QUANTIZED FIELD INTERACTIONS

by

I. E. McCarthy

Submitted in accordance with the requirements for the degree of
DOCTOR OF PHILOSOPHY
in the
University of Adelaide, 1955
PREFACE

The following thesis is the result of work done under a Senior Research Scholarship in 1953 and 1954 and a Junior Research Fellowship in 1955 in the Department of Mathematical Physics, University of Adelaide, South Australia. The work was supervised by Professor H.S. Green.

The thesis is in two parts. Part I is an investigation of the physical behaviour that would be expected from particles obeying generalised statistics. The behaviour in scattering experiments and the Statistical Thermodynamics of gases containing non-interacting particles are discussed. Part II is an approximate covariant treatment of the meson-nucleon scattering and bound state problems.

I should like to thank Professor Green for suggestions, discussions and encouragement throughout the course of the work.
PART I. Physical Properties of Particles Obeying Generalized Statistics.

1. Introduction. 1
2. The Second Order Self-Energy Problem. 6
3. nth Order Vacuum Fluctuations. 13
4. nth Order Scattering of 1 Fermions. 21
5. Feynman Probability Amplitudes. 26
6. Interaction of Generalized Bosons with Spin $\frac{1}{2}$ Particles. 27
7. Statistical Thermodynamics of Generalized Particles. 30

References. 33

PART II. Interaction of π-Mesons with Nucleons.

1. Introduction
 i) Summary of the Present Knowledge of the properties of π-Mesons and their Interactions with Nucleons.
 a) Properties of Free Mesons. 34
 b) Hyperons. 37
 c) Charge-Independence. 38
 d) Meson-Nucleon Scattering. 41

 ii) Review of the Theory of Meson-Nucleon Scattering to date.
 a) General Discussion of Theories. 43
 b) Pseudoscalar Meson Theory with Pseudoscalar Coupling. 44
 c) The Coupling Constant. 46
 d) Radiative Corrections to the Meson-Nucleon Propagation Function. 48

 iii) Theory of the Present Work.
 a) The Integral Equation. 51
 b) The Fredholm Theory. 56
 c) Bound States. 58
 d) Scattering Cross-sections. 63
2. Calculation of u_1 and Discussion of the Effect of neglecting μ^2.
 i) Reduction of u_1 to simpler integrals. 69
 ii) Calculation of $\int d^4k / KK'$, and discussion of the effect of neglecting u^2. 70
 iii) Calculation of $4 \int d^4k / KM$ 75
 iv) Calculation of $-(p^2 - m^2) \int d^4k / KK'M$ 76
 v) Expression for u_1. 78

3. Calculation of u_2.
 i) Reduction of u_2 to simpler integrals. 79
 ii) Calculation of I to order $(p^2 - m^2)^2$. 82
 iii) Calculation of II. 95
 iv) Calculation of III. 97
 v) Calculation of IV. 104
 vi) Calculation of V 107
 vii) Expression for u_2 to order $(p^2 - m^2)^2$. 108

4. Numerical Results.
 i) Numerical values of u_1, u_2 and the cross-sections. 109
 ii) Results of the bound state theory. 113
 iii) Results for the Scattering Cross-sections and Angular Distributions.
 a) Value of the Coupling Constant 115
 b) Differential Cross-sections and Angular Distributions. 115
 c) Total Cross-section. 116

5. Discussion and Interpretation of Results. 118
References. 122