean shear and small eddy scale distributions are exactly the
same as given by Bull and Lim (1968) and the correlation ccefficient is as
given by Equation (3.2.4). The turbulence intensity in this case is still
described by Equaticn (3.1.3), and the variation with Reynolds number of
the distribution cf the mean shear in the form of (G/UT)(BUl/sz) across

the boundary layer is shown in figure 7. The machine integration for the
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=alue of the triple-integral {(Eguation (3.2.1)) in this case was carried
out by the method of Sag (1963) with prior inspection of the integrand to

determine an adequate region size (see Section 3.2.3 below).

Set II: The distributions of the mean shear and the turbulence
intensity ars as detailed in Section 3.1. The space correlation coefficient
of the u, velocity fluctuations is as defined by Grant {1258), Equation
(3.1.20), with the small and large eddy contributions as given by Equations
(3.1.10) and (2.1.8) respectively, and with the scale of the smalil eddies
as given ky Equation (3.1.14); so, for both the possibilities discussed in
Section 3.1.4 the reciprocity relation is unsatisfied. For this set of
calculations, because of the method of definition of the velocity
correlation coefficient, the product ué(yz)ué(zz) appearing in the
expressions for F and G in Equations (2.6.14) and (2.6.16) respectively,

13 13
is replaced by <u§(y2)>.

Set IV: Again the distributions of the mean shear and the turbulence
intensity are as in Section 3.1; the velocity ccrrelation coefficient is as
defined in Section 2 with the large and small eddy contributions given by
Equations (3.1.8) and (3,i.10) respectively; the scale of the small eddiss
is as given by Equation (3.1.19). In this case, therefore, the reciprocity
condition is satisfied.

FPor Revised Set I a Reynolds number range of lO3 < Rea* < lO6 has

7

been considered, and for Sets II and IV a range of 103 < Reﬁ* < 10,
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(2)__Buto-Covariance of the Wail Pressure Fluctuations.

In contrast to the calculaticn for the mean square value of the wall
pressure éluctuations, and for reasons which will teccme obvious in the
discussion, only one set of calculations was attempted for the
auto-covariance. The boundary layer mcdel is the same as that for the
Set IV calculaticuns #for the mean square value except that the required
space-time correlation function is obtained from the spatial correlation
function by the use of Equations (3.1.11) and (3.1.12). The case
considered has been for Re * = lO4 only.

8

3.2.3 Evaluation of the Required Multiple Integrals.

Basically, the calculaticn of the space-time covariance or the mean
square value of the wall pressure fluctuations requires the evaluation of
a six—-fold (double space) integral. However, witb the formulaticn adopted
in the present case and subsequent analytical reduction, and by carrying
out the final integration manually, the digital computer operation can be
reduced to the evaluation of, at worst, a triple-integral. Although this
is a large reduction in complexity, the accurate calculation of even this
triple-integral presents considerable difficulties owing largely to the

nature of the integrand.

Chronolngically the evaluation of Eguation (3.2.1) started with the
use of a Monte Carlo method. A very poor convergence rate was obtained

owing to the very peaky nature of the integrand (which, as can be seen from
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Equakions (2.6.14), 42.6.15) and (3.2.1), consists of a product of mean

shears, turbulence intensities, the correlation co=afficient and the

R

22

function g, ..}, and the procedure was dropped waen machine computation
13

times required to produce satisfactory accuracy proved excessive.

This prompted a more detailed look at the integrand, and a three-fcld
application of Simpson's rule was introduced; thie gave direct control of
the subdivision of the region cf integration and allowed the fineness of
subdivision to be varied appropriately over the regilon. It was found that
in order to reduce computation time, and increase accuracy to acceptable
levels, a preliminary detailed print-out of the integrand was reguired so
that a region of integration adequate but not excessively large could be

selected. The computer programme written for this purpose is given in

Appendix A-VI,

The importance of the study of the behaviour of the integrand before
tha overall computation is conducted cannot be over-stressed. The
combined effect of the correlation coefficient, turbulence intensity, mean
shear, and the 913 function is to create an integrand which has a
distribution ill-suited to numerical evaluation - in general it has a very

= q ) I - >
high value when the two points involved, y and z, are close together, then
falls off rapidly, oscillates and finally becomes insignificant as the

. + -> 1] . 0l .

separation between y and z increases. As an initial check on the computer
programme and on the procedure outlined, the calculations of Hodgson (1962),

. X . o . 2-m P .
using a correlation coefficient given by exp(~r /yz), were repeated and it

was found that for a2 given value of Yy @ regilon size in (rl,rﬁ) space of
3/ SE
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3y7.3y2 gave a numerical accuracy better than 0.1%, (mesh size = Yofq),

The calculaticns referred to as Set I (Bull and Lim {(1968)) are also
kased on these ragion sizes, even though the correlation ccefficient used
in Set I does not have the same form as that in the calculations of Hodgson.
Later work has shown ithat for the changed correlation coefficient the

. . . , . . 5 | .
region sizes given above become inadequate for Re6< z 107, in which case
regions where the correlation coefficient has significant negative values
are excluded from the calculation, leading to an overestimation of p'/Tw.
For these regicn sizes, each evaluation of Equation (3.2.1) regquires about
120 seconds of machine time. The later calculations also show that when
the region size is increased sufficiently to include all significant values

! .. 5 , .

of correlation coefficient for Rea* 2 10, the increasingly peaky
character of the integrand with increasing Reynolds number again tends to
lead to computation times which are excessively large, if accuracy

comparable with that for the lower Reynolds numbers is to be obtained.

At this point the Simpson's rule procedure was replaced by the method
of Sag (1963), which, by making appropriate transformation of the integrand,
leads to a reduction of 50% or more in machine time for an equivalent
accuracy. In all cases in this thesis where the results of an overall

machine evaluation of a triple-integral are presented, they have been

L

i This check also indicated that the value of p'/T = 2.56 originally
given for this case by Hodgson is too low, and that the correct value
is about 4.5. This was confirmed by Dr. Hodgson in private communications.
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obtained by Sag’s method, with an integration region size determined by

prior inspection of the integrand.

3.3 Results and Discussions.

: ; 2 2
3.3.1 G13 and Centributions to <p >/Tw Y

It has been shown in Section 2 that the consideration of the function

G which represents the jeoint contribution of pairs of strata to the wall

13¢

pressure fluctuations, is the most satisfactory method of characterising
contributions from various regions cf the boundary layer. The value of

G13 resuiting from the small eddies of the above boundary layer model is

more readily calculated than that for the large eddies. For this reason

3 .
the rather low Reynolds number of 10 had been chosen for the results given
here, since at this Reynolds number the small eddies account for 90% of the

mean sguare wall pressure fluctuations, and their contribution to G13 will

serve quite adequately to illustrate the points made in Section 2. (The
N . 2 2 .
complete calculation for Reﬁ* = lO3 glves <p >/Tw = 1,204 of which the

small eddies contribute 1.083 in the Set IV series of calculations.)

The results of the calculations of G13 foi the small eddies, according

to Eguation (2.6.15) with E = 1 = 0, are shown in figure 8. The numerical

procedures for the determination of G are given in Appendix A-~-VII, The

13

values of Gl3 are given as sections at constant values of Y, of the

three-~dimensicnal plot of the variation of the non-dimensional parameter

2
A

A
¢ ;.7 " with § . isc inuities in
Gl3(Y2r72)/UT wit y2/ and 22/5 (The discontinuities in the G13 curves



72

Fig. 8 Variatien with y, and z, of the Joint
Contribution Density Function, Gsfor the Small
Eddy Contribution to the Mean Square Wall -
Pressure at Reg:ﬂos.




result from the discontinuity in the assumed form of the u’(z.) versus z
i 22 2

2
curve (Section 3.1.1) at 22/6 = 0.z for Res* = 107; no discontinuities
L L 4
occur, for the assumed boundary layer model, for Resw > 10°. The

iscontinuities in slcpe of the Gl3 curves are due to the assumed form of
the variation of the scale of the small eddies across the boundary layver;
they occur in all cases at (y2+22)/2 = 0.26.)

It is clear from the figure that the values of G for which v, and

13

z, are almost equal {(even though the maxima of G

5 do rot occur at y2 = z_)

13 2

make the major contribution to <p2>, but the contribution from wvalues for
which Y, and z, differ markedly is not negligible. It is also clear that
the major part of the mean square pressure attributable to the small
addies comes, at this Reynolds number, from the inner region of the
boundary layer for which both y2/6 and 22/6 are less than about 0.3 (y*
and z* < about 83, where the starred quantities are non-dimensionalised bv
the friction velocity UT = (Tw/p)% and the fluid kinematic viscosity v,
and T and p are the wall shear stress and the fluid density respectively);

in fact this region accounts for about 80% of the small eddy contribution

2 .
to <p >, that is, C(0,0.38) = 0.8 C(0,») .

. . 2 4 . .
Integration of the § GlB/UT curves of figure 8 over 22/6 yields the

function

z G )
Az, G alyyezy)

a
A b o

£z

which can be expressed also in terms of the P and C functions used
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previcusly (Section 2.4 and 2.5) as

B S aC (Y.-)iw)
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[\ l (o)
|
l
"

)
!
-
[o B}
s
[\
—
&
(o)
>
\S]

Its distribution is shown in figure 2. This figure also shows the
. ) - ~ - . 2 .
non-dimensicnal form of the function "0o<p >/8y2" of Equations (2.5.8) and

(2.5.9), namely

3§ 8 BP*(yz,m)
— F I = —_— —————
o dz, Fp3y,2,) 2 ; ’
T ¥ w Y2
¥y

Fl3 having been calculated from Equation (2.6.14) with é =1 = 0.

The integration cf either curve over y2/6 gives the small eddy

. . 2,2 .-
contribution to <p ?/TW . The difference between the two curves
emphasises the possibility of error in deducing which regions of the
boundary layer make the most important contributions to the mean square
wall pressure fluctuations from curves, such as these, which represent

first rather than second derivatives.

Further emphasis can be given to the point, by noting that if the
curves in figure 9 were interpreted at their face value, it would, for
example, be concluded froﬁ a further integration of the G13 curve that the
region of the boundary layer between the boundary and y2/6 = (.13 is
responsible for 80% of the small eddy contribution to the mean square wall
pressure fluctuations. On the other hand; the integration of the Fl3 curve

would lead to the conclusion that the region between the boundary and

y2/6 = 0.23 1is responsible for the same contributicn. However, the
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consideration of the function C which, since it includes only correlation of
sources within the region considered, should be regarded as a superior
indicator to either .of the previous ones, indicates, as shown above, that
the region between the boundary and the considerably larger value of

y2/5 = 0.3 is required to produce the chosen contribution. This again
points to the fact that for the correct deductions to be made, a carefully
defined function such as C or, better still, the joint contribution density
function G itself must be considered.

13

2.3.2 The Roct Mean Square Wall Pressure Fluctuations.

The mean square wall pressure fluctuations arising from a two-
dimensional, incompressible turbulent boundary layer on the assumption oI
the dominance of the turbulence/mean-shear interaction in the generation of
the fluctuating pressure is given by Egquation (3.1.2). In the past (see,
for example, Hodgson (19%62)) the solution of Eguation (3.1.2) has been
more in the nature of a calculated estimate with the use of gross
assumptions on the nature of the properties of the turbulent boundary
layer. The boundary layer model used here for the evaluation of <pz> has
been detailed iﬁ Section 3.1 and as this represents the turbulent velocity
field more closely than those used previously, it should be possible to
regard the computed value for the fluctuating wall pressure with a higher

degree of ccnfidence.

As a consequence of the representation of the R22 correlation

coefficient as the sum of two parts (Equation (3.1.9)) in the boundary
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layer model used for the calculations, the mean square wall pressure
fluctuations can also be represented in the same way, as the sum of small
and large eddy contributions. In the calculations, with the exception of
Revised Sef I, these contributions have been censidered separately
throughout. For cna or two Reynolds numbers in the case of Set II, a

. 2 .
complete calculation of <p > by Methcd 2 has not been carried out, only
the large eddy contribution having been evaluated; however, in all such

2 .

cases an overall value of <p > has been oktainad by Method 1, and the small
eddy contribution obtained by difference. (See Table 3.1.)

The values of IS r2,), according to Equations (2.6.15) and (3.1.10),

13572,

which are reguired for calculations by Method 2 (see Section 3.2.1), are
shown as a function of r2/s in figure 10(a) for s given by Eguation
(3.1.14); the corresponding values for s given by Equation (3.1.19) are
shown in figure 10(b). The two sets of curves of course become identical
for y2/6 z 0.4. The joint contribution density function (Section 2) for
the small eddies Gi3 . for any Reynolds number, can be obtained from these

s . . . .
113 values, which are independent of Reynolds number, by weighting them
with the appropriate turbulence intensity and mean shear values, using

Equation (2.6.16).

The total calculated roct mean square wall pressure fluctuation values
for Revised Set I, Sets II and IV are shown as a function of Reynolds number
) } 3 -7 i -
in figure 11 for 10 ¢ Red* < 10, where the results of Bull (1967),

Willmarth and Wooldridge (1963) and those from the present series of

measurements in a constant pressure turbulent boundary laver have been
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Table 3.1 Summarcy cf <p > Calculations for Constant Iressure Turbulent

N

Bounc

%)

ry Layer (x indicates calculation carried out).

3 4 5 | 6 | .7
Reynolds number Res* 10 10 10 i 10 i0
i
Revised Overall <p™> by i
X X x | X
Set I Method 1. |
{(Cbtained by
Snall eddy contri- difference be-
X b4 tween Method 1 X
bution by Method 2. & large eddy

contribution.)

Large eddy contri- '
t II . X X X X X
se bution by Method 2.
2
Cverall <p > by
Method 2. * * *
< 2_ .
Overall <p > by
Method 1. & = S
Small eddy contri-
bution by Methed 2. N - = ® x
Large eddy contri-
bution by Method 2. * & = * %
Set IV >
Overall <p™> by
Method 2. ® * * = x
.2
Overall <p > by
Method 1. *

4
NOTE: For Set II, Reﬁ* = 10 , the calculaticn of the small eddy
contribution by Method 2 was checked by a direct three-fold

integration using the method of Sag (1963).
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included for comparison.

The variation with Reynolds number of the separate contributions of
the large and small eddies tc the overall mean sqguare pressure for Sets II

and IV are shown in figures 12(g) and 12(b) respectively.

Table 3.1 summarises the calculations which were made to cbtain the
<p2> values, and also indicates the checks which have been made, by using
Methods 1 znd 2, on the accuracy and consistency of the computer programmes
and the method of choosing region sizes for the integrations. The main
checks were made for Reé* = 104 (although less extensive checks were made
for other Reynolds numbers). For Set II the check on the calculation of
the small eddy contribution by Method 2‘referred to in Table 3.1 gave
agreement within 0.1%, and the machine calculated values of BP*(yz,w)/By2
(required for the final manual integration giving <p2>) agreed within 0.1%.
In the case of Set IV the agreement between the values of BP*(yz,M)/By2
obtained by Methods 1 and 2 was not as good as for Set II; this difference
led to a difference of about 0.8% in the resultant values of <p2>. The
source of the error was traced to the fact that, for Set IV, the scale
representation ;f the small eddies leads to an integrand which would
reguire the integration region for Method 1 to be subdivided slightly more
finely than in the computer programme used for Set II to achieve the same
numerical accuracy. The check can therefore still be regarded as
satisfactory, and the results given for Set IV are those obtained by

Method 2 which avoids this problem.
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It will by now have become cobvious that the characteristics of the
boundary layer models assumed in tha various sets of calculations, and the
calculation procedures, have been given in considerable detail. This has
been done intentionally, so that there should be ro doubt or ambiguity
concerning the assumptions on which any particular set of results is based;
it is further justified by the conclusion reached in the discussion to
follow, that the numerical values obtained for <p2> depend gquite critically
on the details of the representation of the turbulent velocity field, and
it therefore seems highly desirable that this detailed information should
be readily available to assist anyone to make a considered assessment of

the results.

. ) 2 S
Before considering the <p™> values themselves, it is perhaps worth
noting that the integrand in the double-space integral for the space-time
covariance of the wall pressure fluctuations, Egquation (2.1.9), contains

> > > >
the product of Ix—yl and lx'-zl in the denominator, and therefore tends to

- >
infinity as the two field points, y and z, approach the boundary surface

] > > . . o . 2 -
points x and x' respectively (in the corresponding expression for <p >, x

> . . B .
and x' are of course coincident). In the reductions and modifications of
Equation (2.1.9) which have been made, this property of the integrand is
. . . 2
transferred to the function 94 which, in the case of <p™>, tends to

infinity as y,, z r, and Ty all approach zero. However, this
“

27 71

characteristic of gl3 is offset by the behavicur of R near the boundary,

22

and the integration of this product, as in Equation (2.6.15), leads to

values of I__(y

13 2,22) which are finite for all y2 and 22 including

. S
= = 0. Th = I 7., & ; T a
y2 A 0 ke behaviour of +l3(y2,zz) as 32 and z_ approach zero can

2 2
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be seen in figures 10(a) and 10(b).

The results of the three sets of calculations of p'/Tw given in
figure 11 show two important effects. Firstly. the difference between the
results of Revised Set I and Set II is essentially the result of a change in
specification of the correlation coefficient R22 {(ctieck calculaticns
indicate that the small difference between the two cases in specification
of the scale of the small eddies, and the difference in the assumed mean
shear distribution near the boundary, have only minor effects). The
difference ketween the assumed values of R22 for the two calculations can

be seen by comparing figures 6(a) and 6(b) with figures 6(c) and 6(d). For

a given datum point, the two specifications of R__, Equation (3.2.4) with

22
the small eddy scale s as given by Bull and Lim (1968), and Equations
(3.1.8), (3.1.9) and (3.1.10) with s given by Equation (3.1.14),
respectively, give almost identical values provided that the second
correlation point is located on a line through the datum point parallel to
one of the three main cartesian co~ordinate directions; but, for other
directions, the correlation coefficient for Revised Set I falls off to

zero more rapidly with increasing separation distance than that for Set II.
This leads to lower values of <p2>/1$ for Revised Set I than for Set II.
The amount cf the reduction increases with Reynolds number from about 27%
at Rea* = lO3 tc about 52% at Rea* = lO6 (with corresponding reductions in
p'/TW of about 15% and 31% respectively). Secondly, the difference between
the values of p'/‘rw obtained in Sets II and IV results only from a change

in the form of specification of the scale of the small eddies; only in the

latter case is the reciprocity relationship, which must be satisfied in



87

the real physical flow, satisfied by the model used for the calculations.
The effect of the scale specification on the correlation coefficient R22
can be seen in figuras 6(a) and 6(b), the former for the region where the
scale is varying with distance from the boundary, the latter for a region
where the scale is constant. BAgain the change produces large reductions in
the value of <p2>/1§, although in this case, in the main, the amount of the
reduction falls with increasing Reynolds number; being about 60% at

Rea* = 103 and about 47% at Re6* = lO7 (or about 37% and 27% respectively

in p'/Tw).

The solution of the equations of motion for the mean gquare wall
pressure fluctuations is obtained as a six-fold integral of the whole of
the turbulent velocity field in the boundary layer; as such its value might
be thought to be insensitive to the details of the particular boundary
layer model on which calculations are based, as a result of blurring of the
details by the multiple integration process. The two effects just
discussed indicate quite clearly that this is not so, and that the
calculated values of <p2> are very much dependent on the detailed

assumptions made about the turbulent velocity field.

Of the three boundary layer models for which the mean square wall
pressure fluctuations have been calculated, that for Set IV must be
regarded as the most physically realistic. Figure 11 alsc shows a
comparison of the experimental results of Bull (1267) which have been
corrected for lack of resolution of the pressure transducers with which

they were obtained, and the value obtained by Willmarth and Wooldridge



(1963) by extrapolaticn to zerc transducer size of measurcrents made with

1,

ne results obtained from the present

=3

several sizes of transducers.
series of mezsurements made in the constant: prassure turbulent boundary
layer have also been inciuded. It does seem to be significant that, while
the two models which are less acceptable physicaily (those for Revised Set
SR N ; 2 . .

I and Set II) lead tec overestimates of <p”> compared with the experimental

— ' 2 . .
results, the model for Set IV yields values of <p > which are less than
the experimental values. Considered physically, the latter is a more

. Zl_

acceptable result, since the values of <p > have been calculated on the
assumption of dominance of turbulence/mean-shear interacticn, and the
difference between the calculated and experimental values can be ascribed
to the combined effect of pressure source terms which have been ignored
(it is of course conceivable that the neglected terms make a negative

. . 2 , , , . . N
contribution to <p™>, but the situation just referred to seems the more
plausible).

From the results obtained the indications are quite definitely that,
for a two-dimensional incompressible turbulent boundary layer,
turbulence/mean-shear interaction is the dominant process in producing wall
pressure fluctuations, and, from the comparison of the Set IV results with
experiment, that it is responsible for the generation of roughly 80% of the

mean square wall pressure fluctuation.

Although the experimental data cover a more limited Reynolds number
range than the calculations, the Set IV results appear to reproduce the

experimental variation over this limited range very well (figure 11). The
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calculations also indicate that for larce variations in Reynolds numberx
the value of p‘/Tw can be expected to vary ccnsiderably; the Set IV results
indicate a rise in the contribution of turbulence/mean-shear interaction
to p'/'rw from 1.1C at Rea* = lO3 to 6,51 at Res* = 107. It would therefore
appear that the single representative value of p'/'rW obtained in previous
calculations {for example, Lilley and Hodgson's (1960) wvaiuve of about 3.0}
is typical only of the limited range of Reynolds number which has so far
been explored experimentally. It might be noted that the correspending
variation of p'/qoo with Reynolds nusiber is less marked being from 4c9x10-3
to 6.8xlO_3, where q_ = %qu.
Figures 12(a) and 12(b), for Set II and Set IV respectively, show that
at a low Reynolds number the small eddies make the dominant contribution to
<p2> (over 90% at ReG* = 103), but that the proportion of <p2> contributed
by them falls off as the Reynolds number increases - for Set II the
proportion falls off to about 45% at Rea* = 107, while for the vhysically
more realistic Set IV the fall-off rate with increasing Reynolds number is
even more rapid; the proportion being down to about 20% at Rea* = 107.
This implies, as can be seen from inspection of figures 12(a) and 12(b),
that the variation of the total value of <pz> with Reynolds number is

predominantly a reflection of the variation of the absolute value of the

large edly contribution with Reynolds number.

The effects of the Reynolds numder on the distributions of the
turbulence intensity and the mean shear have been describsd in Section 3.1

and shown in figures 2 and 3 respectively., It can be seen that the effect



c0

of an increase in the Reynolds number is not only to increase the value of
the turbulence/mean~shear product for y2/5 < 0.2 but also to extend
towards the wall the region over which the turbulence intensity has its
maximum value. The mean square pressure has been given by Equation {3.1.2)
which contains the product of the mean shear, the turbulence intensity,

the correlation ccefficient and the geometric term 913 a8 the integrand.
For the boundary layer model used, the last two terms have nc Reynolds
number dependency so it would appear that the variation of the large or
small eddy contribution ceomes about only as a result of the Reynolds
number effect on the turbulence/mean-shear product. However, this would
only be so if the correlation coefficient associated with the small eddies
were exactly the same as that for the large eddies, since the contsibutions
to the mean square pressure also result from integral effects of the
correlation functions. The small eddies are correlated only over small
distances, and their scale variation (see figure 5) is such that the
correlation coefficient approaches a delta function near the boundary.
Since the Reynolds number effect on the boundary layer model is to increase
the turbulence/mezn-gshear product near the boundary the increase in the
small scale contribution to the mean square pressure comes from the
summation of mainly localised increases in the value of the integrand of
Equation (2,6.16). On the other hand, the slow fall~off of the large
scale correlation coefficient results in the summation of the increases
over a considerably larger region of the boundary layer and, it is the
difference between "localised" summaticn of increases and region summation
which accounts for the dissimilar variation of the small scale and large
scale contributions with Reynolds number, So, the variation of the mean

square wall pressure fluctuations with Reynclds number is dus not only to
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the variation of the turbulence/mean-shear product, as would initially

appear, but alsoc to the correlation scales associated with the turbulence.

3.3.3 The Auto-Covariance of the Fluctuating Wall Pressure and Its

Frequency Power Spectrum.

The general equation of the space-time covariance of the pressure
fluctuations in turbulent shear flow has keen derived in Section 2.1.
Under the assumption of the dominance of the turbulence/mean-shear
interaction in the generation of the fluctuating pressure, the equation of
the pressure covariance for the case of a slowly growing boundary layer in
which the turbulence can be regarded as statistically stationary in time
and homogeneous in planes parallel to the boundary has been given by
Equation (3.1.1). When ;' = ;, E = 0 and the space~time covariance becomes

the auto-covariance which is given by

o] oo}

> > 2
<p(x,t)p(x,t')> = »p dY2 d22 Gl3(y2,z2

0 0

0, T) .. {3.3.1)

where G ,zZ,O,T) and associated expressions can be derived from those

135
given in Section 2.6 by subtituting E = 0 in each of the expressions. As
has been pointed out in Section 3.1, the solution of Equation (3.3.1)
requires a knowledge of the space-time correlation coefficient distribution
of the fluctuvating component of the velocity normal to the boundary.
Available data for non-zero time delays are not sufficiently comprehensive

to be of use. However, if use is made of Taylor's (1938) hypothesis for a

"frozen" turbulence pattern, we can write

RyaWorZpeXyean D = Ry, (y,r2),0y~0 T,r,,0) -0~ (3.3.2)
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where Y, is the distance of the datum point from the boundary surface and
Uc is the convection velocity of the velocity field at a distance z., from
the boundary. The required space-time correlation function is then easily

cbtained from the space correlation. The detail of the transformation has

been given in Section 3.1.3.

The calculated auto-covariance of the wall pressure fluctuations in a
constant pressure turbulent boundary layer is shown in figure 13 where
Rea* = 10% and the boundary layer model which has been detailed in Section 3
satisfies the reciprocity relationship and is the most physically realistic

of the models considered to date. The auto-covariance is given in the form

of the correlation coefficient defined as

0 (1)
R (1) = —EB_.. | ... (3.3.3)
PP <p2>
(t) = <p(X,t)p(%,t+r)> d
Qpp T = <px,B)p(x,t+T , an
<p2> = Q (0) .

PP

The computer programme for the selection of the region over which the
numerical integration is to be carried out is given in Appendix A-VIII and
that for the numerical evaluation of the auto-covariance using the procedure

of Sag (1963) is given in Appendix A-IX.

The experimental results derived from the mean experimental curves of
*
RPP(O'O'O'T) versus 51/6 obtained by Hodgson (1962), Bull (1967) and
Blake (1970) have bzen included for comparison. Hodgson's results were

obtained from the measurements made on the wing of a glider in flight, the
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a
corresponding Reynolds number Red* has been estimated to be 0.8x10 . The
results from Bull and from Blake were from measurements in wind tunnels
with Red* = 3x104 in the former case and Rea* o 2xlO4 for the latter. 1In

each of the three cases, the abscissa has been converted to the form TUm/S

* *
from 61/6 ( = TUC/6 } with the assumpticn that UC/Uoo = 0.8.

It can be seen from figure 13 that the calculated results of R.pp for
close separations has the form taken by the results of Bull for which
0.15 < d/G* < 0.5, where d@ is the diameter of the transducer sensing
element. Blake's results which were for 0.101 < d/d* < 0.113 has & higher
rate of decay indicating that the better resolution of the transducers
which Lave been used is significant. At larger separations, the calculated
values give a curve which has a form similar to that obtained by Hodgscn
whose measurements were made with a relatively large transducer giving
d/G* = 2.93. It can be noted that the longitudinal integral scale and the
integral time scale defined by Equations {(1.2.10) and (1.2.11) respectively,

are ZzZero.

The Fourier transform of the auto-covariance QPP(T) with respect to
time gives the spectral function
1 ~iwT

op == QPP(T) e ar , «.(3.3.4)

aCal
g
1]

-

the inverse relationship being

Q (t)y = /.@ (w) eimT dw . - ..+ (3.3.5)
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The frequency power spectral density ¢p(w) of the pressure fluctuations as

measured by a wave analyser is given by
p_(w) = e Q (1) cos wrt 4t (3.3.6)
P T pp o

In the determination cof ¢p(w) with the use of Eguation (3.3.6), the
fitted curve to the calculated distribution of RPP(T) shown in £figure 13
was used to represent QPP(T). The resultant distribution of ¢P(w) for the
constant pressure turbulent boundary layer for which Reé* = 104 is shown in
figures 14 (a) and 14 (b).

Bull (1967) has used the form of the spectral distribution plotted as
¢p(w)Um/<p2>6 versus LL)(S/UOo as shown in fiqurxe 14 (a) in an effort to obtain
a collapse of the spectral values, and to determine from the mean
distribution of the data interpolated values at high frequencies not
obtainable in the thinner boundary layers due to limitations in the
measuring equipment. The curve obtained for the boundary laver model is
compared with those representing the mean experimentally determined
distributicns of Hodgson (1962), Bull (1967) and Blake (1970). The
different characteristics of the distribution indicate markedly different
frequency characteristics, a condition which is better shown in figure
14 (b) where the values have been plotted in the non-dimensional form

A * . 2 ] .
¢p(w)Uw/qm6 versus w6 /Uoo . with Q= %pU00 representing the dynamic head
of the free stream. In addition to the results of Hodgson, Bull and Blake,
the mean experimental cuxves of Willmarth and Wocldridge (1962), Schloemer
(1967) and that from the present seriesg of measurements for which

*
0.14 < d/8 < 0.3 have been included in the plcot for comparison. Each of
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the pressure spectra shows a peak in the region (JJS*/UO° = 0.3, and the
distribution of the spectral density calculated from the boundary layer
model described in Section 3 can be seen to fall within the range covered
by the various experimental curves. Although Hodgson's results were for a
relatively large transducer, his results for the low frequencies can be
expected to suffer less from the effect of a low signal to noise ratio
than those obtained in wind tunnels, and his values of ¢P(w)Um/q56* for
wG*/Um less than about 1.0 can be regarded with greater confidence. At

*
frequencies higher than for wd /Uoo = 1.0, the results of Blake for which
d/G* = 0.1 can be expected to be more representative of the actual
pressure field due to the better transducer resolution at the higher
frequencies. Certain points can now be made on the comparison of the
calculated values with the experimental ones. On the basis that Hodgson's
results can be taken as representative of the actual distribution of the
spectral density of the wall pressure fluctuations at the lower frequencies
and that those of Blake as that at the higher fregquencies, the calculated
values of the spectral density are low at all freguencies (even when it is
remembered that the calculated value represents cnly about 80% of the total
mean square pressure - see p. 88). For freguencies in the range
0.3 < wG*/U°° < 3.0, that is, beyond the frequency at which the spectral
distribution shows a peak and below the freguency at which transducer
resolution might affect Blake's data, the calculated values fall off much
more rapidly than the experimental results. This may indicate that the
small scale or the high freguency characteristics of the theoretical model
are not representative of those in the boundary layer. A similar comment
can be made on the low freguency nature of the model, althouch in this case
the discrepancy i3 perhaps not guite so important since the errors

gntroduced by wnoccuracies (o the low freguency characteristier of ¢he

I,



0
0

boundary layer model have very much less effect on the overall mean square
pressure than these at the higher frequencies; the neglect of contributions
* . o g - “
for which wS /U_ is less +than 0.1 results in, at worst, a 3% deficiency
oS

in the mean sguare value, or 1.5% in the value of p'/Tw.

The auto-covariance given by Equation (3.3.1) is the result of the
integral effect of the overall boundary layer characteristics. It has
been shown in Section 3.3.2 that the overall value of the mean square wall
pressure fluctuations is very sensitive not only to the specification of
the correlation function as seen by the difference in the values of
Revised Set I from those of Set II but also to the specification of the

small eddy scale which directly affects the shape of the correlation curve

for points near to the boundary. In the same way, the auto~covariance

and the frequency power spectral density can be expected to be sensitive to
the choice of eddy scales and the correlation function. A further factor
of influence in the case of the auto-covariance would be the effective
convection velocity that has been used in the present model for the
conversion of the space correlation function to that of the space-time

correlation function using Taylor's hypothesis for frozen eddy patterns.

3.4 Conclusions.

The theoretical calculations for the wall pressure fluctuations in a
turbulent boundary layer developed in a flow with zero mean pressure
graéient have been based on the assumptions that

{1) turbulence/mean-shear interaction gives rise to the dominant

contribution to the pressure fluctuations,
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(2) the boundary layer exhibits statistical stationarity in time
and homogeneity in planes parallel to the boundary,

(3) the boundary layer gr¥ows sufficiently slowly so that the mean
velocity parallel to the boundary, and the root mean square
velocity fluctuation normal to the boundary are functions only

of the co-ordinate normal to the boundary.

The boundary layer models which have been emploved allow an
examination of the effects of the changes of the specification of the mean
shear, the eddy scales, and the correlation coefficient on the overall
values of the mean square wall pressure fluctuations. The variation of

these pressures with Reynolds number was also examined.

From the results which have been obtained,; and from the comparison of
calculated and experimental values, the following conclusions can be drawn.

(1) The computational procedures for the determination of the wall
pressure fluctuations have been found to be reliable, and checks on the
accuracy of the computer programmes have shown the results to be
consistent to within 0.8% for the worst case.

(2) The detailed consideration of the mathematical formulation for
the fluctuating pressure shows that the use of the "jecint contribution
density function™ is the most meaningful way of presenting the
contributions of the various regions of the turbulent boundary layer to the

space-time covariance of the wall pressure fluctuations.

(3) The consideration of the joint contribution density function for

3. .. . . . -
Re * = 10 indicates that in this case the region of the boundary layer

§
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close to the boundary is responsible for the major contribution to the

wall pressure fluctuations, the region between the boundary surface and
y2/8 = 0,3 accounting for about 70% of the overall mean square pressure.
Consideration of the boundary layer model indicates that the inner part of
the layer will produce an increasing proportion of the total mean square
pressure as the Reynolds number is increased.

(4) The value of the mean square pressure 1is sensitive to the choice
of the eddy scales and the correlation function, and the slight variation
in the specification of the mean shear in the transition region gives rise
to insignificant effects on the overall value.

(5) A single representative value of p'/Tw obtained in previous
calculations is typical of only a limited range of Reynolds number, and
over the Reynolds number range lO3 < Res* < 107, the variation in
contribution of the turbulence/mean-shear interaction to p'/rw is from
1.10 to 6.51. Over the limited Reynolds number range for which
experimental results are available, the variation of the calculated values
of p'/Tw is in accord with that of the experimental results.

(6) At the low Reynolds numbers, the small eddies make a dominant
contributisn to <p2> (ovér S0% at ReG* = 103). The proportion of the

contribution falls off with the increase in Keynolds number tc a value of
about 20% at Rea* = 107.

(7) The variation of the total value of <pz> with Reynolds number is
predominantly a reflection of the variation of the value of the large eddy
contribution with Reynolds number. It is a function also of the
correlation scales assigned to the eddy structure of the turbulence.

(8) For a two-dimensional incompressible turbulent boundary layer,

turbulence/mean-shear interaction is the dominant process in the generation
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of the wall pressure fluctuations, and accounts for about 80% of the
overall mean square value.

(9) Comparison cf the calculated auto-correlation and the frequency
power spectral density distributicn with experimental results shows that
the calculated values £all within the range covered by the experimental
curves. This lends further weight to the credibility of the assumption
that turbulence/mean-shear interaction plays a dominant role in the
generation of the wall pressure fluctuations.

(10) The experimental results for which gcod transducer resolution at
the higher frequencies is claimed indicate that the high frequency
characteristics of the theoretical model may not be representative of that
in the actual boundary layer. This could be due to a deficiency of the
model and/cr the neglect of the other prassure source terms which provide

relatively small but not negligible contributions to the pressures.

Before leaving the consitant pressure layer and considering briefly
the extension of the calculation to layers with non-zero pressure
~gradients, two comments on the boundary layer model should perhaps ke
made. The first concerns the scale variation of the small eddy structure
which has been taken as a function only of the boundary layer thickness.
For regions close to the wall, the effect of the wall on the flow can be
expected to be very stronc (as shown by the variation of the mean velocity
distribution). Thus, it is highly prcbable that in the constant stress
laver the scale variation of the small eddies might depend on wall
parameters rather than on §, as has been used. Secondly, although the

turbulence intensity distribution has been taken as that given by Ecuation
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(3.1.3) it should be noted here that there is a degree of uncertainty in

the form of the distribution in the region of the outer edge of the

constant stress layer (whexe ynUT/v > 600 and y2/6 £ 0.2). Here, in the
<

absence of experimental data, ué/U* has been taken as constant.

Calculations for the fluctuating wall pressure in a boundary layer
under the influence of a mean streamwise pressure gradient havé yvet to be
attempted. However, it should be acceptable for such calculations to be
carried out using a model similar to that for the constant pressure layer
(suitakly modified to account for the effects of the imposed pressure
gradient). Coles's (1956) form for the mean velocity distribution in a
boundarv layer is known to be satisfactory for a wide range of pressure
gradients. Hence, the formulation for the mean shear used in the case of
the constant pressure layer can also be used when the mean pressure
gradient is not zero. The only modification required to Eguations (3.1.5)
and (3.1.6), apart from the use of a different value of the pressure
gradient parameter II, would be in the values of ﬁc/ﬁ and Uc/Uw, where Uc
is the mean velocity at a point Sc from the wall. In the case of the
constant pressure layer all other parameters on which the wall pressure

fluctuations depend were assumed to be functions of y2/6 for outside

Y2
the constant stress layer. The outer edge of the constant stress layer
was taken as the y2 valve at which a chosen deviation of Ul/UT from
logarithmic variation occurs, and it was argued that if the velocity
distributicon proposed by Coles is accepted then this value of y2/6 is

independent of Reynolds number. Since Coles's form for the velocity

distribution is known to be applicable to boundary layers in non—-zero mean
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pressure gradients, the same argument can be applied to this case and it
should again be acceptable to represent all relevant parameters as
functions of Cc ] y2/<5c for all cc > cé, where Eé =1 - 0.1057/11Pg and
Hpg is Coles's pressure gradient parameter for a pressure gradient layer.
The constant stress laver would therefore become thinner as the pressure
gradient increased. For points within the constant stress layer

(y2/6c < Cé), since there are few, if any, data for ué and the correlation
coefficient R22 for self preserving layers with non-zero mean pressure
gradients in the first instance, the best which could be done would be to
assume variations similar to those taken for the constant pressure layer.

Thus the specification of ué might become

*2
0.00921y,

ul

2 -

il —_— = o for 0 ¢ yv.. £ 10,
T 1 - O.O36ly2 + O.Ol328y2

&2
O.O838y2 o
= = ¥ for 10 < y2 < ©0¢C,
1+ 0.922y2 + O.O77ly2

*
= 1.06 for Y, % 600 and y2/6C < Cé

n

1.06 exp [—2.23(y2/6c - Eé)z] for y?/éc b3 Cé ' cee(3.4.1)

and that for R22 might be according to Equations (3.1.8), (3.1.9) and

(3.1.10) with the variation of the length scale s given by

1l

s/y2 0.570 for O ¢ y2/6c < gé R

cee(3.4.2)

T
s/§ 0.114 for Ec < yz/cSc < 6/6c i

Clearly an improvement in the credibility of the calculations would



require systematic measurements of these properties of the boundary layer
and this in itself implies a quite extensive and demanding experimental

programme.

On the basis of a model similar to that used for the constant
pressure layer it might be expected that the value of p'/Tw would increase
with increasing adverse pressure gradient at a given Reynolds number since
the effect of the adverse pressure gradient is to decrease the thickness
of the constant stress layer, an effect similar to that brought about by

the increase in the Reynolds number,



4. THE EXPERIMENTAL EQUIFPMENT.

4.1 The variable Working Section Boundary Layver Tunnel.

4.1.1 Design Considerations.

The boundary layer which exists on the surface of a solid body in
relative motion to a fluid is, very frequently, of a turbulent nature even
though the turbulence level in the main body of the fluid is very low.
Boundaxry layers of interest and of engineering concern are often developed
over curved surfaces such that a mean pressure gradient in the streamwise
direction is imposed on them. It is for the purpvose of extending
experimental investigations of the turbulent boundary laver into the realm
where mean pressure gradients are significant that a variable werking

section boundary layer tunnel becomes desirable.

A number of important factors must be considered so that the fluid
properties as well as the environmental characteristics are within
acceptable limits when the tunnel is in operation. Such requirements are:

(1) that the test section of the tunnel be provided with the facility
for the variation of the mean pressure gradient in the direction of mean
flow;

(2) that the acoustic level in the ftest secticn due to the external
sound field be kept at a sufficiently low level so as not to interfere with
wall pressure measurements;

{(3) that the mechanical vibration of the test section be sufficiently



smzll so as not to affect instruments sensitive o acceleration;

{4) that the free stream turbulence level should be insignificant
compared to the turbulence ievel in the koundary layer;

(5) +hat the turbulent boundary layer in the taest section be
developed through natural transition from the laminar state;

(6) that the drive mechanism should provide for prolonged operation
of the wind tunnel with the provision for an easy and accurate flow speed

control.

4.1.2 Descrivtion of the Boundary Layer Tunnel,

The general arrangement of the variable working section boundary laver
wind tunnel is depicted in figure 15.- It is an open circult system with
the centrifugal compressor situated downstream of the working section. The
principal dimensions of the tunnel are given in Table 4.1. The overall
length of the wind tunnel from the inlet to the end of the acoustically
lined exhaust ducting is about 27 m. The drive unit and the working
section are placed in the same laboratory. Figure 16 is a view of the
working section of the wind tunnel showing the instrumentation used in the
Pitot traverxse of the koundary laver and in the determination of the
spectral density of the wall pressure fluctuations. Port holes are
provided on the top (hocrizontal) wall of the working section at 0.3 m
(1 ft) intervals. These have been accurately machined to take inter-
changeable instrumentation or dummy plugs and to ensure no significant
discontinuity ¢f the surface over which the boundary layer is developed.

Air is drawn in at the bhell-mouth through twc sets of honeycombs and a
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Table 4.1 Principal Dimensions of Boundary Layer Tunnel,

Inlet
Internal dimension of Bell-mouth
Honeycombs:
Number
Thickness
Cell Size
Separation
Gauze Screens:
Number
Number of Mesh per cm
Wire Diameter

Separation

Settling Chamber

Internal Dimension

Length

Contraction

Internal Dimension at Upstream End
Tnternal Dimension at Downstream End
Contraction Ratio

Length

Working Section

Height - variable
width

Length

1.15 m sqg.

2
100 mm
6.5 mm

Variable

13
0.32 mm

76 mm

1.15 m sg.

230 mm sg.

230 mm mex.
230 mm

4.5 m
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Fig. 16

General View of Tunnel Working Section. Simulation Set-up for both
Pitot and Wall Pressure Measurements.
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series of wire screens bhefore entering the working section after the
contraction. It then enters the centrifugal compressor and is expelled
through the diffuser and the exhaust ducting. The contour of the

bell-mcouth is given in figure 17 alcong with details of the inlet section.

4.1.3 The Drive Mechanism.

The measurements to be made in the wind tunnel are for the properties
of the turbulent boundary layer in a steady state. Although it is possible
to conduct such measurements in intermittently running tunnels, such as the
blow-down tunnels, a continuocusly running tunnel offers great advantages.
It facilitates prolonged measurements similar to those required in the
setting up of the test section for aﬂ equilibrium boundary layer over the
full length or over a considerable portion of the working section of the
wind tunnel.

The prime~-mover chosen for the drive unit of the tunnel is a DC motor
with a rating of 6C kW continuous running. Its rated maximum rotational
speed is 790 rpm. It is coupled to the centrifugal compressor through two

stages of step-up gear-boxes which provide an overall ratio of about

A rectified three-phase power supply was constructed to provide the
necessary power tc the DC motor. It embodies thyristors and firing
circuits which regulate the conducting of the three-phase supply. A

full wave bridge then provides the DC to the motor armature. Power for
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the field coils comes from the rectification of cne of the phases. The
range of the supply veltage is from 0 to 540 V DC with a maximum current

rating of 150 A. The details of the power supply are given in Appendix C.

The maximum flow rate in the wind tunnel is 1.7 kg per second. The
tunnel has a sonic choke downstream of the working section and the
compressor speed is maintained such that sonic conditions exist in the

choke at all times.

4.1.4 Bourndary Layer Transition.

Because of space limitations, it was not possible to design the
tunnel to obtain natural transition of the boundarv laver. A boundary
layer trip was resorted to to promcte the early transition of the
boundary layer to the turbulent state, and it was felt that the added
advantage of the boundary layer trip would be the prevention of a wandering

transition.

For a flow under zero pressure gradient conditions and low free
stream turbulence, the transition of a boundary layer cver a smooth
surface from the laminar to the turbulent state occurs at a critical

Reynolds number given by (see, for example, Schlichting (1960))
6
Ret = wat/v = 2,8x10 y cea(4.1,1)

where x,_ 1is the distance along the surface from the leading edge. The
w

critical Reynolds number at which transition is likely to occur is reduced
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in the presence c¢f free stresm turbulence, and ia the case of a wind
tunnel where the honeycombs and the gauze screens act as turbulence

generators, the Reynolds number at transition may be as low as

Re = 3.2xlO5 ) 2ee (4.1.2)

The velocity in the inlet section of the wind tunnel before the contraction
is 1 m/s. The length of the parallel section required to ensure that
transition of the boundary layer to the turbulent state occurs before the
contraction can then be estimated using Equation (4.1.2), and X, was found
to be about 4 m. As the available space cannot accommodate such a length,

a boundary layer trip has to be used.

Drxyden (1963), on the analysis of the data of Tani and Hama {(1945) on
boundary layer transition under the effects of a two-dimensional
cylindrical surface roughness element, showed that a collapse could ke
obtained if Ret is plotted against k/d;, where k is the height of the
roughness elament and 6; is the displacement thickness of the boundary
layer at the roughness location. A strip of 6.35 mm (0.25 inch) square
section is used as a trip, and using the method of Tani (1961) the point
of transition is estimated to be about 3.1 m from the inlet when the trip
is placed 1 m downstream of the inlet. As a compromise between the
required length and the available space, the length of the parallel section
at the inlet of the tunnel, which includes the settling chamber, has, in
fact, a total of 2.9 m. Measurements of the velocity profile of the
boundary layer iﬁ the test section indicate that satisfactory transition

has been achieved under these conditions.
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4.,1.5 The Turbulence Level.

It is desizable that tha turbulence level in the free stream be kept
as low as possible. o this end, a series of gauze screens in conjunction
with two sets of heneycombs and a high contraction ratio are employed - a
technique which has been tried and proven over the years. (See, for
example, Pope and Harper (1966), or Pankhurst and Holder (1952).) The
distance between the honeycombs can be varied to allow an optimum
separation to be obtained whereby any large scale eddy motion occuring at
the inlet can bhe broken up. Figure 18 gives the details of the contour of

the contraction as obtaiuned from Bull (1963).

The main mechanism employed in the effort to reduce the level of
turbulence in the free stream in the test section is the use of fine wire
screens or gauze screens. It has been shown (see Collar (1239), Batchelor
(1945), and MacPhail (1939)), in general, that where a gauze screen is to
be used for reducing the turbulence level in the free stream in a tunnel,
the pressure drop cogfficient K = (pl ~- pz)/%pUi should be of the order of
2, where Py and p, are the pressures upstream and downstream of the gauze
screen respectively, p is the fluid density and U_ is the velocity over the
screen., The specifications of the gauze screens are given in Table 4.1 and
the results of Simmons (1945) show that under the conditions of maximum
flow velocity through the tunnel, the pressure drop ccefficient has a value

of about 1.8. Taylor (1935 Pt. II) has shown that the turbulence generated

by a wire grid decays in a manner given by

U ;
-Z = 8.9 4+ 1.035 = , e (4.1.3)
u i
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where u' is the fluctuating ccmponent of the velocity, x is the distance
downztream of the turbulence producing grid, and M is the centre distance

between the wire

0]

forming the grid. On this bkasis, the separation distance
between the individual gauze screens has been chogen to be 76 mm (3.0 inch)
giving the value of u'/U_ of about 1% at this distance. The value of the
turbulence intensity in the free stream at the entry to the test section

has been found to be about 0.04%.

4.1.6 The Test Section.

Extruded aluminium channels and angles were used in the ccnstruction
of the three fixed sides of the test section. These have been heavily
ribbed to increase the stiffness of the structure. The rims of the ports
taking the dummy or instrumentation plugs have also been stiffened by
rings. The remaining side of the test sectiocn (the floor) has been made of
al.6 mm {16 S.W.G.) stainless steel sheet. Soft sponge rubber has been
glued to the edges of the sheet so thaﬁ an effective seal 1s achieved to
prevent the leakage of air into the test section. Hand operated
screw-jacks have been provided at intervals of 304 mm (1 ft) to raise or
lower the floor in order to change the flow cross—-sectional area and hence
the velocity and static pressure along the test section. The screw-jacks
act on rubber blocks which have been vulcanised on the stainless steel
sheet. The hardness of the rubber has been measured to be about 40 on the
Durometer. The rubber attachment blocks have besn used to avoid the
possibility of flat regions which could occur along the sheet if a

non-elastic attachmeant were used. TFigure 19 shows the cross-sectional
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details of the test section.

The stainless steel sheet is rigidly anchored at the upstream end of
the test section. At the downstream end it is secured at the clamping
plate section, where the free end of the stainless steel sheet is sandwiched
between the outer wall of the clamping section and a chamferred plate in
the tunnel. Wing nuts have been provided for the ease of securing the free
end of the sheet after positional adjustment of the floor of the test

section.

4,1.7 Noise in tha Test Section.

With certain types of instrumentation, and with plezo~electric
pressure transducers in particular, in addition *o electric circuit noise
extraneous signals can arise from any acoustic field in the test section

or from vibration of the tunnel structure. ;

The main source of acoustic noise in the boundary layer tunnel is the
centrifugal compressor and its drive. Sound from it can propagate into
the test section directly along the airstr=am or along an indirect path
around the laboratory and into the intake of the tunnel. An effective
means of suppressing the direct propagation of the noise from the
compressor is the use of a sonic choke between the compressor and the test
section (although some nolse can still propagate through the boundary layer
on the test section walls). The indirect propagation of acoustic noise

has been suppressed by a sound-proof cover over the compressor and its



drive. The cover relies on both mass and damping to reduce the
transmission of scund into the room. It consists of a heavy shell of steel
plate lined on the inside with a thick layer of hesavy sound absorption
material. It was alsoc found necessary to lag tine exhaust and diffuser
ducting as these becane sources of significant sound intensities after the
acoustic suppression treatment had been applied to the compressor and its

drive.

Reducticn tc an acceptable level of tunnel vibration and the
consequent effect of acceleration cn the piezo-electric transducers to be
used for the pressure fluctuation measurements has been achieved by (a)
using a heavy stiff test section to minimise vibration excited by ambient
sound field, and (k) isolating the tunnel test section from sources of
mechanical vibration. Two flexible couplings in the form of soft rubber
collars are used to isolate the test section from the compressor, one
being placed just downstream of the test secticn and the other just
upstream of the compressor. The test section is mounted on a heavy
frame-work and the feet of the supporting frame—-work rest on four
anti-vibration pads made from wvulcanised rubber whose hardness is about
40 on the Durometer. These resilient mounts coupled with the mass of the
heavy frame-work give a low natural frequency of wvibration of the test

section (actually about 2 Hz).

4.1.8 7The Sonic Choke.

Figure 20 shows the layout of the sonic shoke and the overall
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dimensions of the components. Detailed dimensions cof the centre-body and of

the nozzle are given in Appendix D.

The function of the choke in preventing excessive internal
transmission of the fluid borne noise into the working section has already
been referred to in Section 4.1.7. The flow cross—secticnal area of the
choke can be varied to allow variation of the mass flow in the tunnel, and
this has the added advantage that it provides a good regulation of the flow
- static or total head readings can be set to and maintained at better than

0.05 mm water gauge.

The overall effectiveness of the acoustic and the mechanical isolation
of the test section is such that the signal to noise ratio from the
piezo-electric pressure transducer measurements in the constant pressure
turbulent boundary layver has a maximum value of 40 db at about 5 kHz and
falls off on either side of this frequency to 5 db at about 200 Hz and

»

about 25 kHz.

4.2 The Pressure Transducers.

4.2.1 Choice of Type to be Used.

The measurements of fluctuating pressures can be effected by the use
of either the condenser microphone or the piezo-electric pressure
transducer. The choice of one type over the other in any measurement to be

made is usuelly decided through the consideration of a number of factors.
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The principal: advantages of a piezo-electric pressure transducer over the
conventional condenser microphone are

(1} that a greater range of frequency can be measured as the sensing

spetial
area can be made guifficiently small to decreas?/attenuation at the higher
frequencies.

(2) that the rezducticn of the size of the sensing element allows the
reduction of the overall size of the transducer. This feature is
particularly important in measurements of the space correlations where very
close separations are often required.

(3) that the calibration of the transducer is insensitive to changes
in the mean ambient pressure.

(4) that the piezo—slectcric pressure transducer face is infinitely
more robust than the diapghracm of a condenser microphone designed for use
over a similar fregquency range.

(5) that the cperation of the piezo—~electric transducer is not
affected greatly by the dust particles or moisture in the environment.

A great disadvantage of the piezo-electric pressure transducer is its
relatively lower sensitivity. Electrical noise in the amplification system
can become troublesome in that it can give rise to an output with a low
signal to noise ratic. Extreme care must be taken in the design of the
amplification equipment with emphasis on the use of low noise components.
The piezo—-electric transducer is also more sensitive to vibration than the
condenser microphone, and the accelerometer effects can result in very high
noise levels. Particular attention must then ke paid to the isolation of

its meunting from vibration sources.



The choice of the plezc-electric transducer for the measurement of the
wall pressure fluctuations has been made mainly on the bases of the higher
frequency response attainable, the smaller overall size, and the stability

of its calibration with changes in the mean ambient pressure.

The piezo-electric effect is a property of many crystalline materials.
3 piezo-electric matarial, when compressed in certain directions, develops
a potential difference, and conversely, the application of an electrical
voltage creates mechanical distortions. It has been found that certain
polycrystaline ceramic materials which are not piezo-electric in nature
will behave as a plezo-electric body after being pclarised. The polarising
process subjects the material to a high polarising electric field which
results in the alignment of the dipole moments in the material. This
alignment and hence the pclarised state is not a permanent prorerty. The
application of heat that will raise the temperature of the material beyond
a certain value will destroy the polarisation anq the material on cooling,
assuming that the temperature encountered has not been excessive, will
revert to its natural state. The Curie pceint is the temperature at which

this reversal is precipitated.

4.2.2 Choicé of Material and Element Size.

Of the polycrystaline materials available, barium titanate and lead
zirconate-titanate are two of the more widely used examples. Both give
good sensitivity although lead zirconate-titanate has the better

sensitivity of the two with the added advantage of a higher Curie point.
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This advantage is of particular significance when the construction of the
transducer calls for the scldering of conductors to the electrodas con the
element. Of the crystalline materials, cuartz is the more widely used.
However, the transducers employving quartz as the sensing elements

provide a sensitivity which is only about one~hundredth to one~fiftieth of
those which employ barium titanate or lead zirconate-titanate elements.

The gquartz transducers are also affected more by changes in the mean
temperature. Thiz makes quartz a useful meterial only in an environment
where the drift in the calibration due to a change in temperature can either
be taken &s insignificant or be corrected for. &an example of the possible
use of quartz tiransducers is in the measurement of relatively high pressure
changes. As the amplitude of the pressure fluctuations in boundary layerx
flow is only of the order of 10_4 atmosphere, the choice of the matesrial
for the piezo-electric transducer elements is narrowed to that of either
barium titanate or lead zirconate~titanate. The latter has been chosen

because of its inherently higher sensitivity and higher Curie point.

It has been shown by Bull (1963) that for a particular material used
for the element, the signal to noise ratio of a piezo-electric pressure
transducer is a function only of the cross-sectional area of the sensing
element although the sensitivity is dependent on the thickness. However,
it was also pointed out that the resonant frequency of the element itself
is also a function of the thickness and decreases with the increase in
thickness. The procedure in the choice of the thickness of the element is,
usually, tc use the thickest possible while at the same time ensuring that

the resonant frequency would be high encugh so that the response of the
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transducer is flat to the highest frequency of interest.

4.2.3 Construction of Transducers.

Although a double screened transducer has been shown by Bull (1963) to
give maximum sensitivity for a given element, the simple construction
indicated in the cross-sactional drawing of the piszo-electric pressure
transducer given in figure 21 has been employed. This type of construction
has been decided on after the consideration of the number of transducers
which will eventually be required when correlation measurements are to be

made.

The transducer has a brass shell with an outside diameter of 6.35 mm
(0.25 inch). The thickness of the cylindrical shell is 0.76 mm {0.030 inch).
The insulating material between the central stem and the shell is silicon
loaded ebonite which possesses a good insulating property as well as being
able to provide a good surface for the adhesion of Araldite which is used
to form the diaphragm. The central stem is made from a 12 B.A. threaded
rod and the internal diameter of the body is made as large as practicablie
to reduce the inherent capacitance of the body. The transducer element is
a lead zirconate-titanate disc with the nominal dimensions of 0.76 mm
{(0.030 inch) diameter and 0.76 mm (0.030 inch) thickness. It is a product
of the Brush Clevite Company of Southampton, Engiand. The designation of
the lead zirconate-titanate element used for the transducer is PZT-5H. The
transducer elements were not obtained in the size mentioned above but were

cut from a much larger disc of the specified thickness., A clearance is
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provided between the transducer element and the insulation to prevent the
transmission of mechanical stress from the surrounding material to the side
of the element. This ensures that the pressure signals act only on the
face cf the element. The clearance has been made small (about 25 um
(0.0C01 inch)) sc that the diaphragm material would have little likelihood
of flowing into it and atfecting the performance cf the transducer. The
Epirez type 614 conducting epoxy made by Indelab Proprietory of Granville,
Mew South Wales is used for the mounting of the element con the central
stem. The conductor bridging the circuit between the element and the
transducer body is made of 25 um (0.001 inch) diameter copper wire and is
attached to the element and the transducer body with the use of the

conducting epoxvy.

Before commencing the construction of the transducer, it is
particularly important to ensure that the transducer element has a proper
set of electrodes. The procedure that is employed is to clean the element
with concentrated nitric acid containing 3% hyvdroflucric acid. This is
done so that any contamination including any old and oxidised electrode
material would be removed leaving a clean surface. After washing and
drying, a coating of thermosetting silver preperation, type FSP 36 (002)
made by Johnson Matthey of Hatten Garden, England, is applied in turn to
each end cf the element tc form the electrodes, care being taken to ensure
that the full area is coated without allowing any of the silver preparation
to flow down the side of the element. When the electrodes have been formed
and set, the transducer element is attached to the central stem with the

aid of the conducting epoxy. After the epoxy has set, the central stem is
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screwed into position so that the surface of the transducer element is
flush with that of the transducer body. The locknut is then tightened and
secured with Arsldite adhesive. At this stage, the copper bridging
conductor is attached to the body and the transducer element by means of
the conducting epoxy. The diaphragm on the face of the transducer is
formed by first spreading Araldite on the face of the transducer to ensure
that the epoxv adheres to the body and the element. The transducer
assembly is then placed face down on a piece cf polythene on a flat surface
and left to stand. When the Araldite has set, the transducer is ready for

use after trimming off the excess epoxy around the perimeter of the body.

The typical value of the capacitance of the transducer elements is
about 10 pF and that for the completed transducers is about 11 pF. The
resistance across the central stem and the body for the completed
transducer is higher than 1000 M{l. Figure 22 shows two ccmpleted
transducers and a pre-amplifier, the latter will be described in detail

below.

4,2.4 Transducer Pre-amplifier.

Since the piezo-electric element has the characteristic of a very high
input impedance, a cathode follower or a pre-amplifiar serving the function
of an impedance matching device is usually required before the signal from

the transducer can be analysed.

A cathode follower was used initially in the development of the
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piezo-electric pressure transducers. However, it was found that the high
level of the acoustic field in the laboratory induced vibration in the
components of the cathode follower and ¥esulted in an output with a high
degree of noise. It was found that the shielding of the cable between the
transducer and the cathode follower was also a critical factor with regard:
to the noise in the output of the cathode follower. The decision was then
made to use a low noise, solid state pre-amplifier which would be compact
enough to be placed very close to the transducer itself. This has the
advantage in that not only is the use of a lead which is liable to be noisy
dispensed with but also in that, as the capacitance of the lead has been
disposed of, the effective sensitivity of the transducer/pre-amplifier

combination is increased.

The general arrangement of the transducer/pre-amplifier combinztion in
an instrumentation plug is shown in figure 23. Figure 24 shows the circuit
diagram of the low noise pre-amplifier. The pre-amplifier is a two stage
device using low noise field effect transistors and an emitter follower
output. The output is boot-strapped to give a gate resistor multiplication
factor of zbout 10. The principal low noise components are the Texas

2N5245 field effect transistors and the 100 MQ gate resistor from Bruel and

Kjoer.

The frequency response of the pre-amplifier is shown in figure 25
using the apparatus set up as illustrated in figure 26. It can be seen
that the response is flat from about 100 Hz to about 1 MHz, a range which

adequately covers the low frequency requirements of pressure transducer
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work in boundary layer measurements. The high frequency limit of the
response is far in excess of the present reguirements, and the useful upper
limit is usually imposed by associated equipment and the transducer itself.

The voltage gain of the pre-amplifier is about 3.

4.2.5 Transducer amplifier.

The output of the piezo-electric transducers constructed for the
measurement of pressure fluctuations in the turbulent boundary layer is
expected to be of the order of lO_5 volts for the flow conditions which can
be set up in the beoundary layer tunnel. In orxrder that correlation
measurements may be made using a commercial correlator, if. is5 nacessary to
amplify the signal. A variable gain high gain ampiifier has been
constructed to serve this purpose. Figure 27 shows the circuit of the
amplifier which features solid state components, low noise, low output
impedance, high frequency response and calibfated gain settings. The

frequency response of the amplifier is shown in figure 28.

4.2.6 Transducer Calibration.

Two basic principles wexre employed in the methods used for the
calibration of the pressure transducers. In the first case the transducer
was mounted with its face flush with the surface of an instrumentation
plug which was then placed in a shock tube extension made so that the
surface of the instrumentation plug was itself flush with the internal

surface of the shock tube extension. Measurement was then made of the
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voltage step at the output of the pr

in response to the za2pplication of

§
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front across its
transcducer was calibrated against a
situation where hoth the transducer

with an exciter were mounted in the

e-amplifier gznerated by the transducer
known pressure step associated with the
face. 1In the second case the

standard ccrdenser microphone in a

and the standard microphone together

walls of a small air cawvity.

In the case of the shock tube calibration, the magnitude of the

pressure step applied to the transducer can be obtained from tha expression

bp | 2 2
o, = LD

.0 {4.2.1)

where Py is the static pressure ahead of the shock (which is atmospheric

pressure in an open ended s

hock tube},

Y 1is the ratio of the specific heat of the gas in the low pressure

chamber of the shock tube at constant pressure to the specific

heat at constant volume,

M = Us/al is the shock Mach number,

U _ is the speed of progression of the shock front,

R 1is the gas constant, and

a, = /&RTl is the speed of sound in the gas ahead of the shock front,

T. is the temperature of the gas ahead of the shock front. The speed

1

cf progression of the shock front U_ can be obtzined from the relationship
»

if the facilities are available for

.. (4.2.2)

the determination cof the +ime At taken

by the shock front to traverse a distance £.
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The magnitude of the applied pressure step can aiso be given by
{see Bannister and Mucklow (1248))
p. 1/7 2

Z
==y — : eae(4.2.3)
1/7
Py 1+ (p,/p,) /

where p, =P + 4p is the magnitude of the pressure directly behind the

1
shock front, and
P, is the pressure in the high pressure chamber of the shock tube.
The experimental set-up is shown in figure 29. The oscilloscope
comprises the Tektronix 564B storage oscillescope main frame, the 3R3 time
base, and the 3A9 differential amplifier. The ocutput from the
pre-amplifier of the triggering transducer is connected to the external
triggering terminal of the time base unit after amplification by the
high gain amplifier. The transducer which is to be calibrated has its
pre~amplifier output connected to the input terminals of the differential

amplifier of the oscilloscope. The values of the pressures p., and p, are

1

read off from mercury mancmeters.

Although the construction of the apparatus has a provision for two
timing transducers so that the pressure step may be determined by the use
of Equations (4.2.1) and (4.2.2), this facility has not been used.
Instead, the triggering transducer has been used in conjunction with the
transducer which is to be calibrated. The accurate determinaticn of the
value cf At and hence the shock Mach number requires a pair of identical
timing transducers and an accurate chronometer., The time delay facility

in the 323 time base has been used for the latter purpose since the sweep
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rate can be coupled with the time delay so that oniy relatively small
values have to be read off the oscilloscope photographs to determine the
time taken by the shock front tc travel the distance between the triggering
transducer and the trasnsducer to be calibrated. The voltage step generated
by the transducer at the output of its pre-amplifier is also read from the

oscilloscope photegraphs.

Equation (4.2.3) gives the alternative means for the determination of
the applied pressure step directly from the values of the absolute pressure
on the two sides of the diaphragm. The transducer output voltage is still

determined from the oscilloscope photograph.

The typical response of the transducer to a pressure step is shown in
figure 30. The progressive fall off of the output voltage of the transducer
after the initial rise (due to the passage of the pressure step) is a
function of the low frequency response of the transducer/pre-amplifier
combination, the fall off being more rapid the higher the frequency at
which the -3 db point occurs. It can be seen from figure 25 that the -3 db
point for the transducer/pre-amplifier combination is about 20 Hz. The
fall in output voltage of 10% will then occur after a time lapse of about

800 p-seconds, a condition which is shown up in figure 30(a).

However, in the interval of time from a few u-seconds to about 100
w-seconds after the initial rise in cutput voltage, any deviations from a
constant veitage output can be attributed to the effects of the frequencv

response function of the transducer itself. An example of this is the
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appearance of oscillaticns superimposed on the output trace which indicate
the presence of mechanical resonances in the transducer. Even when
particular care has been taken to engure that the transducer is free of
rescnance at all freguencies in its working range, the output trace may
still show a high frequency oscillation immediately following the passage
of the shock front. The high frequency oscillation usually persists for
abcut 15 p-seconds and appears to correspond to the resonant vibration of
the crystal itself in its fundamental thickness mode. This effect can be

seen in figqure 30(b).

The bursting of the diaphragm invariebly excites vibration in the
shock tube. Care must be taken to mechanically isolate the transducer from
the shock tube vibration as the result of poor isolation will be the
appearance of oscillations on the output trace of the transducer. However,
the vibration in the walls of the shock tube will also affect the
transducer before the shock arrives since it trav?ls at a much higher speed
than the shock front. Hence it is usually fairly easily identified and is
not particularly troublesome provided the induced oscillations are not

large in amplitude.

The shock tube calibration of the transducers relies on the assumption
that the sensitivity is the same at all frequencies over the working range.
It can be seen that this is a fair assumption provided that the frequency
response of the associlated pre-amplifier is also constant over this range
and provided that the shock pressure step is reproduced without

superimposaed oscillations resulting from resonances in the mechanical



structure of the transducers.

The typical calibration curves for the pressure transducers are shown
in figures 31 and 32 where the magnitude of the snock pressure step has
been derived from the use of Eguations (4.2.1) and (4.2.3) respectively.

The calibrations shown are for the same transducer.

The second precedure for the calibration of the piezo-electric
pressure transducers makes use of a coupler which is constructed so that
the transducer and the condenser microphone are both mounted facing a small
cavity into which the acoustic oscillations of an exciter are directed.

The Bruel and Xjoer 6.35 mm (0.25 inch) diameter condenser microphone is
used as the standard against which the transducer is calibrated, and the
exciter is an earpiece driven by an oscillator. The arrangement for the
calibration of a transducer is shown in figure 33. The upper limit of the
frequency range over which the coupler is of use is a function of the
cavity dimension. The pressure generated in the cavity is uniform so long
as the cavity dimension is small compared with the acoustic wavelength
corresponding to the frequency of the excitation. If the maximum dimension
of the cavity is d, a uniform pressure can be expected for a wavelength A
at least as small as that for which A/10 = 4. Tor the coupler which has
been constructed, d = 8 mm. Hence the frequency range can be expected to
extend to about 4 kHz. This has been confirmed by a simple test where the
transducer was replaced by another condenser microphone. By keeping the
cutput of one micrcophone constant at a series of exciter frequencies and

noting the output of the other, the useful limit of the range of the
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coupler can then be estimated as the point where the cutput cf the second
microphone starts to show marked variations. Figure 324 shows thie results

cf the test which indicate that the upper frequency limit is about 2.5 kHz.

A typical calibration curve for the pressure transducers obtained by
the use of the acoustic coupler is shown in figure 35. The transducer used
is the same as that whose calibration has been given in figure 21 and 32.
Since the agreement between the results obtained from the two different
methods (shock tube, and acoustic coupler) is good and has keen found to be
consistent to 2% or better, the procedure which has been adopted for the
calibration of a newly constructed transducer is to initially check the
flatness of the overall response of the transducer using the shock tube
method. The acoustic method is then used to check the calibration directly

before and after each tunnel run.

4.3 Differential Pressure Capsule and Pitot Traverse.

4.3.1 The Differential Pressure Capsule.

The boundary layer mean velocity distributions were obtained using a
Pitot tube. The results allowed the determination c¢f the displacement
thickness 6*, the momentum thickness 0, the shape parameter H, the Clauser
(1954) thickness A, the family parameter G, and the pressure gradient
parameter B, which, for an incompressible boundary layer, are defined as

follows:
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Tw is the wall shear stress, UT is the friction velocity, and y is the

distance from the boundary surface.

The Pitot traverses when manually carried out are time consuming. A
relatively cheap and simple device has been constructed to perform the
traverses automatically when used in conjunction with a recorder or an
X-Y plotter. This device is called the "differential pressure capsule” and

is shown in figure 36. It consists of a cantilever which is acted upon by
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an anerolid capsule, and the ccmbination is placed in a container so that
the wall static pressure is made to act on the outside of the aneroid
capsule while the total pressure from the Pitot tube acts on the inside.
The difference in pressure forces on the anercid capsule results in strain
in the cantilever arm. The strain is sensed by & strain gauge bridge
cemented on the cantilever, and the output of the bridge is amplified and
recorded. The cixcuit diagram of the strain gauge bridge and its amplifier
is shown in figure 37. The amplifier is constructed on a patch board and
is enclosed in the differential pressure capsule to ensure temperature

stability.

The frequency response of the differential pressure capsule is found
to be about 3 Hz. An excellent linearity is indicated by the calibration
curve shown in figure 38. The sensitivity of the unit at the cutput of the
strain gauge amplifier is about 8 mV per mm of water gauge oxr about
60 uV/(N/mZ). Hysterisis effects are insignificant for measurements
extending to as high as 130 mm of water gauge. There has been no drift in
the calibration due to changes c¢f the mean ambient temperature encountered

in any tunnel run.

4.3.2 The Traversing Mechanismn.

The traversing mechanism for the Pitot tube is shown in figure 329.
The spindle of a linear precision potenticmeter is attached to the carriage
on to which is clamped the stem of the Pitot tubs. A regulated voltage

supply is applied across the potentiometer, and the location of the Pitot
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tube is sensed as a voltage from the wiper of the potentiometer. The
resciution of the potentiometcr is essentially infinite,'and positional
accuracy is better than 5 um. The linearity of the potentiometer is shown
in figqure 40. The carriage of the traversing mechanism is moved with the
aid of a scraw driven by a small electric motor which has the facility of
directional«as well as speed control. The circuit diagram of the power
supply to the potentiometer and the variable low voltage supply to the
drive of the traversing mechanism is shown in figure 41. A dial indicator
is provided to facilitate the positioning of the Pitot tube and to allow
the détermination of its travel to an accuracy of at least 13 um (0.0005

inch).

The initial set-up of the Pitot tube in the instrumentation plug to
determine its wall position is achieved by observing through a microscope
the reflection of the Pitot tube on the highly pclished plug surface. The
Pitot tube is racked towards the plug surface until the Pitot and its
reflection just meet. The dial indicator is then set to zero to indicate
the wall position of the Pitot tube. This procedure is adopted before
each set of tunnel runs and the readings checked after the conclusion of
the runs to ensure that the Pitot tube has not moved in relation to the

carriage and the dial indicator.
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5. THE EXPERIMSNTAL WORK.

5.1 Constant Pressure Boundary Layer Measurem=2nts.

A constant pressure turbulent boundary layer was developed in the
boundary laver tunnsl which has been described in Section 4.1.
Measurements of ths wall static pressure, the total pressure across the
boundary layer, the acoustic field intensity, and the power spectral
densities of the fluctuating wall pressures were made in the test secticn
of the tunnel. This work, although very limited in scope, has been
conducted mainly with the aim of proving the experimental equipment and
supplementing available data regarding the variaticn of the wall pressure
fluctuations with Reynolds number, although it was envisaged that the
experience which would be gathered in the exercise would prove to be of
help in later measurements in layers developed under the effects of mean

pressure gradients.

5.1.1 Mean Flow Properties.

The experimental set-up for the determination of the total pressure
distribution in the boundary layer is shown diagrammatically in figure 42.
The wall static pressure and the Pitot tube total pressure tappings are
connected to the appropriate points in the differential pressure capsule
which has been described in Section 4.3. The output of the strain gauge
amplifier is connected to & set of terminals on an X-Y plotter while the

output of the precision potentiometer indicating the position of the Pitot
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tube is connected to the other set of terminals of the plotter. The
sensitivity of the plotter is adjusted so that the largest possibie trace
is obtained. The scaling of the axes is delermined by comparing the
deflection of the pen in the appropriate direction with the readings of a
micro-manometer (for the pressure axis) cor the dial indicator (for the
Pitot tube travel). A typical trace of the Pitot traverse of the boundary
layer is shown in figure 43. The variation of the total pressure across
the boundary laver is extracted from the trace with the aid of a curve
reader, and the values together with those for the wall static pressure
and the total vressure in the free stream are then reduced to give the
values required for the determination of the various boundary layver
parameters definasd in Section 4.3. Patel's calibration for a round Pitot
tube was used to compute the wall skin friction Cf and the associated

values cof the wall shear stress Tw and friction velocity UT. (see Patel

(1965)).

It has been shown by the wealth of experimental results that provided
the Reynolds number based on the inside diameter of the tube exceeds about
200, the Pitot tube gives accurate measurements of the total pressure in a
uniform, non turbulent and subsonic flcw independent of the Mach number.
However, errors in the total pressures can arvise when the Pitot tube is
used in a turbulent flow with transverse total pressure gradient (shear
flow) and in close proximity to a boundary surface. It is generally
accepted that if the flow is turbulent the reading of the Pitot tube is
increased by a quantity of the order cf %p(u2+v2+w2), where u, v and w

represent the turbulent velocity components. However, as pointed out by
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Hinze (1959) there is no universal agreement on the magnitude of the
correction to ke applied. MacMillan (1956) has shown that the pressure in
a Pitot tube in a shear layer is equal to the total pressure at a point
displaced about ONISDO from the centre of the tube in the direction of
increasing velocity, where Do iz the outside diameter of the tube. In the
case where the Pitot tube 1s used in the presence cof a solid surface so
that the centre-line of the tube is located at y/Do < 2, where vy is the
distance from the surface, the displacement is reduced by the wall effect,
and for the tube touching the surface, the displacement is from 0.09Do to
O.llDO. Owing to the uncertainty of the corrections to be applied, and
since the effect in any case is small, no attempt has been made to correct

for the Pitot tube readings in the experimental work reported here.

5.1.2 The Wall Pressure Fluctuations.

The measurements which were made in the experimental investigation of
the wall pressure fluctuations beneath a zero pressure gradient turbulent
boundary layer are limited to the determination of the frequency power
spectral density and the mean square value of the fluctuating pressures.

The apparatus is shown diagrammatically in figure 44. The wind tunnel used
in the experiment has been described in Section 4.1. The output of the
transducer pre-amplifier is connected to the input of the third octave
spectrometer whose output is fed into the level recorder. The signal from
the transducer pre-amplifier is monitored on the screen of the oscilloscope.
The piezo-electric transducers used are set rigidly into the wall of the

wind tunnel and flush with its surface with the aid of the removeable



_,-*"ﬂ"' ,5 B &_&: Microphione 23{9_ _m’)
i
u : ; f'frcnsducer
<<k
1,.- /A R 3 !.
2 & \\ \ L\.; \ NN
J.r‘
Tunnel Wall f}i !nsirumeniuiicp i Pre-
i plugs i
T
Monitor
L e 2
C.RC.

B&K 3rd Octave
Spectrometer 2112

o

f -
1B&K Level Recorder

2305

Fig. 44 Bleck Diagram of Apparatus for Measuring
Spectral Rensity of Wall Pressure Fluctuations.



instrumentation pluas. These transducers have 0.76 mm diameter sensing
elements and give, for the present results, values of the ratio of the
diameter d of the sensing element to the bounda:ry layver displacement

& *
thickness & in the range 0.14 £ 4/6 £ 0.30. Tne construction and
calibration of the transducers have been describad in Section 4.2. A
condenser microphone fitted with a nose cone it placed in the free stream
in the test section at a point corresponding tc the location of the
piezo-electric transducer. Its output is amplified and filtered by the
third octave spectrometer before being fed into the level xecorder. The
recording of the overall spectral levels from the piezo-electric
transducers is done after the recording of the acoustic spectral
distribution and the removal of the microphone from within the test

section.

The signal from the piezo-electric transducer at the cutput of its
pre-amplifier may have in it extraneous contributions due to

(1) electronic noise in the amplification systen,

(2) vibration of the transducer whereby the inertial forces generate
a signal independent of the boundary layer flow, and

(3) acoustic field in the environment cf the transducer.

The extraneous contribution due to the presence of electronic noise
accounts for less than 0.5% of the mean square pressure in all measuremnents.
The level of the spectral density of the noise falls off very rapidly with
increasing frequency to negligible proportions ceompared to that of the wall

£~

pressure fluctuations. However, at low frequencies, the power spectral



density of this noise can become gquite significant and has been found to
rise to a level of sbout 20% of the overall spectral density at 200 Hz.
Although the total effect of the noise is small, the procedure adopted is

to correct for it at frequencies where it is significant, and to neglect

measurements where it is dominant.

The efforts taken to minimise vibration in the test section have been
described in Section 4.1. The effect of the precautions and hence the
success of the measures were checked by first cbtaining the third octave
spectral density distribution from the piezo-slectric transducer with the
tunnel drive statiocnary, and then repeating the measurements with the
tunnel running and the transducer blanked off from the influence of the
flow in the test secticn. The blanking off of the transducer was achievad
by retracting the transducer from the surface and inserting a blanking plug
to shield the transducer from the effects of the airstream. No significant
difference was found in the two spectra except at the centre-band frequency
of 160 Hz or 200 Hz depending on the rotational speed of the wind tunnel
drive where an increase of the spectral density due to the extraneous
disturbance of up to about 6 db was noted. This low frequency excitation
appears to be a resonant frequency and has a very narrow band of influence,
and its effects soon become negligible with increasing frequency. Hence,
at frequencies greater than 250 Hz, the effect of the vibration in the
test section can be ignored. In fact, care was taken to ensure that the
experimental measurements were made with the speed of the tunnel drive

restricted so thair the resonant mode at 200 Hz was ncht excited.
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The acoustic field in the environment of the transducer results from
the propagation of noise into the test section and from boundary layer
noise. The freguency power spectral density distrikbution cf the extraneous
contributions due to the acoustic field is shown in figure 45. The spectra
from various positions in the working section of the tunnel have been
plotted, and it can he seen, by comparison with the spectra of the wall
pressure fluctuations shown in figure 53, that the acoustic field makes
significant contributions at the low and high freguency ends of the
spectrum. The proportion of the extraneous contributicns from the acoustic
field falls rapidly to negligible values with the increase in the frequency
starting with about 25% of the overall power spectral density at 200 Hz.
However, this proportion rises again to about the same value at 25 kHz.

Tt is necessary then to correct the overall measurements for acoustic
contributions whose sum effect is to account for up to 12% cf the mean

sguare value of the wall pressure fluctuations obtained without correcting

the spectral distributions for the effects of transducer resolution.

The procedure adopted is to fit a mean curve to each of the third
octave spectral density plots for the electrconic noise, the extraneous
contributions due te the acoustic field, and the ocutput from the
piezo-electric pressure transducer cbtained from the level recorder. The
third ectave spectral density distributions are than read off from the
fitted curves and reduced to give the frequency power spectral density

distribution of the wall pressure fluctuations.
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5.1.3 Results and Discussions.

The wvariation of the free stream dvnainic precsure q, along the full
length of the wind tunnel test section is shown in figure 46 in conjunction
with the variation of the free stream velocity U_ along a section of the
tunnel. It can be seen that over the distance of 1.3 m to about 3.1 m
from the start of the test section, an essentially constant pressure flow

region has been achieved.

The mean velocity profiles at 5 streamwise stations are shown in
. = 0 « * 1 .
figure 47. The variations of § , 6, and H {determined according teo
Equations {4.3.1), (4.3.2), and (4.3.3)) with distance from the start of
the wind tunnel test section are shown in figure 48, and the variaticns of

the Reynolds numbers Re. * and Re

s o7 based on the boundary layer displacement

thickness and the momentum thickness respectively, are shown in figure 49.

Clauser (1954) has shown that for an equilibrium turbulent houndary

layer
' ... (5.1.1)

where § is the geometrical thickness of the boundary laverx, UT is the

friction velocity,

) d{y/8) , and

y is the distance from the boundary surface. Coles (1956) has given the
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value of Cl as 3.88. The value of ¢ can then bie obtained by the use of
Egquation (5.1.1) and its variation along the wind tunnel test section is

shown in figure 50 along with that of the Reynolds number Re, based on thigs

§

geometrical thickness of the boundary layer.

It has bkeen recognised for quite some time that certain regions may
be distinguished in a Loundary layer. In the region of the fluid
immediately adjacent to the bcocundary, the flow must be mainly viscous as
all velocities, including turbulence fluctuations, beccme zero at the
boundary, and so does the Reynolds number expressed in terms of the local
velocity and distance from the boundary. This predominently viscous region
is called the viscous sublayer. Outside this region the effect of
viscosity on the flow will decrease gradually with increasing distance from
the boundary until, ultimately, a regicn is reached where the flow is
completely turbulent and viscosity effects are negligibly small. The
intermediate region where the flow is neither completely viscous nor
completely turbulent is called the transition region. In the fully
turbulent region near the boundary surface, the mean velocity profile is

given by the "law of the wall" as

U 1 vU
R = l:ln (_I_) + A ] . ... (5.1.2)

U K v
where A and k are constants. The wall skin friction can then be determined
using the method of Clauser (1954), and the values obtained are shown in
figure 51 along with the values of the wall shear stress and the friction
velocity. These values are in general agreement with the values obtained

using Patel’s (1965} calibration for the round Pitot tube, the discrepencies
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being only, at worst, 5%,

The velocity profiles, replotted in the form (Um—Ul)/UT against y/§,
are shown in figure 52. The experimental profiles give a mean curve which
is in excellent agreement with Coles's (1956) profile but is different from
the one suggested by Bull (1969a) and which has been used in the boundary
layer model described in Section 3.1, although the differences are not
great. However, the results do show that in the outer region and in a
portion of the inner region the boundary layer is obeying the velocity

defect law.

The distribution of the frequency power spectral density ¢p(w) of the
wall pressure fluctuations corrected for both acoustic and amplifier
electronic noise is shown in figure 53 along with the mean experimental
curves obtained by Willmarth and Wooldridge (1962), Hodgson (1962),
Schloemer (1967), Bull (1967), and Blake (1970). .Due to the low signal to
noise ratio at the low and high frequencies, measurements below the
frequency of 200 Hz and those above 25 kHz have been rejected, and the
results which have been presented cover the range 0.075 < w6*/UOo < 20.

The results are in good agreement (to within 2 db over the major portion

*
of the frequency range) with measurements which have similar 4/8 wvalues.

The mean square value of the wall pressure fluctuations <p2> is
determined by the integration of the power spectral density which has been

corrected for electronic and acoustic noise, that is,
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2 . . i
<p > = $ (w) dw . e {5.1.33
p
V]
Corcos (1963) has shown that the effects 0of transducer resolution

and, hence, the ccrrection that has to be appiied tc the measured values
can be quite cecnsiderable at the higher frequencies. The correction to the
measured spectral density relies on the representation of the cross-spectral
density or the narrow frequency band correlations as a functicn of

uil/UC(m) andw£3/Uh(w) (where &. and 53 are the separation distances in the

1
X, and X directions respectively and Uc(w) is the frequency dependent
convection velocity) and is a function of wr/UC(w), where r is the radius
of the circular transducer element. One of the eims of the experimental
work was to achieve a small d/G* so that little or no corrections of the
measured values would be required. However, although the ratio of d/G*

is relatively small for the present case, the corrections at the higher
frequencies are still large and certainly cannot be ignored. The results
of Bull (1967) are used to give the resquire Valu;s cf Uc(m), and the
corrections to the measured spectral'density distributions are applied
according to the values calculated by Corcos and given in figure 54. The
results of the corrected spectra are shown in figures 55, 56 and 57. Geod
collapse of the experimental data can be sesn in gach of the three figures
although it must ke kept in mind that the range of experimental conditions
is rather limited. Figure 56 indicates that the frequency distributions
of the varicus spectra are similar, and the compariscon of figure 55 with

figure 57 indicates that the free stream dynamic pressure would be a more

useful non-dimensicnalising parameter than the wall shear stress as the
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variation between the spectra is less in figure 55 than that in figure 57,
thus indicating that p'/qmmay have a value which can be regarded as
constant and independent of the Reynolds number for most engineering

4 : =
purposes at least for 7xlO3 < Re . * ¢ 1.5x%x10° where p'/qoo is from 6.8x10

§

to 6.3x107°.

The mean square value of the wall pressure fluctuations corrected for
transducer size effects is obtained from the frequency power spectral
density distribution which has been corrected for transducer size effects.
The variation of the root mean square value of the pressure fluctuations in
the wind tunnel test section for the values as measured and for values
corrected for transducer size effects is shown in figure 58. The ratio of
the corrected to the uncorrected values p'/pé is shown in figure 52 where
the results of Bull (1967) have been included for comparison. Bull's
results were originally plotted against §, and the assumption used here in
the re-presentation of his results is that 6/6* = 7.84, a value
representing the mean obtained from his measurements. The variation of +the
root mean square wall pressure fluctuations as a function of the Reynolds
number is shown in figure 60. Bull's results have also been plotted in
figure 60(b) for comparison. Over the Reynolds number range 7x103 < Reé*
< l.leO4, p‘/Tw when determined from the measured spectral density curves
vafies from 2.1 to 2.4. After the application of the correction for
transducer size, p'/‘rw varies from 2.3 to 2.5 cver the same Reynolds number
range. Although the Reynolds number covered by the present experimental
results is rather limited, the variation of p'/Tw with Reynolds number as
reported by Bull is again evident. The present results give values of

p'/'rW which are higher than those of Bull, but the differences can be

classified as small being at worst only about 6%.
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The evidence, though not overwhelming, is then that p'/Tw in a
constant pressure turbulent boundary layer is a function of Reynolds
number and increases with increasing Reynolds number. As the scope of the
precent results is limited in the range of Reynolds number, no attempt is
made to specify the form of the variation except to note that the trend of

the increase is similar to that observed by Bull (1967).

5.1.4 Conclusions.

Spectral density measurements of the wall pressure fluctuations under
a constant pressure turbulent boundary layer conducted only for a limited
range of experimental conditions indicate that:-

(1) The agreement obtained between the present results and those of
previous investigators confirms the validity of the results and proves the
proper functioning of the experimental equipment.

\ 3 4
(2) Over the Reynolds number range 7x10° < Re . * ¢ 1.5x107, p'/TW

S

varies from 2.3 to 2.5. The variation of p'/Tw with Res* is similar to
that observed by Bull (1967) although the present values are about 5%
higher.
(3) The effect of the transducer size on its resolution at the high
frequencies is not negligible for the present series of measurements for
x*
which 0.14 £ 4/8 £ 0.30. Correction of the spectral density distributions
for the effect of transducer size results in better overall collapse of the
. . 2. *
frequency power spectral density ¢p(w) in terms of ¢p(w)Um/qw6 compared
ith y /i%s"
wit ¢P(w)um/TW .
(4) Because of the slightly better collapse of the data when

non-dimensionalised by q  rather than Tw, it is tempting to conclude that

sources in the outer part of the boundary layer are respcensible for the
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greater portion of the owverall pressure fluctuations (contrary to the
conclusion based on the theoretical work of Section 3). However, as Laufer
and Narayanan (1971) have shown, it is possible for events in the inner
part of the layer to scale on outer layer parameters, and therefore, in the

absence of other evidence, such a conclusion would appear to be premature.

5.2 Pressure Gradient Boundary Layer Measurements.

The constant pressure or zero mean pressure gradient turbulent
boundary layer is a spécial case of the more general type of boundary
layers. In most instances, boundary layers of interest are those
developed under the effects of finite pressure gradients. Some
measurements of the wall pressure fluctuations in this case have heen
reported by Schloemer (1967). His measurements were obtained, however,
for a somewhat arbitrary pressure gradient only, that is, on the surface of a
flat plate where the variation of the free stream velocity was provided by

the insertion of an aerofoil section in the test section of a wind tunnel.

Clauser (1956) has pointed out the "black box" nature of the problem
of the turbulent boundary layer and has suggested that the response of the
boundary layer is best studied by limiting the factors affecting the
development and the characteristics of the boundary layer. It has been
realised for some time that the behaviour of a boundary layer depends not
only on the local effects of pressure gradient, wall shear stress, boundary

layer thickness, etc., but also on the history of the layer far upstream of

Laufer, J. and 1971 IMean Period of the Turbulent Production
Mechanism in a Beoundary Layer.

a Y M.A.B. . , .
Narayanan, i Physics of Fluids, vol 14, Res. Notes, pl82-3.
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the point of interest. The gross forces acting on the boundarv layer are

those due to the pressure gradient dp/dx and the wall shear stress T and
. 7

Clauser (1954) argued that a simple, well defined pressure history would

exist i1f the pressure gradient parameter 8, given by
B = (8%t )(dp/ax) , ... (5.2.1)

is a constant througaout, where &' is the effective face area of the laver
par unit depth. He termed such layers "equilibrium" layers and went on to

show (Clauser (1956)) that they are characterised by
*
B = (6 /Tw)(dp/dx) = c¢onstant , ees(5.2.2}

*
where § 1is the boundary laver displacement thickness.

The equilibrium condition where 8 is a constant is an attractive and
most reasonable basis for the study of the turbulent boundary layer, and
the measurements presented in this section are those of the mean flow
properties and the spectral density distributions of the wall pressure
fluctuations in an adverse pressure gradient equilibrium turkulent boundary
layer. It is believed that the wall pressure measurements presented are
the first to be made in an equilibrium turbulent boundary layer existing

under the effects of a finite mean streamwise pressure gradient.

5.2.1 HMean Flow Properties.

The apparatus and the experimental set-up for the determination of the

total head distribution across the boundarv layer have been described in
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Sections 4.3 and 5.1.

The procedure adopted in the setting up of the boundary layer in the
wind tunnel test sectisn was to initially estimate the wall shear stress Tw
from the Pitot tube reading (used as a Preston tube) and the boundary layer

*
displacement thickness § from an appropriate relationship toc the boundary

layer thickness. The mean streamwise pressure gradient dp/dx was obtained
from the static pressure distribution along the tunnel test section, and
the value of f was determined using Equatiom (5.2.2). The procedure was
repeated until the estimated value of B along the test section was within
10% of the mean. The boundary layer traverse was then conducted using the
Pitot tube and the differential pressure capsule to okbtain more accurate
* . . .
values of § and to give better estimates of T, by the comparison of the
mean velocity profiles with the law of the wall. ZInvariably, the first
. s* " .

estimates of § were found to be different from those obtained from the
Pitot traverses of the boundary layer and the uss of Equation (4.3.1).

. . * ¥
However, the latter values serve as guides to better estimates of § in
subsequent re-adjustments of the flow in the test section provided that the
changes in the mean flow have not been too drastic. The agreement bhetween
the value of the wall shear stress obtained by the fit of the mean velocity
profile to the law cf the wall and that estimated Ffrom the Pitot tube wall
reading was found tc be better than 5%, and indicated that any three-
dimensional effects were probably negligible. Due to the interdependence
of the variakles which make up the pressure gradient parameter, a number of

tunnel adjustments were made before a satisfactory equilibrium layer could

be obtained. The resultant configuration cof the tunnel floor is shown in



figure 61.

5.2.2 The Wzll Pressure Fluctuations.

The equipment usced in the measurements of the wall pressure
fluctuations in the equilibrium turbulent boundary layer developed under
the effects of an adverse pressure gradient was the same as that used in
the constant pressure layer measurements and has been described in Section
5.1.2. The spectral density measurements of the wall pressures were made

at two points along the wind tunnel test section.

5.2.3 Results and Discussions.

An equilibrium turbulent boundary layer was developed cver a short
distance of the working section of the wind tunnel. The variation of the
static pressure along the relevant section of the tunnel is shown in figure
62, and variations of the mean streamwise pressure gradient, the wall shear
stress and the boundary layer displacement thickness are shown in figures
63, 64 and 65 respectively. The corresponding variaticn of B, derived from
these results is shown in figure 66. In figures 63 to 66, the two
upstream test results have been included and are joined by a broken line to
indicate the history of the layer prior to the section where the equilibrium

boundary layer exists.

It can be seen from the distribution of B along the boundary layer

that an equilibrium boundary layer exists between X, = 2.9 m and 3.2 m from
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the start of the working section. This is confirmed by the variation of

Clauser's famil arameter G which is shown in figure 67, where
s 4

co

U -U. 2
® 1
f(——— ) dy
§

G w B s # cee(5.2.3)
A
and
(o]
U_-U
© " 1
A = ( ) Ay . ... (5.2.4)
U
T

is the Clauser universal thickness. The mean velocity profiles at the two

downstream points (x. = 2.2 m and 3.2 m) plotted to show the wall

1
influence are shown in figure 68. Similarity of the profiles can be seen
for yUT/v up to about 500. The law of the wall has been included for
comparison. The profiles replotted in the form of the velocity defect are
shown in figure 69 where the results of Clauser (1954) for a similar wvalue
of the family parametér have been included for comparison. Similarity of
the profiles is again evident. These results indicate that an equilibrium
layer does exist at least over the length of the tunnel test section for
which 2.9 m ¢ Xy € 3.2 m. The pressure gradient parameter for the layer
is taken as 8 = 1.37. The free stream velocities at the two points are
37.2 m/s and 36.2 m/s, and the boundary layer displacement thicknessess

are 11 mm and 12.5 mm, where in each case the second value is that for the

point furthest downstream.

The spectral density distributions cof the acoustic field and of the

fluctuating wall pressure which have been corrected for acoustic and
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amplifier electronic noise are shown in figures 70 and 71 respectively. A
comparison of the two figuxes shows that, just as in the constant pressure
boundary layer measurements, the signal to noise ratic is good everywhere
except at the low and high frequency ends of the spectrum where it falls
off to about 8 db and less belcw 200 Hz or above 25 kHz. Consequently, all
measurements below 200 Hz or above 25 kHz have been neglected. At the low
frequency end of the spectrum where the measurements have bezan neglected
due tc the low signal to noise ratio, the distribution of the integrand of
Equation (3.1.3) which is still significant at the low frequencies is
faired in using the results of the constant pressure layers as a guida.
Any error incurred in this procedure is estimated to be less than 3% of
the mean square value of the wall pressure fluctuations. The electreonic
noise present in these measurements is ;he same as that for the constant

pressure case and its effects have been discussed in Section 5.1.2.

The mean square values of the wall pressure ,fluctuations are obtained
from the spectral density distributions using Equation (5.1.3), and result
3

in values of p'/q of 7.0:{10_3 and 6.8x10 - Ffor X, = 2.9 m and 3.2 m

respectively. The corresponding values of p'/Tw are 4.1 and 3.9.

The frequency power spectral density distributions of the wall pressure
fluctuations corrected for transducer size effects are shown in figures
72, 73 and 74. The correction procedure used is due to Corcos (1963) and
has been outlined in Section 5.1.3. The mean distribution of the spectra
for the constant pressure turbulent boundary layexr as well as that for the

pressure gradient results of Schloemer (1967) (arbitrary pressure
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gradient layer) have been included in figure 72 for comparizon. It can ke
seen that the present results for the cocastant pressure and the pressure
. 0 » . *
gradient turbulent boundary layers are similar in the range 1 < wé /’Uoo < 3
when non-dimensionalised by the free stream dynanic pressure g. For
- . * ;. . N *
frequencies for which wd /U, > 3 or for which wo¢ /U_ < 1, the spectra from
the pressure gradient layer have higher values than those of the constant
pressure layer, and the difference increases with increasing frequency for
* . * .
wd /Uoo > 3 or for decreasing frequency focr wd /Uoa < 1. The difference
between the spectra of the wall pressure fluctuations in the adverse
pressure gradient layer and those of the constant pressure layer at the
high frequencies 1is in accord with Schloemer's results for the distributiecn
of the longitudinal component of the fluctuating velocity which he found to
be greater in the inner two-thirds of the boundary layer for the adverse
pressure gradient case. Schloemer's results for the spectral density
distributions of the wall pressures in an adverse pressure gradient layer
exhibited similarity with those of the constant pressure layer for
* - .
wé /Uoo > 2 whereas for frequencies less than this, the results for the
former type of boundary layer were higher than those of the latter. His
» . *
measurements were made with a transducer which gave a value of d/8 of about
0.26 as compared to a value of 0.06 for the present measurements. The
difference between the distributions of the spectral density of the wall
pressures obtained by Schioemer and those of the present measurements
could be due either to the fact that the boundary layers have entirely
different histories (unknown for Schloemer's layer) or to the difference
in resolution of the transducers used. The latter effect definitely

cannot be discounted in the light of Blake's (1970) results which showed
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the drastic effects of the relative transducer size on its resolution at
high fregquencies, although it would be premature to disregard the effects

of the possible difference in history.

The mean square values obtained from the frequency spectra corrected
for transducer size give p'/q_ = 7.4x153 and 7.lx153 with p'/TW = 4,3 and

4.1 for x) = 2.9 m and 3.2 m respectively. (A summary of the properties

of the adverse pressure gradient boundary layer is given in Table 5.1.)

The corresponding Reynolds numbers, Rea*, (which cover only a very small
range) are 2.8xlO4 and 3.2xlO4. Thus, although the apparent trend of p'/Tw
with Res* is contrary to that observed in the constant pressure layer, it
may just as well be due either to the loss of signal as a result of the
relatively low signal to noise ratic particularly at the low freguency

end of the spectrum or to the cumulative effect of probable errcrs in the
measurements which is up to about 6%. The latter effect seems the more
likely, and therefore the root mean square pressure will simply be taken

as p'/t_ * 4.2 with p'/q_ = 7x107>,

A significant point to note is that, as in the zero pressure gradient

layer, the collapse of the spectral density distributicns is better in the
. 2. %
pressure gradient boundary layer when plotted in the form ¢p(w)Um/qmc
. 2. % 5 ) . ) .
compared with ¢p(w)U¥/T"6 . This fact, in conjunction with the smaller
W -

variation of p'/q, compared with p'/Tw for the different flow conditions
indicates that the free stream dynamic pressure is perhaps a more useful
parameter than the wall shear stress, and that at least for engineering

. -3 .. .
purposes the value of p'/qao of 7x10 may be sufficiently representative
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Table 5.1 Summary of Boundary Layer Properties.

Location of point of measurement

2.9 3.2
from start of test section - m
. . 2 2 2
Free stream dynamic head g _- N/m 8.53x10 8.06x10
Free stream velccity u_ - m/s 37.2 36.2
*
Displacement thickness § - mm il.0 12.5
2
Wall shear stress TW - N/m 1.45 1.40
Streamwise pressure gradient
9 180 152
dp/dx - (N/m”)/m
Pressure gradient parameter B 1.37 1.36
Clauser family parameter G 10.9 10.7
Momentum thickness 6 — mm 7.07 §.25
-3 -3
p'/q, 7.4x10 7.1x10
P /Tw 4.34 4.10
Rea* 2.84x104 3.24x104
Re 1.83x104 2.13x104
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of the wall pressure fluctuations for flows which are not subjected to
large mean pressure gradients. Schloemer's resuits which indicate that
p'/qDo for the favourable pressure gradient layer is also very nearly equal

to that for his constant pressure layer adds weight to this observation,

5.2.4 Conclusions.

The measurements of the spectral density of the wall pressure
fluctuations which were made in an adverse pressure gradient turbulent
boundary layer for which the pressure gradient parameter B = 1.37 are
believed to be the first to be made in an equilibrium turbulent boundary
layer under the effects of a finite pressure gradient. The results which
give the value of d/G* of approximately 0.06, a value which is believed to
be the smallest to date, indicate that

(1) The spectral density distribution for the pressure gradient
layer is similar to‘that of the constant pressure layer in the frequency

* *
range for which 1 < wé /U_ < 3. For frequencies where wé /U > 3 or
wé*/U§ < 1, the spectra from the adverse pressure gradient layer are higher
than those cof the constant pressure layer.

(2) The root mean square value of the wall prescsure fluctuations
expressed as p'/Tw is greater in the adverse pressure gradient layer than
that in the constant pressure layer.

(3) 1In view of the fact that the range of Re. * investigated is so

)

small, no valid comment can be made on the effect of Reynolds number on

p'/tT_ or p'/g . BAll that can be concluded is that p'/T‘ = 4.2 for
T N

w

-

4 . =
Red* = 3x10° with a corresponding value cf p'/qoo of 710
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6. CONCLUDING REMARKS.

So far the conclusions have been drawn in direct relatiocas only to
specific sections of the work. General conclusions will ncw be drawn from
those presented in Sections 3.4, 5.1.4 and 5.2.4, and these will be
examined in relation to the stated objectives of the investigation

(Section 1.3).

(1) Calculation Procedures.

It is believed that sound procedures for calculating various
properties of the wall pressure fluctuaticns in constant pressure boundary
layers have been developed, and the numerical analysis used has been
demonstrated to be reliable. The results obtained for the magnitude of
the root mean square pressure and its variation with Reynolds number, and
the frequency power spectral density of the fluctuations are in quite good
agreement with previously existing experimental data and additional data
obtained in the course of the present investigation., From this, it can
be concluded that the medel of the boundary layer on which the calculetions

were based give a reascneble representation of reality.

The numerical procedure could be extended directly to calculatiors
for layers with non-zero pressure gradients but, as indicated in
Section 3.4, the boundary layer model, in view of the much more limited
number of existing experimental data, would be less firmly based. Thus,

even though no calculations have been made for lavers with non-zero
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pressure gradients, the work has gone a long way towards fulfilling the

first objective stated in Section 1,3.

(2) Region of the Boundary Layer Making the Most Significant Contributions

to the Wall Pressure Fluctuations.

The region of the boundary layer which, according to the calculations,
makes the most significant contribution to the wall pressure fluctuations
can, as required by the second cbjective given in Section 1.3, be readily
identified. For the boundary layer model used, the calculaticns show
that, at least for constant pressure layers, the inner part cof the layer
between the wall and x2/6 = 0.2 to 0.3 makes the dominant ccntribution
(this conclusion applies for both the small and large eddies of the
boundary layer model). For layers with adverse pressure gradients, this
region can be expected to be concentrated between the wall and even
smaller values of x2/6 (the x2/6 value decreasing as the pressuve gradient

increases).

(3) Measurements of Proverties of the Fluctuating Wall Pressure Field in

Equilibrium Turbulent Boundary Layvers with Various Streamwise

Pressure Gradients.

Measurements of the root mean square pressure and frequency spectrum
of the wall pressure fluctuations at a nurber of stations in a constant
pressure layer have added a useful systematic set of data to those already
existing. Measurements of the root mean square value and spectral density

of the pressure fluctuations at two stations in a layer with the pressure
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gradient parameter 8 = 1.37 are believed tec be the first such measurements

made in an equilibrium layer with a non-zero pressure gradient. For these
*

measurements the ratio d/8 was 0.C6 which is bhelieved to be the smallest

yvet achieved.

Howevar, since the design and construction of the wind tumnel and
associated instrumentation had to be carried out within the time alloted
for the project, the measurements had to be limited to those just
mentioned. The third objective outlined in Section 1.3 was, therefore,
not completely achieved, although, again, the work did go a long way
tdwards it. The apparatus has been developed to the point from which an

extension to much more comprehensive measurements could readily be made.

(4) Effect of Reynolds Number con the Root Mean Square Pressure.

A significant amcunt of information relevant to the fourth objective
(Section 1.3) has been obtained. For constant pressure layers, beth the
theoretical and experimental aspects of the present study support the
indication given by previous experimental work that p'/Tw increases with
increasing Peynolds number. The calculated variation of p'/TV (based on

v
turbulence/mean~shear interaction) is from 1.10 to 6.51 as the Reynolds
. 3 7 - . . o
number Rea* increases from 10~ to 10 ; a trend which is consistent with
that found experimentally over a much narrower range of Reynolds number

3 4 \ C e s .
(5x107 < Rea* < 4x107). Because of the decrease of Tw/qoo with increasing
Reynolds number, changes in Reé* have much less effect on p'/q  than on

. . L . . - =
p'/Tw' the corresponding p'/q variation is from 4.7x10 to 6.6x10 7,
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that is, by a factor of 1.4 compared with 5.9 as for p'/Tw.

Consideration of the range of Reynolds number covered by the various
experimental investigations clearly shows the need for additional accurate
measurements at considerably higher Reynolds numbers. Such data would
provide a valuable and much more severe test of the boundary layer model

used in this work.
Iimitation +to the present experimental work does not allow
correlation measurements to be made for zero or non—zero pressure gradient

layers.

(5) Dominance of Turbulence/Mean-Shear Interaction.

The calculation of the root mean square wall pressure fluctuation and
its variation with Reynolds number, and frequency power spectral density
of the fluctuations were based on pressure source terms arising from the
interaction between the turbulence and mean shear. Since these results
are in good agreement with experimental data, they give a strong indication
that this interaction is the dominant process which gives rise to the wall

pressure fluctuations.

For the constant pressure layer, the work indicates that turbulence/
mean—-shear interaction is responsible for about 80% of the mean square

pressure.
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APPENDIX A.

This Appendix contains the major computer programmes used in
the calculations of the joint contribution density function, the

auto—covariance and the mean square value of the wall pressure

fluctuations in a turbulent boundary layer. They are presented as
follows:
A-T Evaluation of Equatien (3.2.1) for the mean square

value of the wall pressure fluctuations.

A-T1 Evaluation of Eguation (B.3) with the scale of the
small eddies given by Equation (3.1.1%4).

A-ITI Evaluation of Eguation (B.3) with the scale of the
small eddies given by Equation (3.1,19).

A-TV Evaluation of the small eddy contribution to the
mean square wall pressure fluctuation.

A-V Evaluation of the large eddy contribution to the
mean square wall pressure fluctuation.

A-VI Programme for the selection of region size required
for use in the evaluation of the mean square wall
pressure fluctuation.

A-VII  Evaluation of Egquation (2.6.16) for GiB.

A-VIII Programce for the selection of region size required
for use in the evaluation of the auto-covariance of
the fluctuating wall pressure,

A-IX Evaluation of Eguaticn (3.2.1) for the auto-covariance

of the wall pressure fluctuation,
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A-T Nuwmerical Evaluvation of Hquation (3.2,1) for the case of

The multiple integral giving the value of aP*(yq,co)/ ay2

I
must first be reduced to a form appropriate for numerical analysis,
This involves the normalising of the limits and some re—arrange-

ment of the variables concerned. The procedure is detailed below,

Let the value of the integral represented by Equation (3.2.1)

be given by

aP*(YQsOO) 9 2
I = = pujpdz 13(y2, 2) ... (AT 1)
DYy 8

where, from Section 2.6,

F13(y2’Zn) = F13(y25225 g;o; T=0)
2
= 7 My Mz, )uy(yy)uy(2,)1,5(v,,2,)
‘ -
133(y2322) = Ils(y2’22’ f=07 T=O)

= ﬁ}r [dr R22(y?,1)g1—(Ya) )’

R22(Y22?) o R22(y2;22)r1,r3, T=0)
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Cuy(yy)u, (vt ™)

A\

= _n\
g13(y21;’) - g13(y2122:r1:r37 7—0)

2
r rl(y2+zg 2m)]

1-=
L 1 (y9+zg+m)

m(y2+z2+m)
m = (y.+z.)% + x> + 2
y2 "2 3 2
M(yy) = 29U (35)/ 2y,
. 2 z
r = z- ;h , and

{....> denotes the statistical mean value.

It can be seen that 113 is an even function of r1 and r3.

If we now introduce the friction velocity U, and the boundary

layer thickness & as normalising parameters, Equation (A.I.1)

is written in full as



2p* (22, )
I = - 0
2 ()
2.2 e
=§-’i—ﬂfav—-)f<—> [d(lw( M( .3 2(3)

ﬁr
N UT UT

Yy #
By De (2 D)

y e Yy ->
2 r 2 r
...R22 8’ 8)8'13( ] 8) kS

for some values of c,,c.,and ¢, which are sufficiently large

1°72° 3
and for
W
v 2
w2y o & 2%
) U 9y,
If we now let
r
r! = -—1
1 c1 ?
r +y
i ]
t
r2 = and

C +y2
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r
r! = 3 ;
3 03
we have
1 1
8p282U4 f. 1
I . \ 1 i SN 1
I = - cl(gzryz) cs dr} | dr} d13 A(y2)M (c2+y2)r2 5 &
0 ] ]

...ué(yg)ué[(c2+y2)ré] R22(y2,clri,(c2+y2)ré,03r% 6
o e .g13(y2,clr'1’ (C2+}r2)ré703r|3), e s e .(A-I.g)

where ré now represents a normalised distance from the boundary

surface,

The computer programme written for the evaluation of Equation
(A.I.2) is listed below, where the functiions representing the mean
shear M(yg), the turbulence intensity ué(yz), the correlation

and the geometric term g have been included as

roefficient R
coefficien 2 13

2

subroutine functions,

Experience has skown that values for H,S,V and U required in
the use of Sag's numerical method should be 06.025, 3%, 0.86 and
1.50 respectively, where H represents the half mesh size, S is the
number of mesh points per dimension, V is the proportion of the
transformed space over which the values of the integrand at the
mesh points are to be evaluated and U is a weighting factor. For

this choice of values of H, S, V and U, the total number of mesh
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points considered is 21283 requiring a central processor time of
about 93 seconds, As this time is only for one value reguired
for the final manual determination of <p2> and since the dis-
tribution of I with Yo is a peaky function itself, it can be
realised that the determination of <<p2> becomes a laborious and

costly affair.
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PROGRAM KRBRL0G2 (INPUT.OUTRPUT)

ADAPTATINE OF T, SAGS NUMERICAL METHOD FOR THE MEAN SQUARE WALL
PRESSURE TN FOUILIRRIUM TURBULENT BOUNDARY LAYER FLOW,.
DLEEHNSTION T{A) oK (6) M () e Y {100 c ANS(I00) oD (100)

CONMAON WHslJeCel1eC2asC3 X2 o REsRKsCRIsPTaYSTRLMTY 672923

10 FORMAT {(FGa3+9F3a0eCFBe2eETade2F5,29214)

20 FOPMAT (F9.60)

30 FORMAT (///7734%:%H C = oFH,342Xe8H FTRA

1FR.192%498H FTRC = sF5,1)

40 FOSAAT (37X 17H REDFLTAY = ¢EB,292Xa5H K

P12 COLNS Pl = oF4,2)

50 FOPMAT (3TX94H H =9F5eR3e5Ke4H 5 =sF3a0e5Xs4H V =eF5.295X94H U =,

1F5.29/7)

7o FORMAT (37Xe2H Ts6Xs2H YeaXal8H MEAMN OF INTEGRAND o4 X,

1134 MO OF POTHTS)

B FORMAT (30XsI393XeF7e595X3E1265911X918)

PI=3.1415920536
100 READ 10eHs5sVellsCoFTRASFTRB4FTRCoRE«RKsCPToeNIIoN

vF5e1¢2X98H FTRB

[}l
-

sF4aP e X

IF (HeGT.01110s200 ,
110 E=PTI®3,60/(0.,8374#RE) !

STER=0.5
L THIT=5%060
Ci=340
T:]vnu
1200 CIA=CL
Th=T
CT=CI+STEP |
IF (Cl.GT.RLIMITY112191122
112) PRIMT 1173
1123 FORMAT (10Xs922H CI% GREATER THAN 50,.0)
GO TO 200
1122 C¥=CI/4.0
C7=RK%#C]T
T(1eDeCY+0eBHCYHCY4CYRHHE/L1Z004 ) ¥EXP (~CY)=(1a0/ (RKHCL) +E#CP ]
1ST(E#CT) /RK) )
1300 IF (T#TAY1400,200051200

YA



1400 Clus

I
100 Ov=01/
h

*
C7opis (]
Ps{) e i+ Y+
1THT SRS T Y SR
T {T=TA3 1060200061700
TR0 D1oa=Cla
17006 Cin=C]

e (T
PO TNT 50 H
Sii=d 0
Aol
NPOTHTS=g

1406 {1y =g
';?J.):rj

CPY

)
AsFTRResFTRC
q
9 U

N4



i9n
100

4(]%1)n\*M(l))+HHA
*F(I)
GOe L7061 7C

ML+ A /G (e

(ral'\wL){:rfiX)
ET#*G{XaY (11))

TP (a=-015146041080s 180
AS{TT Y =SRR8 s 0RO CIHCIMXPA/ 3214159265
G TiINT 7D

1

POIHT BUsITaY(II) sANS(TI) 9»NPOINTS
50 70 180
STOP

NS
N

SUBROUTIMNE TeMNS (TsNsDETeX)

SAGYE LT I=DiENSTONAL TRANSFORMATION,

DTS T O T(ﬁ)aX(&)gw(ﬁ)

COmdrl sl sCaCl o230 XPoREgRUeCPTePI o VETRLMT

syl e/ d l~ =1}
Py gie ]
P el P

G003 Ty g

RETURA

92D 13

TEC



(9]

1o

29
30

END

FUNCTLION G (XeYB)

HOUSEREFPING ROUTINE «

DIMENSTION X (&)

COMIMOI NellgCaCloCReC3sX29REJRKsCPIsPI o YSTRLMTsZ24Z23
21=R22(CHYGoCIHX (L) g XndtX (2)=CH#YGoC3#X(3))
Za=URY (XAe3#X (2))

2 RMSIX2WX(2))

Z26=GM(XeYG)

GeZ)RLPRZIANLLHTHBUTE

RETURMN

FEND

THE SUBROUTINE FUNCTIONS LISTED BELOW ARE FOR SET 4 CALCULATIONS.,

FURMCTION RMS (YMS)

MEAN SHEAR FUNCTION,

COMMON HoUsCol1:C2eC3s A2 sRESRKsCPIoPIsYSTRLMT$Z2+23
IF (YMSQGEQIOO)I’Z

RMS=0 40

GO TO %9

YSTARMS=YMSH*RE/3460

IF (YSTARMSWILLE.YSTRLMT)Y10520

YSTHMS=YSTARMS /4,40

RMSZ(1a0+YSTMS+N o BHYSTMSHYSTMS+YSTMS##6/130060) *EXP{=YSTMS)#*RE/346
GO TO w50

IF (YMSoGT.0.837)30440
RMS=((1+0=YMS)/00163)##0e67/(0a837T#RK)

GO TO 50

gee



OO0 O00

40
50

10
20
30

4

50

59
T0

10

RASZ1 o 0/ (RKHYHS) +PT#CPI¥SIN(PI#YMS/0.837)/(0+837%RK)
RETURNM
il

FUNMCT TON U2Y(Yi}2Y)

TURBULENCE INTENSITY FUNCTIOM.

SE OIS NEYHOLDS NUMBER BASED OM DISPLACEMENT THICKNESS.
COMAON 1isleCoClalrsC3eX2oREsRKaCPIoP Lo YSTRILMY 972543
IF (YUPYaBFEas02)109220
RY=1e06#EXP {wp 23% (YUZY=0,20) ##2)

GO TO 7OV

YRE=RE®#YU2Y/3,60

IF (YHRE.GToH600.0)30440

U2Y=1.06

GO TO 7o

IF (YREWGTL10e0)50960
U2Y=0.0838*YRE%YRE/(1.0+0.922*YREf0.077*YRE*YRE)

GO YO 70

UrY=0s 00921 YRE®YRE/{(140=0e0361%*YRE+0.01328%YRE*YRE)
RETURN

B R

FUNCTION R22 (YR?PZsRLIR229RZ2R224R3R22)

FUMCTION SATISFIES RZ22(YsR1sR2sR3) = R22{(Y+R2sR19+~RZsR3) s
VARTABLE ASSIGHMENTS o eec®sencasssacease B
YRAZ9RIR223RPR22sR3R2Z ARE DISTANCES IN THE YsR19RZ29R3 DIRECTIONS
RFSPECTIVELY, .

RSCALE IS THE SCALE FACTOR FOR THE VARIATION OF THE CORRELATION
COEFFICIENT DUE TO THE SMALL EDDIES,

IF (YR22.EQe0s0)10920

R22=0.0

G0 TO 89

13 A



20 IF (YRZZ2<«R2R22/240.LT2042)30540

30 RSCALE=0,570% (YR22+R2R22/240)
GO TO B0

40 R5CaALE=N0,114

50 IF (RIRZ2ZeF040eNsANDeRIR22.EQe060)60870

Al RP2=0.91ISHEXP (=ABS (R2R22) /RSCALE) +0,08S#EXP (=7 44562%R2R22%R2R22)
GO TO 80

70 RIRPZE=RIAZ224RIA22

RENZEG2RPNI22HRPRAD

RIMPOS=RIRP2URIRE?

SIN123=SQRT(RIR228+R2R22S+R3R22S)

REP=0a9]159% (Lo 0= (RIRP2S+R3IR22S) /7 (2.0#SQRY23%RSCALE) ) *EXP(~SQR123/
1IRSCALE) 0,085 (1,0-14+91%R1IR22S)#(1,0-264,1%R3IR22S+5814,7#R3IR22S#*
ZRIR22SIHEXP (= (294R24% (R1R22S+R2R225) #2654 .12%R3R22S)74.40)

80 RETURRN

EnD

FUNCTION GM (X, YGM)

GEOMETRIC FUNCTION

DIMENSTION X (6)

COUMON NylUoCyCleC29C3sXRsREyRKsCPIsPIsYSTRLMT 322523
ALGM=CTHX (1) ,

ARGM= (C2+CHYGM) #X (2) =C#YGM

ARGH=C3#X{3)

A4GMEARGM+CHYGH

AGGA=AL G+ Y GM

D} GM=SORT (ASGM#ASGM+A1GM#A1GM+A3GM#A3GM)
D2GM=A5GM+D]GM

NRAGM=D]IGEMED2GM
RUGM=A1GM*ALGM* (2, (+ASCGM/D1IGM)
ToaGM=],0=RUGHM/D3GM

GM=T2GM/D3GM

RETURN

END

ree
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A-IT  Nuuwerical Evaluation of Equatica (B.3)

PROGRAM KBL070

s

13

(B.3) derived in Appendix B. The variation of the scale s of

This programme is for the determination of I using Equation

the small eddies is given by Equation (3.1.14) as

4
i

s/y2 = 0.570 for O$y2/8 <0.2

s/8

where 8 is the boundary layer thickness and Yo is the distance

0.11% for 0.2<y, /8 < 1.0 ,

from the boundary in the direction normal to the boundary. The

listing of the programme is given below.



GOOODOOCGOOOoO0

PROGRAM KBLLOT0 (INPULT,OUTRPUT)
DETERMINATION OF 113 DUE TO THE SMALL EDDIES WITHOUT RECIPROCITY.
vﬂRIABLE ﬂSSIGNMENTSoOguooooooo
Y=Y2/SCALE=({Y2/DELTA)# (DELLTA/SCALE) »
R=R2/SCALFE o
A=2HyY +7,
AR=AKBSOLUTFE VALUF OF R,
N DESIGMATES THE TOTAL NUMBER OF R VALUES TG BE READ IN,
A{J) = ARSCISSAE VALUES OVER WHICH THE VALUES OF Fe F1 sF AND EXPR
ARE TO RE EVALUAYED,
AREA = VALUE OF THE INTEGRAL OVER THE X=SPACE,
PRO = PRODUCT OF AREA WITH THE NECESSARY COEFFICIENTS.
DTMENSION X(51)9F (51)eF1(51)eF2(51)EXPR(5])
1 FORMAT (F74,4413)
2 FORMAT (1H19//742Xe5H Y = oF8.5e5X9s6H R2 = sF8e5e5Xe5H A =
1FB8.59///738Xe2H Xe1iXe2H FolOXoe3H FlellXe3H F297Xei0H INTEGRAND, /)
3 FORMAT (B6X9F6e3s6XeFTe390XaFTo4s6X9FBe536X0FF,6)

b FORMAT (/]19Xe2dH VALUE OF X-INTEGRAL = sE1l.4910X942H PRODUCT GF X

1=INTEGRAL WITH COEFFICIENT = oF11,4)
100 READ 1sYeN ‘ 3
IF (YeGTe0.0)1105170
110 DO 160 I=1,eN
READ 1eR
AR=ABS (2]
Az, g#7+R
PRINT 2sYsReA
DO 1409 J=1+51
Adz=d=1
X (J)YSAJLS50,0 ,
FU) =X ()X () # (1o 0mZ2 0VARYA®A) =2, 054X (J)# {1 e0~AR) 4100
FAA)=F (J)y#itl o8
Flld)sX{Jd)#X (J)# (4o 0%AR=340) +2, 08X ()R {2.0=AR)=1,0
IF (JOEQ.1)120’130
120 FR(J)=0.60
EAPR(JI=0e0
GO 10O l4o

9€c



130

140

150

160

170

FPLDSEAP (= (107X (J)=1,0)) /X (J)

EXPR(D) =F 1 (JYSF2(J)Y /F (J)

PRINT 3¢X(J)yF(J)gFL(J)yF2(J) yEXPR(J)

Sil=i) 4 0

DO 150 K=le49e2

3U4 SUMSEXPR (K) +4, o*EXPR(K+1)+CXPP(K*2>
AREA=SUM/ 15 0.0 S

PRO=AREA%A*EXP(-AR)%3.1415927/2e0

PRINT 4sAREASPRO

GG T 1006

STOF

END

LEZ
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A-JII  Numerical Evaluation of Equation {B.3)

PROGRAY KBLC79

This programme is for the determination ¢f 1° using Equation

13
(B.3) derived in Appendix B. It is different from PROGRAM KBL070
in that the variation of the scale s of the small eddies across
the boundary layer is given by Equation (3.1.19) as
h
1 }
S/[2(Y2+22)J
s/8

where yzand z, represent the distances of the two correlation points

0.570 for 0$%(y2+z2)/8$0.2

0.114  for 0.2$%(y2+z2)/3$1.0

from the boundary and & is the boundary layer +thickness. The

listing of the programme is given below.



OO0 0

OO0 00

PRIGRAM KBLO79 (INPUT,O0UTRUT)

DETERMINATION QF I13 DUE TO SMALLL EDDIES SATISFYING RECIPROCITY CONDITION.

VARTASLE ASSIGNMENTS.o.Uo.ooon,
Y2y 2/SCALE={Y2/DELTAY* (DELLTA/SCALE) ¢
R=R2/5CALE.
SCALE=O.570%(Y2+R2/2.D} FOR YZ2+R2/2:0 LLESS THAN (0e209 OTHERWISE USE
Sci“.LExonllf@e
Az 4+,
AR=MABSOLUTE VALUE 0F R,
N DESTGNATES THE TOTAL MUMBER OF R VALUES TO BE READ IN,
A(J) = A3SCISSAE VALYUES QVER WHICH THE VALUES OF Fe F1 oF AND EXPR
art TO BE EVALUATED,
AREA = VALUE OF THE INYTEGRAL OVER THE x-=SPACE,
PRO = PRODUCT OF AREA WITH THE NECESSARY COEFFICIENTS,
DIMENSION X(51)9F(51)eF1(51)9F2(5]1) sEXPR(51)
1 FORMAT (E1le4513)
2 FORMAT (1H19//720Xe6H Y2 = 9FE11e495X06H R2 = 9E11+4¢5XsSH Y =
1F3.495Xs5H R = 9FBe43D5X93H A = 9FBa4
P7/7/738Xs2h Xell%Xe2H Fol0OX23H FlellXe3H F2e7Xel0H INTEGRANDs /)
BOFORMAT (30X oF6,306XeF T390 KeF T e436X49F8e596X9FF.6)

4 FORMAT (/19X923H VALLUE OF X=INTEGRAL = 3E11l44910Xs42H PRODUCT OF X

1=INTEGRAL WITH COEFFICIENT = 3E1le4)
10¢ READ LyY2an

IF (Y2eGTene011105170
119 DO 160 I=1¢N

RFEFAD 1sk2

IF (Y24 R2/26e0,1.Te0e2)111s112
111 SCALE=0.570%(Y2+R2/2.0)

G 79 113
112 SCALE=0.114
113 Y=sY2/SCALE

R=KP/SCALE

AR=ZABS ()

A=2 .Y +R

PRINT 23Y24R29YsReA

DO 140 J=1+9]

6€¢C



Ady=nJ/50,0

FAOL =Xl * X () (10 0=~2 O¥ARFARA) =2, 018X (J)#(1e0=AR)+140

FlI)ysFid)y#s),5

FLOD) =X DI RX (D) # (4o 0%AR=300) +2,0%X(J)#{2,0=AR) =1,0
F (JeEQ.1)1205130

Fa(J)=na.n

FAPR () =0,0

GO TO Q49

FRIN=EX0 (= (1 ,0/X () =1.0)) /%D

EAPR (Y =F1 Iy #F2 () 2F ()

PRINT B3aX(J)sF(J)sF1 () sF2(J) sEXPR (D)

Sifit= Uoo

DO ]5" K'—'l _94‘992
CUN=SUNFEAPR(K) +4 , 0¥EXPR({K+1) +EXPR(K+2)

AREA=SUN/ 15040
PRO=AREA#AXEXP (~AR) #3,1415927/240
PRINT 4 AREAPRO

GO TG 100

SYOP

AL

(01744
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A-TIV Fvaluation of the Small Eddy Contribution to the Mean

Square Wall Pressure Fluctuation

PROGRAM _KRLOS3

The computer programme is designed to give the value of the
P prog g g

three-fold integral

m: 2 az. 6, .(v,,2.) (A.IV.1)
ay2 p ) 13 2,2 ] T Y ° .

where G1z itself is a double integral in the (ri,rj) space defined
by Equations (2.6.15) and (2.6.16) and the definition of P(yz,zz)

is given by Equation {2.5.3) as

Y2 o

[
P(y,.2,) = pzj dy[dz G,5(y,2)

[+] o]

The final integration over Yy to give

M] dy, ...(A.1IV.2)

I 'i'r[
P —Ej 2y,

is carried out manaally.

he listing of the computer programme for the evaluation of
Egquatiocn (A.1V.1) for any value of Ys is given below, The function
subroutines for the mean shear and the turbulence intensity re-

quired to complete the computer programme are the same as those
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listed in PROGRAM KBLO052 and will not be 1isted here.



areNeoNeEsNeoRoNEaNoNeoNoNesNoNoRaNoNoRo R ReNeRoNe!

DO oSOoO00

POOGRAYM KBLOBI (INPUTyOUTPUT)

DETERMIMATION OF THE CONTRIBUTION TO THE MEAN SQUARE WALL PRESSURE
In EQUILIRBRIUM TURSULENT BOUMDARY LAYER FLOW TAKING INTO ACCOUNT
ONLY THE EFFECTS OF THFE SMALL SCALE CORRELATIONS WHICH SATISFY THE
RECTPROCAL RELATIONSHIRP,
NOTE THAT THE CORRELATTION FUNCTION IS NORMALISED BY THE PRODUCT OF
THE RMS VALUES OF THE TURBULENCE INTENSITIFS AT THE TWO POINTS TAKEN.

ogwaaqsoeaaoVARIARLE ASSIGNMENTSoeeoaa.oeeoo

YR = (y2+R2) /70ELTA

Y=Y2/SCALE = (Y2/DELTA)Y # (DELTA/SCALE) »

R=RP/SCALFE, ,

SCALE=NST0%(Y2+R2/2.,0) FOR YZ2+R2/2:0 LLESS THAN 0209 OTHERWISE USE
SCaLE=n.114,

;L\::;;:":'fy'*l‘?s g
AR=ADSOLUTE VALUE OF R, w

A(J) = ABSCISSAE VALUES OVER WHICH THE VALUES OF Fa F1 sF AND EXPR
ARE TO BE FVaALUATED,

AfEA = VALUL OF THE IHTEGRAL OVER THE X=SPACE.

PRO = PRODUCT OF AREA WITH THE NECESSARY COEFFICIENTS,

RE = FEYMOLDS NUMAER BASED ON THE DISPLACEMENT THICKNESS.

CPY = CULES PRESSURE GRADIENT PARAMETER.

RK = VO KARMANS CONSTANT,

N = mMUMBER OF POINTS TAKEMN PER DECADE IN THE YR=SPACE.

NR PUMBER OF RPOINTS TAKEN IN THE Rle R3=5PACE.

ND = NUNMBER OF DECADES TO BE COMSIDERED IN THE R~SPACE.

17 NUMBER OF Y2 VALUES TO HE READ IN FOR A SET REYNOLDS NUMRER.

)

1 FORMAT (E9,292F5.25414)

2 FORMAT (1H19/////25Xy82H DETERMINATION OF THE CONTRIBUTION TO THE

IMEAN SOGUARE WALL PRESSURE IN EQUILIBRIUMs/26Xs80H TURBULENT BOUNDA
ZRY LAYER FLOW TAKING INTO ACCOUMY OMLY THE EFFECTS OF THE SMALLs/3
35X962H SCALE CORRELATIONS WHICH SATISFY THE RFECIPROCAL RELATIONSHI
4Pos//41Xe12H REDELTA® = vEB,292Xe5H K = ¢F4e292Xe12H COLES PI =



3
4

1200

2
2

1) =t

11
11

1122

1300

1400

SF4e29//4XePH YoT7Xs13H ZERO TO E~0594X913H E=05 TO E=0404X9e13H E=04
6 TO E-0394Xs13H E=03 TO E=02¢4X913H E£«02 TO E~0194Xe13H E=01 TO E=
TONe4Xse1AH MEAN OF INTEGRANDe/)

FORMAT (FS9¢b)

FORMAT (2A3F 7546 (5XaF]2e5) 98XeE12:5)

DIAENSION X{1001) e (1001)oF1{1001)eF2(1001)sEXPR(L001)+PRMS(1001) s
1DECADE (6)

COMMON PIsREJRKeCPI;YSTRLMT

READ 1 aRESRIKGCPI et g NRaNDeIT
PRINT 29RE¢RKCRI

NY=H=p

Ne=(N=1)/710+1

NiR L =NR=2

ANR=pR=1

PI=3,1415926536
E=RPI#*3,60/(0,837%RE)
STEP=0 45

RELIMIT=5040

Cl=3.0

Tzlﬁu

CI1A=CI

T/‘«:T

Ci=UI+STEP

IF (CI GT.RLIMIT)1121s1122
PRINT 1123

FORMAT (10Xe22H CI# GREATER THAN 50,0)

GO TO 240 '

CY=Cl/4.0
T=(1o¢CY+QoeBHCYHCY+CY##6/1300e0) #EXP(=CY)=(1e0/ (RK*CI) +E#CPI#*
ISIM(E#CT) /RK)

IF (T#TA)14005200091200

CI13=CIA

CIa=CI

TasT

e



CI=(CIA+CIBY /2.0
1500 CY=CI/440 ‘
T=(1204CY+05#CY#CY+CY##6/1300,0) #EXP (=CY)=(1e0/ (RK*CI) +E#CP]
ISTHERCT) /0K)
IF (T#*TA)16004200091700
1600 CIB=CIA
1700 CIA=CI
Tiﬁ.:T
CI=(CIa+CIB)I /2.0
IF (ABS(CI-CIA) 4LTe2001)200091500
2000 YSTRLMT=CI
DO 230 L=1.11
READ FsYZ2
DO 1192 [=]1.6
119 DECADE(IY=uag
DO 210 I=1.ND
N=10e N ([=ND)
No 199 J=1sN
Afil=N=1 ' ;
YRJJ=d=1 !
YR=YRI#D/AAN
RZ=YR=Y2
IF (Y2+4R2/260el.Te022)1209130
120 SCALE=0.570%(Y2+R2/2e0)
GO TO 140
130 SCAlLE=0.114
140 Y=Y2/5CALE
R=R2/SCALE
AR=ABS (R)
A:ao O*Y*R
DO 170 K=z=14NR
A=K =]
X (K) =AK/ANR )
FUO) =X (K)¥X(RK)# (] 4 0m20 QHAR+ARAT =2, 08X (K)#(]140=AR) +10
FIK)=F (KY##]l,5 ‘
FLK)=X(K)#X{K)# (4o 0¥AR=360) +26 0FX(K)# (2. 0=AR) =100



(9]

IF (Kaf9,1)1504160
150 F2(K) =040
EXPo(KK)=0,.,0
G0 TO 179
160 F2(K)SFXIP (=
EXPRIK)Y=F1(K
170 COMNTINUE
Sill=0eD
N 1sn KalaMR1e2 ‘
180 SUM=SUMSEXPR(K) ¢4  OREXPR(K+1) +EAPR (K+2)
AREA=SUNM/Z (3. 0%ANR)
PROSAREASCABEXP (=AR)
190 PRAS ()Y =PRO#RMS (YR) #URY (YR)
.DU 00
I (TeEQal1)2004202
200 DO 201 Jx=leNle?
201 SUM=SUM+PRMS (J) +4, OwPRMS(J+1 +PRMS (J+2)
30 TO ?]U
202 DO 203 J=MPeMler
203 "HM'“WM+PRMS(J)+4 0«PRMS(J+1)+PRMS(J+2)
210 DECADE(T)=sUM¥N/ (3« 0%AAN)
SUM=0 4 0
NG 220 I=1e0D
220 SUvi=SIUMADECALE (1)
ANS=SUHM¥REMS (Y2 #l2Y (Y2)
230 PRINT 49Y243DECADE s ANS
GO TO 100
240 STOp
EnrD

1a0 Ky=1, ))/X(K)
) )/

D7 R
F2{K)/F (K

THE SURROUTINE FUNCTIONS REQUIRED FOR COMPLETENESS OF THE COMPUTER

PROGRAMME FOR SET 4 CALCULATIONS ARE THE SAME AS THOSE GIVEN IN APPENDIX
A= AWD ARE NOT LISTED HERE,

ove
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A-V Evaluation of the Large Bddy Contributicon to the Mean

Sgquare Wall Pressure Fluctuation

PROGRAM KBLO85

The programme for the evaluation of the large eddy contribu-
tion to the mean square wall pressure fluctuation uses the same
main programme as that listed in Appendix A-I. The difference
between the two programmes lies in the form of the correlation
coefficient. The listing below gives the required correlation

coefficient for PROGRAM 085,



OO0 0

FUNMCTION R22E (YR22+RIR22sR2R229R3R22)
CORRELATION FUNCTIOM FOR THE INFLUENCE OF THE LARGE SCALE EFFECTS ONLY.
VARIABLE ASSIGNMENTS..a.goi‘uaonnoooo.
YR22sRIRP2 s RPRZ24R3R272 ARE DISTANCES IN THE YsR1sR29R3 DIRECTIONS

RESPECTIVELY.
RSCALE IS THE SCALE FACTOR FOR THE VARIATION OF THE CORRELATION

COFFFICIENT DUE TO THE LARGE EDDIES,

IF (YR22,E0Qe060)10920
1 0 !-),?(’E:(; ® 0

GO TO AR
20 IF (YR2PeLTe0a2)30940
30 RSCALE=0.370%#YR22

GO TO BO
40 RSCALE=0,114
50 IF (RIRZ2.FEQal0eDeANDR3IR22+E0.0.0)60970
60 RZFE=DDQSHEAP (=T 045624R2R22"R2R22)

0 TO 80
70 RINPASZRINPZHRIR2Z

RARZ2S=RIRP2HR2AR2? '

RARP2S=RIR22%#RIRA: ’

SOR123=SORT(RIR22S+R2R225+R3R22S)

R2ZAEZ(G 0854 {1 o014 91#RIRIZE)I#(1o0=26441%RIN225+5814,7T#RIR225+

LRBRZES)HEAP (= (29.824% (R1R22S+R2R22S)+264 ( 12%R3R225)/74,0)
B8O RETURN

£

8¥%¢
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A-VI Computer Programme for the Selection of Region Size

Required for Use in the Evaluation of Eguation (3.2.1)

PROGRAM KBLO8L

The programme provides for a detailed print-out of the value
of the integrand of Eguation (A.1.2). This integrand has an
oscillatory nature and its absolute value diwminishes as the value
of rl,r2 and r3 increases. The print-out allows the inspection
of the integrand values and the size of the region over which the
integration is to be made, that is the values of cl,c2,and c3 are
chosen on the basis of the error encountered due to the neglect
of the outer regions, It has been found that region sizes chosen
such that the value of the integrahd at the edge of the region is
10_5 of that of the maximum value will give an accuracy of about

0.1% for the subdivisions used in PROGRAM KBL052 without incurring

excessive computational times.

The listing of the computer programme for the detailed print=
out of the integrand values is given below, where the listing of
the subroutinefunctions have been omitted as these functions have

already been given in the listing of PROGRAM KBLO052



OO0

FOR THE GEMERATION OF THE INTFGRAND VALUES TO ALLOW THE SELECTION
OF THE REGION SIZE REQUIRED TO OBTAIN A SUFFICIENTLY ACCURATE VALUE
OF THE fEAM USING 0/S WHERE THE CORRELATION FUNCTION IS GIVEN FOR

NOTE THAT THE CORRELATION FUNCTION

PROGRAM KBLOR4 (INPUTSOUTPUT)

THE EFFECTS OF THF |LARGE SCALE TURBULENCE ONLY,

TH. RMS VALUES OF THE TURBULENCE INTENSITIES AT THE TwO POINTS,
DITUENSION W (51)
COMMON YSTRLMTaRE o RKsCPIoPI

S FORMAT (aFTe2eb9e290F5,29414)

10
15

18H FTnB = sF6a2s2XefH FTRC =
2PXs5H K = sFa,72e2Xs12H COLES PI = sF4.24/)

20
25
30
5 5]

1200

1121
1123

1122

FORMAT (F9,.6)
EORUAT (/7777777773248 H C = oFE.b492Xe8H FTRA = sF6.292X0
= 9F6e29/37Xy12H REDELTA® = sEB8,29

FORMAT (//73TX96H RZ = sEBaPebXy6H R3 = sEB294X95H Y = sEB,29/)
FORMAT (1Xe11E12.3)

FORMAT (//737TXe6H Rl = sE86234X96H R3 = 3EB294XsSH Y = sEB,2¢/)
FORMAT (//737TXe6H R1 = yEB8.204XeHH R2 = sERe2e4XsBH Y = 9E8,29/)

PI=3,1415926536

READ SeCyFTRASFTRBaFTRCsRESRKsCPI'aNANaNBNyNCN9NTI
IF (CuGTW0)1105160

ExrI®i.60/(0,837T#RE)

STEP=(.5

RILIMIT=5060

CT=1e0

T=1,U

CTa=CI

Ta=T

CI=CI+STEP

TF (Cl.GT.RLIMIT)112191122

PRINT 1123

FORMAT (10X922H CI* GREATER THAN 50,0)

GO TO 160

CY=Cl/4.0

CZ=RKHCT
T=(1s0+CY+0eSHCYRCY+CY#HE6/130060) ¥EXP{=CY)~(1e0/ (RK#*CI)+E#CPI%*

IS NORHMALISED gY THE PRODUCT OF

0sz



STH(E 1) /78RK) _
13UC [r (1”TA)1400;206091200
1660 Cliu=CIA
Thn=Cl
Ta=T
={CIA+CIRY /2.0
1500 CY=CIl/4.40
C7=prHCT
T={]lel40Y+05%CYHCYSCYH*E6/1300a0) *EXP(=CY)=(1a0/ (RK*CL) +ERCPI*
ISTH{E*C Y /1K)
I (T#TAY1IA000200001700
16400 CIn=CLA
1700 Cla=C
Toa=T
CTZ(C[I\#CIB)/HGD
IF (AHSH{CI=CIA) elTe0e001)200091500
2000 Y?TWLWT=FI
JAZNARN-]
A IH--”L?\J...‘! i
ANC=HCN =1
DGo1Iso IT=1eMTI
READ 10sY
LATU2Y (CY 9 RED)
75"” 1S TCHY)

T=F TIRANC sy
x =P TR#*CHY
TG :1___\,,.) Gy

C3=FTRCHCHY

PRINT 1596 CaFTRASFTRIBsFTRCIRE«RKSCPI
RE=002

23=0,0

DN 120 I=1g¢NAR

ARL=1~]

RI=ARIZANA
Z3=R22E(CHY 9 C1L¥R1 o (C2+C3Y) #R2~CH*Y ,CIHR3I)
24=URY ((Cp+CuY)#RpsRE)

IS¢



OO

120

130

140

159

160

ZR=RUS ((C2+CaY) #R2)

Z6=GM (CaClyC24C3,Y9R14R24R3)
W{I)Y=Z 1 HZ22#23¥ 24175476

PRINT 20aR29R34Y

PRINT 29

Rl1=0eN

DO 130 I=14NBN

AR2=I=-1

RZ= AR/ ANG
Z1=RZZE(CHYeCI#R1 g (CR+CHY ) HR2=CirY 9 L3#RI)
Z4=UR2Y ((C2+ChY)#R24RE)

ZE=RMS ((CR+CY)YRR2)
262GM(CeC1l9C29C3eYoR19R29R3)

WALy =Z #7240 3%74# 75470

PRINT 30sRYsR35Y

PRINT 254w

DO 140 I=1sNCN

ARg=1-1 , !
RI=ARI/ANC i
ZI=R22E(CHYsC1#R] g (C2+CHY)HR2=CH#YyC3#R3I)
24=UR2Y ((C2+CrY ) %Ry RE)
78=RMUS((CR+CHY) #N2)
26=GA(CsC1sC29C39YeR1IR29R3)
W(I)=Z1#Z22423474#78%26

PRINT 354K]9R2sY

PRIVIT 254

CONTINUE

GO TO 100

STOP

END

THE SUBRQUTINE FUNCTIONS REQUIRED FOR COMPLETENESS OF THE COMPUTER
PROGRAMME FOR SET 4 CALCULATIONS ARE THE SAME AS THOSE GIVEN IN APPENDIX
A-~I AND ARE NOT LISTED HERE,

(A=Y
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A-VII Evaluation of Eguation (2.6.16) for Gi3

PROGRAM KBL090

The computer programme for the determination of IiB using

Equation (B3) was. extended to give the values of Gij as defined
in Bquation (2.6.16). The resultant programme is listed below
without the function subroutines for the mean shear and the

turbulence intensity which are required for completeness of the

programme as these are the same as those listed in Appendix A-I.



GO0 00000000

PROGGRAM KBLOS0 (INPUTOUTPUT)
FOR THE DETERMINATION OF G313 DUE TO THE SMALL EDDIES.
VARTABLE ASSTIGNMENTSccescescoces
Y=2Y2/SCALE={Y2/DELTAY #* (DELTA/SCALE) .
£=77/5CALLE
H=R2/SCALE'
SCALE=0.570%#{Y2+R2/240) FOR Y2+R2/2+0 LESS THAN 0.20¢ OTHERWISE USE
SCALE:OQ114I
2EY 4
ANSOLUTE VALUE OF R,
N DESIGHNATES THE TOTAL NUMRER OF Z VALUES TO BE READ IN
A{d) = ARNSCISSAE VALUES OVER WHICH THE VALUES OF Fy FY oF AND EXPR
ARE TO BE EVALUATED,
AREA = VALUE OF THE INTEGRAL OVER THE X-SPACE.
PRO = PRODUCT OF AREA WITH THE MECESSARY COEFFICIENTS.
DIMENSTION X(51)4F(51)eF1(5119F2(51)EXPR{B))
1 FORMAT (2E1}.4+1I3)
2 FORMAT (IHY 9/ /777777777777 7777777777795TX911H YSTRLMT = 9E11.4)
3 FORMAT (1H19//729Xs6H Y2 = 9E1)l4499Xs6H RE = sE1]14495X96H RK =
IFB8e%e¢BXaTH CPI = sF8a4,
2/A/EBX 930 72315 Xe22H VALUE OF G313 FUNCTION, /)
4 FORMAT (44XeF0¢5¢19X9E11e4)
100 READ 1,Y2sREWN
IF (Y?96T00«0>1109170,
110 PI=3,1415%9265%36
RK:OO41
CPI=U,55
F=PI#*3,60/(0.,837+RE)
STE_pZ\/.}ncS
RILIMIT=50.,0
CI=3.0
=N o
1200 CIa=CIl
Ta=T
CI=CI+STEP
IF (CleGT.RLIMIT)II12191122

76°14



PR
oo

J—d
w =

1142

1300
1400

1500

1600
1700

2000

11}

112
113

PRINT 1123

FORMAT (10Xe22H CI# GREATER THAN S0,0)

GO TO 170

CY=CIl/4.0

C7Z=RK*(CT

TE{1a0+CY+D s 5#CYH%2,0+CYRH#6,0/130040) #EXP (=CY)
1= G/ (RK#CI)+E#CPIHSIN(E#CT) /RK)

IF {T#*TA)1400920009°1200

CIn=CiA

Clh=C1

Ta=T

Ci=(ClA+CIR) /2.0

CYSCI/400

C7=RK¥*(C1
T=(1o0+CY+0B8CY##2,0+CY¥¥5,0/130040)#EXP(=CY)
1=(1, 0/ (RK#CI) +E#CpI#SIy(EXCI) /RK)
IF (T#TA)1600,200041700

CIB=CIA

CIA=CI

TA=Y

CI={CIA+CIRY /2.0

[F (ABS(CI=CIA) el.Te0a001)200021500
YSTRLAT=CI

PRINT 2 YSTRLMT

PRINT 3¢Y2+REsRKsCPI

NO 160 1=)19N

READ 1,22

RP=72=Y2

IF (Y2+R2/2e0eLTe0a22)1112112
SCALE=V.STo* (Y2+R2/240)

GO 10 113

SCALE=0.114

Y=Y2/SCALE

2=7p2/SCALE

R=R2/5CALE

AR=ABS (R)

Gsc



120

130
1a0o

150

160

170

Az, O%Y+R

DO 140 J=1,451

AJ=)=]

X(JJ)=AJ/50.0

FUI) =X () #X (D) #(1e 02 0¥AR*A®A) =2, 0¥ X (J) ¥ (1a0=-AR)+140
FJ)=F(J)##1,.5

FLOJISXI)BX (DI # (4 0%AR=3e0)+220¥X () #(240~AR) =140
IF (JaEGoa1)1209130

FZL1)=0e0

EXPR{JI=0,0

30 TO 140

F2(N=EdP{={10/X(J)=1,0)1)/X ()
EXPROJI=FLIDY#F2(0) /F (D)

SHM:O «f

DO 1%) K=1949+2
SUM=SUM+EXPR(K) +4 4 0#EXPR (K+1) +EXPR (K+2)

AREA=SUM/ 1500 o
PRU=ARE A AMEXP (=AR) o

G13=RMS (Y24 REsRKsCPIsYSTRLMT 9P I ) #RMS (Z2sRESRKyCPIs YSTRLMTPI)
1#URY (YR IRE)#URY (229 RE) #PRO%2,4 0

PRINT 43224613

GO TO 100

STOR

EinD

THE SURRQUTINE FUNCTIONS REQUIRED FOR COMPLETENESS OF THE COMPUTER
PROGRAMME FOR SET 4 CALCULATIONS ARE THE SAME AS THOSE GIVEN IN APPENDIX
A=I AND ARE NOT LISTED HERE,



A-VIIT Computer Programme for the Selecticn c¢f Region Size

required fer use in the Evaluation of Equaticn (3.2.1).

PROGRAM KBL095

In the calculation of the auto-covariance of the wall
pressure fluctuation, the computer programme written for the
determination of I which is defined by Equatioa (A.I.1) differs
from that for the mean square value of the fluctuating wall
pressures, the listing of which has been given in Appendix A-I.
The Qifference arises due to the fact that, in general, Il3 and
F13 are no longer even functions of rl although both are still
even functions of r}. This condition comes about because the
correlation term 322 is no longer an auto-correlation function
but a covariance having space-time depeundencies,. In Section
(3.1) it has been shown that if the pattern of the eddies can be
regarded to be frozen it is possible to make use of the available
data on the correlation coefficient obtained for zero time delay
to provide the necessary covariance foxr the calculation of the
auto-ccevariance of the wall pressure fluctuation. On this basis
we then write Equation (A.I.1) as

9 2

2 4 [+] ] -]
4 p= 3 UT f :
I = drl dr2.I dr3 T (y2,r1—UcT ,rg,rB)
- =Yg 0

7
2 (]

® 0
y p? 8%yt [
+ dr dr T n
B ; 1 2 dr3 T (y2,r1 UcT ,r2,r3)
lQ ”Yz A

vo. (ALVIIILNG)




258

where
T(yg,rﬁ—-UcT,rz,r_S) = My M(xy)ug(yy)ul(ry )Ry (yy,r -0 7 ,r2:r3),..
i gij(yZ’rl’r.?’rB)

: 7y T'r\ . {- o <
and M(y2), 12(32,, R22and g13 are as defined in Section 3.1,

The comnuter vrogramme written to calculate and give detailed

print-out of the values of T is listed below.



OOCOOCOOOO0OOO0 000000

PROGRAM KRLO9S (IMPUTsOUTPUT)

AUTOCORREZLATION OF PRESSURE FLUCTUATIONS. ,

FOR THE SEUERATION OF TrhE INTEGRAND VALUES TO ALLOW THE SELECTIOMN OF
THE KEGION SIZF REQUIRED TO OBTAIN A SUFFICIENTLY ACCURATE VALUE
OF THE VEAN USING 096 WHERE THE CORPELATION FUNCTIGH IS GIVEM FOR
THE COMBINED EFFECTS OF THE StiallL AND LARGE SCALE EDDIES WITH TIME
AS WELL AS SPACF DEPENDENCIFS,

THE CORRELATION FUNCTION IS BASED ON THE FROZEN PATTERN OF THE EDDIES
AN USES THE FORE SUGGESTED BY LILLEY AND HODGSON.

THE SCALF FUNCTION WYL PERMIT IT TO SATISFY THE CONDITION THAT
R (YallwitP2aP3eTAY) = L2Z2(Y+RR2eR19=R29R39 TAL))

TAU TS THE TIME DELAY NON=DIMENSTONALISED BY THE FREE STREAM VELOCITY
AND THE BOUNDARY LAYER THICKNESS.

NOTE THAT THE CORRELATION FUNCTION IS WNORMALISED BY THE PRODUCT GF
TAHE RMS VALUES OF THE TURBULENCE INTENSITIES AT THE TWO POINTS,
MEAN SHEAR TN THE EQUILIBRTIUM TYPE TURBULENT RBOUNDARY LAYER PER M,Kaf,
THE RHS VALUE OF THE TURBULENCE INTENSITY COMPONENT IN THE DIRECTYON

PERPENDICUILAR TO THE WALL IS PER MeKe.Bs FITTED CURVE TO LAUFER AND

KLEBANOFF DATA, '

DIMENSION W{51)

COMION YSTRLMT s KE sRKsCPT 9P L g ALPHA s ANNsUDELRASURATIOSUO
5 FORMAT (4F 7e20bT.292F5429F04392F5429F0039E94207/414)
10 FORMAT (F744)
19 FORWMAT Ny e/ /0277777777777 /73BXe51H REYNOLDS NUMBER BASED ON DISFL
LACEMENT THICKNESS = sE1(0eas////34Xe25H VON KARMAN COMSTANT K = :F3
Pes 19 Xar2d COLES PARAMETER PI = 9F3.2¢////40Xe52H RATIO OF COLES D
JELTA TOQ BOUNDARY LAYER THICKMNESS = sF4.30////32X:68H POUWER LAW IND
4EX FOR WAKE FUNCTIOM IM THE OUTER PART OF THE LAYER = sF4eps////3%
Se¢lp6H RATIO OF DISPLACEMENT THICKNESS AND FREE STREAM VELOCITY PRO
GDUCT TO BOUNDARY LAYER THICKMESS AND FRICTION VELOCITY PRODUCT =
TF4e20//7/724Xe80H RATIO OF (FREE STREAM VELQCITY =~ COLES FREE STREA
&M VELQCTITY) TO FRICTION VELOCITY = sF4.30////39Xe54H RATIO OF FREE
9 STREAM VELOCITY TO FRICTION VELOCITY = oF4.1s////16Xe95H TIME DEL
1AY NON-DIMENSIONALISED BY THE FREE STREAM VELOCITY AND THE BCUNDAR
2Y LAYER THICKNESS = sE9,29/1H1)
FORMAT (//32Xs5H C = sFGe4spXe8H FTRA = 9FGe292Xs8H FTRB = oF6.292

i

t

n
Pans

652



I1X98H FTRC = sF6.2)

25 FORMAT (//37TXKe6H R2 = 4E8,244Xe6H R3I = 4EB8,244X45H Y = +EB,24/)
30 FORMAT (1Xs11E12.3)

31 FORMAT (1H13

35 FORMAT (//37TXs6H R1 sEBe294Xe6H R3 sEB2saXeuH Y 9EBe29/)

i

i n
NN

40 FORMAT (//37Xs6H R1
RPI=314159265%36
100 PEAD SeCoFTRASFTRBsFTRCIREsRKeCRPIsALPHA«ANNDELRAYURATIOWTAUYNANS
INBMHeNMCMNsNT T
IF (CeGTa0)1100160
110 E=PI*0ELRAZ (ALPHA®RE)
STEP=0.5
RLIMIT=50.0
CI=30 0
T=1.U
12u0 CIlA=CI
TA=T
Ci=cl+STEPR
IF (CY1eGT.RLIMIT)II12101122
12y PRINT 1123
123 FORMAT (10Xe22H CI# GREATER THAN 50.0)
GO TG 1690
1122 CY=CI/4.0
T=(1elrCY+0BHCYHRCY+CYH##E/12000) FEXP(=CY) =10/ (RK¥CY)+E#CP I
1STN(E=CI) /RK)
13060 IF (TH*TAY14000200091200
1400 CIB=CIA
CTAa=CI
Ta=T
Cl=(CIlA+CIB)Y /2.0
1500 CY=CI/4.0
T=(le04CY+0aB#CYRHCY+CYH#EG/1300,0) WEXP (=CY) = {100/ (RK#CI)+EH#CPI*
ISTHIE#CT) /RK)
IF (T#TA)1600,200041700
1600 CIu=CIA
1700 CIA=CI

sEB.2s4Xe6H R2 1EBa2s4Xe5H Y 1E8.2¢/)

!
1
1

09¢



2000

120

TA=T

CI={CIA+CIB) /2.0

[F (ABS(CI=CIA)LTc0,001)2000,1500

YSTRLMT=CI

HO=USTAR(L,.0)

PRINT 15yREsRKeCPIsALPHASANNSDELRALURATIOL YO TAU
ANA=MNAN=~]

ANE=NBM=]

ANC=NCNe]

DO 150 1I=1eNII

READ 10sY

L2=U2Y (C*Y)

Z3=RMS(CY)

CI=FTRAXCHY

X2=FTRB*C#Y

C2=X2~CH*Y

C3I=FTRCHCY
YSTAR=CH#Y#RE/DELRA

PRINT 20sCeFTRAsFTRBsFTRC
R2=0.02

R3=0e0
SDIST=(C2+CH*Y)H*R2/2.0
XTAU=TAURUSTAR(SDIST) 7UQ
NO 126 I=1sNAN

ARI=1=1

R1=AR1/ANA

Z1=R2ZF (C#Y 4 CI#R) +XTAUy (C24CY ) #R2=C#YC3I*RI9TAU)
24=1)2Y ((C2+C#*Y)#R2)

ZH=RMS({C2+ChY) #R2)

26=GM(CsC19C29C39Y9R19R29R3)

W L)=Z )% ZPRZ3AR74%75426

PRINT 259R29R3sY

PRINT 30eW

R1=0e0

DO 130 I=1e¢NBN

ARZ2=1=1

19¢



R2=AR2/ANB
SDIST=(C2+C*Y)#R2/2,0
XTAU=TAU*USTAR(SDIST) /U0
Z1=REZF (C#Y s C1¥RL+XTAUy (C2+CY) #R2-CY s C3#*¥RIs TAU)
764=UZ2Y ((C2+CHY) #R2)
Z5=RMS ((C2+C#Y) #R2)
Z6=GM(CsC1sC2sC39YsR1sR29R3)
130 W l)=Z1%Z24#73#724%75%76
PRINT 3H9R1eR3eY
PRINT 3094
RP=0.07
SDIST=(CR+CHYI#R2/2,0
XTAU=TAURUSTAR (SDIST) Z7U0
NO 140 I=1] +NCN
ARZ=I=1
R3=AR3/ANC
Z1=R22F (C#YsCIH#R1+XTAUy (C2+CH#Y) #R2=-CH#YyCI*RI 9y TAU)
Z4a=112Y ((C2+CY) #R2)
25=RMS((C2+CitY)#R2)
26=G6M{CeC19C2sC39YsR19RZ29R3)
140 W(l)=Z1#Zp#Z3%#724%ZD%26
PRINT 409R1sR2eY
PRINT 302W
TTHALF=I1/2 .
[F (I1=-ITHALF*2,EQs0)1459150
145 PRINT 31
150 CONTINUE
GO TO 100
160 STOP
END

FUNCTION RMS (YMS)

FUNCTION USTAR(YU)
C FOR THE DETERMINATION OF THE MEAN VELOCITY IN THE BOUNDARY LAYER.

414



C
c

OO0

T

100

110

129

130
140

150
109

170

180

SHOULD BE NOTED THAT SOME OF THE CONSTANTS USED ARE ONLY VALID

FOR CONSTANT PRESSURE GRADIENT LAYERS.,

COMIAON YSTRLMT¢RESRKsCPIsPIoALPHAS ANNIDELRALURATIOSUO

IF (YUQ{;TO].-O)lOO!llO

USTAR=UD

GO TO 180

YUSTAR=YU#*RE/DELRA

YUC=1,1G4%YU

IF (YUOTAALFHAY 1209130
HSTAR=2.0vURATION (1= ((1e0=YU)/(1e0=ALPHA))**ANN) + (ALOG(YUSTAR) +2

1e3#CPI=ALOG(YUC)) /RK

60 TO 1AD

IF (YUoLELALPHAGAMD ¢ YUCoGT40408)1400¢150

USTAR=5 .0+ (ALOG (YUSTAR) +CPI#(140=COS(PI*(YUC~0a(8)/0e92)))/RK

GO TO 180

IF (YUSTARGToYSTRLMT 4ANDaYUCSLE+0408) 1604170

USTAR=G.+ALOG (YUSTAR) /RK b
GO TO 180 w
USTARZ14422=(14e22+42+55%YUSTAR+ 0194 #YUSTAR*YUSTAR+000577#YUSTAR®

1#3¢0s 00036 YUSTARR#4+040U001B#YUSTAR®#540.00000075%YUSTAR*#6) *EXP (
2=YUSTAR/ 4 e(3)

RETURM
END

FURTHER SUBROUTINE FUNCTIONS REQUIRED FOR COMPLETENESS OF THE
COMPUTER PROGRAMME BUT WHICH HAVE NOT BEEN LISTED HERE CAN BE FOUND IN
THE PROGRAMME LISTING IN APPENDIX A=1 FOR THE CASE OF SET 4 CALCULATIONS.
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A-IX Evaluation of Equationp (3.2.1) for the Autce—Covariance of

the Wall Pressure Fluctuations,

PROGRAM KBLG97.

The method of calculation of the auto-covariance of the
wall pressure fluctuations is the same as that of Method I for
the calculation of the mean square value, Equation (3.2.1)
can be written in the ferm given in Fquation (A.VIII.l) to
take into account the asymmetry of the 113 function about the
(rz,rz)—plane brought about by the time delay. Sag's (1963)
numerical routine generates mesh points in the positive quadrant
only and the required negative values of r1 are obtained by
reflection about the (rz,rj)—plane. The listing of the com-—
puter programme for the evaluation-of I defined by Equation

(A.VIII.1) is given below, The values for H, S, V and U are

the same as those given in Appendix A-I,



OO0 0000

ADAPTATION GQF T. SAGS NUMERICAL METHOND FOR THE AUTO CORRELATION OF THE
THE CoRe

THE CORRELATION FUNCTION IS GIVEN FOR THE COMAINED EFFECTS OF THE SMALL

PROGHEAM KR097 (INFUT«OUTPUT)

PHESSURE Til FO'I' TR LUM TURE ULer BOUNDARY LAYER FLOW,
CLATION FUNCTION IS BASED ON THE FROZEN PATTERN OF THE EODIES
ANMD USEFS THE FOHM SUGGESTED BY LLILLEY AND HODGSON

LARGE SCALE EDDIES WITH TIME AS WELL AS SPACE DEPENDENCIES

THE SCaALE FUNCTION MILL PERMIT IT TO SATISFY THE CONDITION THAT

TAaU 75 TeE 7TI0E DELAY NMON-DIMENSTONALISED BY THE FRE

RPZ(Y e H ) anPsR3ITAU) = RPZ(Y4R2$R19=R2ZoR3s TAL)
STREAM VELOQITY

m

AN THE ROUNDARY LAYER THICKNESS,

N??E THAT THE CORRELATION FUNCYTON IS NORMALLISED BY THE RPRODUCT OF

T RMS VALUES OF THE TURBULENCE INVENSITIES AT THE TWO POINTS.

WEAN SHEAR TN Tl EOWIIIH“IUM TYFE TURBRULEMT BOUNDARY LAYER PFR M KeR,
THE RMS ValUuE OF TriE TURRULENCE INTENSTITY COMPONENT IN THE DIRECTION

19
15

PERPENDICULAR TO THE WaALL IS PER MeKeBe FITTED CURVE TO LLAUFER AND

KLEBANOFF DATA,

DIAENSTION T{A) 9 A{A) oM I6) s Y (100) s ANS(100)sD(100)

COMAON Net)gCoC1sCPReC39X20 22833 YSTRLMT gREJRKyCPIoPIsALPHASANNSDELR
1ASURATIO YO TAL .

FORMAT (BN e e F B a2 sFb.392F 0 2eF6,.33F0Q.2¢214)

FORMMNTY (WM // /7777777777 77738Xs51H REYMNOLDS NUMBER BQ%FD ON DISPL
VTACEMENT THICKNESS = oF10e39///7/34Xs25H vON KARMAN CO ANT K = 472
ParalBXs200 COLES PARAMETFR PI = oF3,Z2e///7/40%s52H RATIO OF CCLES D
AELTA TO BOUNDARY LAYER THICKNESS = 4F4:33//7//732X¢68H POWER LAW IND
4FX FOR WAKE FUNCTION Tw THE GUTER FART OF TRHE LAYER = oF442e////3X
SeiaeH RATIOC OF DISPLACEMENT THICKMNESS AND FREE STREAM VELGCITY FRO
ADUCT TO BOUNGARY LAYER THICKNESS AND FRICTION VELOCITY PRODUCT =
TF4eRs/ 7/ /70 K%e85H RATLIO OF (FREE STREAM VELOCITY ~ COLES FREE STREA
B OVELOCITY)Y TO FRICTLIoN VELOCITY = sF4s43s//7/39Xs54H RATIO OF FREFE
9 STREAM YVELOCITY TO FRICTIONM VELOCITY = oF4%.,1e////716Xe95H TIME DEL
TAY MNOM=DIMENSTONALISED f1Y THE FREE STREAM VELOCITY AND THE BOUNDAR
2Y LAYER THICKNESS = 9F9,2e/1H16/7///9Xs2H Ca7XeBH FTRAsSXs5H FTRBy

35 XeEH FTRCeOXsPH HeTAs2H SyeXonHd VeTXedH UsTXe2H Ysd4X918H MEAN OF
4INTEGRAN094X913H NO OF POINTSs/)

20 FORMAT (F6,33F3096F6e29sES.2)

b
n



25 FORMAT (BXsF5a395XeF54190KsF5a]195XoF5el95XeF4e3¢6X9F2e096XyF30295X
2,F[i-.z54)(,FI.‘7»5,¢5X’E].2-5911)(916)
PI=3.1415926%346
100 READ 10eREsRKsCPIoALPHASANNGDEI.RAZURATIO TAUSNIIZN
ITF (RE.GTe0)1110e200
1ig E=PI#DELRA/ (ALPHA®RE)
STEP=0.%
RLIMIT=5040
CI=3,0
T=] 4
1200 CIAa=CI
TasT |
CI=¢I+STEF
TF (Cl.GT.RLIMIT)1121s1122
1121 PRIMT 1123
1123 FORMAT (10Xe22H CI%* GREATER THAN 50,.,0)
GO TO 200
1122 CYy=Cl/4.0
CZ=RPK*C] ' .
T=(1aG+CY+0-5*CY*CY+CY**6/1300:0)#EXP('CY)~(]oO/(RK*CI)*E*CPI*
1STH(E®CT) /RK)
1300 IF (T¥#TA)1400+200091200
1400 CTi=CIA
Cia=C]l
Th=Y
CI=(CIA+CIB) /240
CZ=RK#*CI
T=(1a0+CY+DBHCYHCY CY#HE/]300.0) #EXP(=CY)={1e 0/ (RK*CIL) +E#CPI*
LSTH(E#CT) /RK)
IF (T#TA)1600+200091700
1600 CIB=ClA
1700 CIA=CI
TA=T
CI=(CIA+CIRB) /2.0
IF (ABS(CI~CIA) «LTe0e001)200091500

99¢



2000 YSTRL™MT=CI
UO=USTAR (140}
PRINT 15sREIRKsCPIsALPHASANNSDELRASURATIOLUQsTAU
DO 19¢ II=1enNIl
READ 209HsS9VslJyCoFTRAGFTRBsFTRCoY (I1I)
A]:S#*M
Ve
HH=2 4 03t H
VVayRy
HHAS Y it =y
YSTAR=CHY (I1)*RE/DELRA
Zz2=U2Y (CrY (I1))
Z23=RUS(CHY (11))
CI1=FTRARCH#Y(II)
XA=FTRE¥CHY (T])
CR=x2=C*Y (II)
CARFTRCH#CHEY (TT)
SHi=0,0
A= ,0 !
NRPOTHNTS=0
140 M(1)=0
RA=p
NO 150 I=),.N
M{I+1)=A/S#3E(N=T)
TLLYy=HHE (M (1+1) =S&M (1)) +HHA
150 REU=RO+T(IY«T(I)
IF (RO=VYVYT1605170.170
160G R=SQRT(RY)
NPOINTS=HNPOINTS+1
CaLL TRINS (TeR+sDET9X)
SUM=SUM+DETH*G(XsY(ITI))
170 A=A+]
IF (A=A1) 14041804180
180 ANS(II)=SUMHVQRS ,Q*CHCIHCI*X2/3614159265
190 PRINT 2% 9CoeFTRAGFTREBsFTRCIHsSeVsUosY (IT) 4 ANS{IT) s NPOINTS
GO TO 100

L9z



200 STOP
END

FUMCTTON USTAR(YU)
C FOR THE DRETERMINMATION OF THE MEAN VELOCITY IN THE BOUNDARY LAYER,
C IT sSHOULD BE NOTED THAT SOME OF THE CONSTANTS USED ARE ONLY VALID
C FOR CONSTANT PRESSURFE GRADTIENT LAYFRS.
COMMON DagUgCeCleCPRoCl3¢X2022¢ 239 YSTRLMTIRESRKICPTIoPIsALFHAsAMNNSDELR
1A«URATIO U TAL
IF (YU UaGTal1a0)1005110
100 USTAR=LO
30 T 1RC
110 vYUSTAR=YU#*RE/DELRA
YUC=1e194%YU
IF (YU GT.ALPHAY 1204130
120 USTAR=SQ+URATION (1,0=((1eQ=YU)/(lo0=ALPHA)) ®#*ANN) + (ALOG(YUSTAR) +2
1.0%CPI=ALOG(YUC))/RK
GO T0 1RO
130 IF (YUGLE e ALFHAGAND YUC 6T e0:08) 140,150
140 USTAR=S 0+ (ALOG(YUSTAR) +CPI®(1.0~COS{PI*(YUC=0,08)/0,92)))/RK
GO TO 1%0
190 IF AYJSTARGGT «YSTRLMT AND e YUCILE«0e0B) 2509170
160 USTAR=5,0+ALOG(YUSTAR) /RK
GO TO 180
170 USTARS14.22=()4+22+2508%YUSTAR+ Do 194 YUSTAR®YUSTAR+0 0057 7H*YUSTARY
1%3+0600036%YUSTAR®#4+0,0U00]18#YUSTAR®#54+0,00000075#YUSTAR##6) #EXP (
2=YUSTAR/ 4 0)
130 RETURRN
B

FURTHER SUBROUTINE FUNCTIONS REQUIRED FOR COMPLETENESS OF THE
COMPUTER PROGRAMME pUT WHICH HAVE NOT BEEW LISTED HERE CAN BE FOUND IN
THE PROGRAMME LISTING IN APPENDIX A~I FOR THE CASE OF SET 4 CALCULATIONS.,

[eNeRe!

892
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APPENDIX B REDUCTION OF IS_ TO A SINGLE INTEGRAL

3

B
For the case £ = T =0, can be represented by

TS
I35
Iiz(y2,r2), and then eq. (2.6.15) , with the insertion of the

appropriate expression for g13 and transformation to polar

coordinates, gives

, S
< B K \/r?2‘+k2
113(3'2’1‘2) = (1——a2) dk k d6 exp(- '—'-“S-"*—"-)
0 ()

2 2 2
[ \/1‘2+k r2 :|
.. 1 - 3 5
28 :2s~/r2+k'2
1 k2(y'é;r9-+2m) 9
m(y,+r,,+m) [1 -2 3 Sk ]
Yo+ to m (y2+r2+m)

2
©
\/I'Esz \/r§+k2 = o
=2 dk k exp(- T) [1 iV — 2S\/r§+k2
0o
1(2(y +r_+2m)
- sty [+ ]
m(y2+1~2+m) 2m2(y +r_+m)
2 2
: 2 2
o \/1‘2+k2 r \/r2+1:2 rg -
=27 § dk k exp(——) I 1 - =5 + J
. - ° 22
A 2s r2+k
1
372 ...(B.1)

| S——
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and a =y, T

X = "S = 4
r
2
R2 T s $
and A = S, equation {B.1) becomes
° X 2 RS
- . - 3 ;)
3. (y,,r,) = i s (x- = 4+ =2)ax  ...(B.2)
1372772 2 2 2. 3/2 2 2
IRyl (X" +A"-R;)

which, for numerical evaluation, can be further simplified to

} {
il F (2,R,).Fy(Z)

1. (y.,r,) = e 'Rz'f iz, ...(B.3)
13 y2 2 2 A [FB(Z,R2,A)]3/2 .

2,
where  F (Z,Ry) = 2°(4[Ry|-3) + 22(2- Ry ) - 1,

2|'

1 1
F2(Z) =7 exp(l - E), and

2 2
F3(25R2’A) = 2°(1-2 R, + A7) - 2% (1-[B,l ) + 1.

Simpson's rule was used to obtain the value of IiB(yz,r2) with

the Z-region subdivided into 100 equal parts. This gives a
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numerical accuracy of better than 0,01%. The cemputer pro-
granres employed in the numerical evaluation of Equaticon (B.3)

are given in Appendix A-IT and Appendix A-III for s given by

Equations (3.1.1%) aud {3.1.19) respectively.
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APPENDIX C.

THE 3-PHASE T0 DC THYRISTOR CONTROLLED POWER SUPPLY

The power necessary for the running o¥ +the wind tunnel DC
motor comes from the rectification of the available 3-phase AC
supply for the armature windings and the rectification of one of
the phases for the field coils. Solid state devices have been
selected in the construction of the power supply for reasons of

(i) compactness,
(ii) reliability and ruggedness,

(iii) availahility in the required voltage/current ratings,

and
(iv) relative low costs.

The basic circuit for the rectification of the 3-phase supply
is given in fig. C-1 and the details of the principles involved can
be found in the GE SCR Manual.

The initiation and hence the control of conduction is through
the application of the required voltage at the gates of the SCR's
by the use of firing circuits and a range of supply voltages from
0 to 540 volts can be made available by varying the peint of
conduction. Fig. C-2 shows the resultant DC due to partial as well
as full conduction. In the actual layout of the power supply, the
three phases from the bus-bars have been connected to a three phase
Heinnemann "Control" circuit breaker and a three phase "Power"
contractor - see fig. C-3. The circuit breaker has been labelled
"Control" as it supplies power to the safety, as well as the firing

cireuits, and the contactor has the joh of providing up to 100 kw
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Fuli-Wave Bridge at Partial and at Full Conduction.
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to the armature windings.
A number c¢f safety devices have been built into the power
supply system. They have been incorporated to prevent
(i) the starting up of the wind-turnel without the remeval
of the front cover protecting the honeycombs,
(ii) the conduction of armature current unless the field coils
of the DC motor have been energised,

(iii) the three-phase SCR bridge from being energised before
the influence of the firing circuit could be established,
and

(iv) the three-phase bridge from initial conduction in other
than the'zero—volts output condition, i.e. with the speed
control potentiometer on the zero position.

Fig. C-4 shows the circuit diagram used to achieve the required
protection. It can be seen that only one of the three phases has
been used throughout the contrel circuit, and this is denoted as
phase *). The 15A line from the circuit breaker hes been used to
supply power to the pull-in coil of the three-phase contactor.

In the starting-up procedure, the control circuit breaker must
first be closed. Two of the three phases, *2 and 13, will immediately
be energised and be indicated by the lights on the front panel. To
energise the controlling phase, phase x1, the front cover of the wind
tunnel must be removed and must also be positioned in its wall
bracket where two micro—switches in series detect its presence by

being closed. The "live" state of phase *{ should then be indicated
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by the panel light. The three phases would then be availeble to

the auxiliaries such as the o0il scavange pump, the motor box

exhaust fan, the SCR cooling fan and the hour meter - the latter

two being run only on phase *1. The field coils would also be ener—
gised through the DC available from the full-wave rectification of
phase *1. The only other requirement for the runaning of the DC
motor is the supply of variable DC to the armature, and this is
achieved in two stages. Firstly, the firing circuit must be ener-
gised. Secondly, and only then, the three phase SCR bridge can be
energised. This safeguard has been adopted to prevent full conduct-
ion from occurringyat the moment of switching on, for the firimng
circuits have been found to issue pulses at switch-on and these
pulses have been noted to be of sufficient magnitude to cause the
SCR's to conduct. To this end two start buttons in conjunction with
a microswitch and two relays have been employed. The speed control
is a potentiometer which varies the instant ét which gating or the
initiation of conduction occurs in each of the SCR's with respect to
each of the three supply phases, From fig. C-2, it can be seen that
if gating occurs at A, B and C for each of the threes phases, no DC
output will be available even though the gating should be repeated
with each cycle, This must then be the zero-speed pasition for the
speed control potentiometer, and to ensure that there should be no
conduction at the initial switch on, a microswitch has been installed
in the line carry power to START *1 such that it (the microswitch)

can only be made with the speed control potentiometer in the zero

position. Only when this condition has been achieved can the hoid-
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in ceil of relay %1 be energised when START EE1 is pushed in. Power
should now be supplied to the firing circuit and should also be
available to START ®2 and the hold-in coil of relay =, Pushing in
START *2 will now allow relay *2 1o provide power to the threg phase
contactor which will then close thus bringing in the three-—phase
supply to the ECE bridge. Note that it is still necessary to have
the speed control potentiometer at the zero position to that the
microswitch remained closed before START *2 can be energised and
relay %5 closed. The speed control can now be rotated from the zero
position to give the required conduction and hence the necessary
compressor speed. In the event of the failure of the power supply
to the field coils due to the failure of phase X1, the control mech-
anism and circuitry which have been made to rely on this phase have
been set up so that relays *1 and *3 fall out and all power to the
three phase bridge will be automatically terminated. This precaut-
jon is taken to prevent the motor from "running-away".

A further series of protection have been incorporated at the
supply end of the three phase between the bus-bars and the SCR's.
These consist of series inductances, resistors, capasitors and fuses
to cope with line surges.

Fig. C-5 shows the details of the protection circuit.
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APPENDIX D SONI(¢ CHOKE DIMENSIONS

The detailed dimensions giving the foriu of the nose of the
centre-body and nozzle of the choke are presented in Table D.1.
The profile of the nose of the centre-body has been calculated

from the relationship

YR I LI
where

r, = 254.00mm (10.000 inch),

z, = 212.09um (8.350 inch),

Yq is the radius of the centre-bofy cross-section at a distance
x_ upstream from the first shoulder - see figure D.1(a). The

shape of the nozzle used in the sonic choke has been generated

using the relationship

22
y2—(1‘2—X2) —Zz,
for 0 < X, < 97.72mm, ,
where r, = 489,61mm (19.276 inch),
2, = 423.37mm (16.668 inch)
and
v - - Y-
Vo = z3 [ r3 (L x2) } 3

for 97.72mm € x, < 148.17mm,

where = 252,73mm  {9.9501 inch),

=
|

30%,04mm  (11.970 inch),

N
i

148, 17mm  (5.8333 inch)

=
il
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a) Form of Choke Centrebody Nose.
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b) Form of Choke Nozzle.

Fig.D1 Co-ordinate System for Sonic Choke Section.
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and v is the internal radius of the nozzle cross—section at a
v

ro

distance x_ from the downstream end - see figure D.1(b).



Ordinates of Sonic Choke Centre-Bedy Nose and Nozzle

Table D.1

(a) Centre-body Nose (b) Nozzle
1 mm y1 mﬁ x2 il y2 mm
0 41,91 G.00 66.29
10,00 | 41.71 10.00 | 66.16
20.00 41,12 20.00 65.83
30.00 40,13 30.00 65,32
40,00 38.74 40,00 64,60
50.00 36.94 50.00 63,68
60.00 34,72 60.00 62.55
70.00 32.07 70.00 61.21
80.00 28.98 80.00 59.66
90.00 25,473 90.00 57.90
100.00 21,40 97.72 56.39
110,00 16.86 100.00 55.94
120,00 11,78 110,00 54.21
130.00 6.12 120,00 52.92
139.76 0.0 150,00 51.96
140,00 51,44
148,17 51.31
The calculated values for Yo for X2 = 0 and 10.00mm

are 66,24mm and 66, 14mm respectively.

have been changed to fair the nozzle into the existing diffuser,

The first two values





