Satellite and Rocket Measurements of Solar Ultraviolet Flux and Atmospheric Molecular Oxygen Density

by

George William Albert Lockey B.Sc.(Hons.)
Department of Physics

A thesis presented for the degree of Doctor of Philosophy in the University of Adelaide.

October 1972
CONTENTS

SUMMARY

PREFACE

ACKNOWLEDGEMENTS

CHAPTER 1 SOLAR RADIATION FROM 2000A TO 2000A
 1.1. Previous Measurements
 1.1.1. Introduction
 1.1.2. Dispersive Measurements
 1.1.3 Profiles of the Solar Lyman-α Line
 1.1.4 Solar Images at Lyman-α
 1.1.5 Non-Dispersive Measurements
 1.2 The Nature and Origin of the Solar Ultraviolet Spectrum

CHAPTER 2 THE ATMOSPHERIC ABSORPTION OF SOLAR ULTRAVIOLET RADIATION
 2.1 Introduction
 2.2 The Absorption Cross-Section of Molecular Oxygen
 2.3 Molecular Oxygen Densities from Absorption Measurements Between 1000A and 2000A
 2.4 Height Range for Determining Molecular Oxygen Densities
 2.5 Absorption of Lyman-α by Constituents other than Molecular Oxygen

CHAPTER 3 THE CONSTRUCTION AND TESTING OF VACUUM ULTRAVIOLET ION CHAMBERS
 3.1. Introduction
3.2 Construction of the Ion Chambers
 3.2.1 Copper-Bodied Ion Chambers
 3.2.2 Glass-Bodied Ion Chambers
3.3 Window Materials
3.4 Baking the Lithium Fluoride Windows
3.5 Filling the Ion Chambers
 3.5.1 The Filling System
 3.5.2 The Filling Procedure
 3.5.3 The Purification of Nitric Oxide
3.6 Absolute Calibrations of the Ion Chambers
 3.6.1 Introduction
 3.6.2 Spectral Response
 3.6.3 Absolute Quantum Efficiency
3.7 Angular Response
3.8 Temperature Effects
3.9 Long Wavelength Sensitivity

CHAPTER 4 ROCKET MEASUREMENTS OF MOLECULAR OXYGEN DENSITIES AND SOLAR VACUUM ULTRAVIOLET RADIATION
4.1 Introduction
4.2 The Skylark Experiment
4.3 The HAD Experiments
 4.3.1 The HAD Rocket
 4.3.2 Instrumentation Layout of the Rocket Head
 4.3.3 Solar Aspect Sensors
 4.3.4 The Form of the HAD Trajectory
 4.3.5 The HAD 309 Flight
 4.3.6 The HAD 310 Flight
CHAPTER 5 THE WHEEL 1 ION CHAMBER EXPERIMENT

5.1 Introduction

5.2 Satellite Instrumentation
5.2.1 The Ion Chambers and Amplifiers
5.2.2 Optical Aspect Sensors and Magnetometers
5.2.3 The Telemetry System

5.3 The Atmospheric Occultation Experiment
5.3.1 The Principle of the Experiment
5.3.2 The Point-Sun Approximation
5.3.3 Correction for the Effect of the Finite Size of the Solar Disk

5.4 Determination of the Attenuation Curves
5.4.1 Data Acquisition
5.4.2 Amplifier Calibrations
5.4.3 Aspect Angle Determinations
5.4.4 Minimum Ray Height and Sub-Minimum Ray Height Point Determinations
5.4.5 The Attenuation Curves

5.5 Molecular Oxygen Density Results

5.6 Solar Flux Results

CHAPTER 6 DISCUSSION AND COMPARISON OF THE SATELLITE AND ROCKET RESULTS

6.1 Measurements of Molecular Oxygen Density
6.1.1 Introduction
6.1.2 Measurements by Absorption Spectroscopy
6.1.3 Measurements by Mass Spectroscopy
6.2 Discussion of the Density Results
 6.2.1 The Rocket Measurements
 6.2.2 The Satellite Measurements
6.3 Discussion of the Solar Flux Results
6.4 Conclusions and Comments

APPENDIX A THE WREXAT I DENSITY RESULTS

APPENDIX B PUBLICATIONS

BIBLIOGRAPHY
first winter measurement of molecular oxygen density in the southern hemisphere in the region of the atmosphere near 90 km.

A comparison of the HAD 309 and HAD 310 (summer) results with similar measurements by other workers has indicated that the average scale height of the density distribution, in the altitude range 80 km to 95 km, is greater in winter than in summer.

Australia's first satellite, WRESAT 1, carried lithium fluoride-nitric oxide, sapphire-xylene and quartz-triethylamine ion chambers. This experiment was designed to measure atmospheric molecular oxygen density at satellite sunrise and sunset, in the altitude range 90 km to 220 km. A method of analysis of the ion chamber data has been developed which allows for the effect of the finite size of the solar disk. All of the available WRESAT 1 data has been analysed using this method.

To within the experimental uncertainties, the WRESAT 1 density results show general agreement with the mean 1965 CIRA model atmosphere in the region near 100 km. However, in the height range 130 km to 220 km, the average density values are a factor of two below those of the mean 1965 CIRA model and show day-to-day variations greater than those predicted by the 1965 CIRA models.

The region of the solar temperature minimum, between the upper photosphere and lower chromosphere, is of considerable importance for the theory of the solar atmosphere. The solar flux data obtained from the sapphire-xylene and quartz-triethylamine ion chambers carried on WRESAT 1, indicate a value of (4870 ± 90)°K for the solar minimum brightness temperature. A comparison has been made between this value and the values obtained by workers using dispersive instruments.
This thesis describes experiments performed using rocket and satellite-borne ion chambers sensitive to vacuum ultraviolet radiation. The objectives of these experiments were:

(i) the measurement of molecular oxygen density by the technique of absorption spectroscopy, and

(ii) the measurement of absolute solar flux at the wavelength of hydrogen Lyman-α (1215.7Å) and in the wavelength bands 1420Å to 1480Å and 1550Å to 1690Å.

Ion chambers with both glass bodies and copper bodies have been designed and constructed for use in these experiments. The construction and testing of these detectors are fully discussed.

In the upper mesosphere (70 Km to 90 Km) and lower thermosphere (50 Km to 200 Km), seasonal, geographical and temporal variations in the atmospheric molecular oxygen density profile are still largely unknown. As a result, significant uncertainties still exist with regard to "model" or "standard" atmospheres used to represent the molecular oxygen distribution.

In the present work, five rockets carrying lithium fluoride-nitric oxide ion chambers (which respond mainly to hydrogen Lyman-α radiation) have been launched from Woomera, Australia. The main objective of these experiments was the determination of the nature of seasonal variations in the molecular oxygen density profile in the altitude range 80 Km to 95 Km. Only two of the rockets, RAD 300 and RAD 310, performed satisfactorily. The RAD 309 experiment gave the