THE KINETICS OF THE REDUCTION OF LEAD MONOXIDE
BY HYDROGEN

by

I.G. Matthew, B.Sc., B.E.

of the

Department of Mining, Metallurgical and Chemical Engineering

A THESIS
Submitted for the Degree of Doctor of Philosophy
in the
Faculty of Engineering of the University of Adelaide

April
1959
TABLE OF CONTENTS

1. **INTRODUCTION** 1

2. **LITERATURE REVIEW** 4
 2.1 The Reduction of Lead Monoxide 4
 2.1.1 The Reduction of Lead Monoxide by Hydrogen 4
 2.1.2 The Reduction of Lead Monoxide by Carbon and Carbon Monoxide 7
 2.1.3 The Reduction of Lead Monoxide by Town Gas 9
 2.1.4 The Reduction of Lead Silicates 10
 2.1.5 Conclusion 12

2.2 The Theory of Heterogeneous Reaction Rates 13
 2.2.1 Transport Controlled Reactions 14
 2.2.1.1 Diffusion of Reactants and Products through a Fluid Film 16
 2.2.1.2 Diffusion through the Solid Phase 17
 2.2.2 Chemically Controlled Reactions 19
 2.2.3 Intermediate Type Reaction Control 22
 2.2.3.1 The Elimination of the Transport Factor 24

2.3 Experimental Determination of the Reaction Rates 26
 2.3.1 Static Systems 26
 2.3.2 Dynamic Systems 27
 2.3.3 Conclusion 28

3. **THERMODYNAMIC INVESTIGATION** 30
TABLE OF CONTENTS (cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>RAW MATERIALS</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Gases</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Lead Monoxide</td>
<td>36</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Introduction</td>
<td>36</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Preparation of the Lead Monoxide Particles</td>
<td>36</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Sample Assays</td>
<td>39</td>
</tr>
<tr>
<td>5.</td>
<td>THE EXPERIMENTAL CONDITIONS AND TECHNIQUE</td>
<td>42</td>
</tr>
<tr>
<td>5.1</td>
<td>The Experimental Conditions</td>
<td>42</td>
</tr>
<tr>
<td>5.2</td>
<td>The Experimental Technique</td>
<td>43</td>
</tr>
<tr>
<td>5.3</td>
<td>The Type of Reactor</td>
<td>45</td>
</tr>
<tr>
<td>6.</td>
<td>THE EXPERIMENTAL APPARATUS AND PROCEDURE</td>
<td>47</td>
</tr>
<tr>
<td>6.1</td>
<td>The Preliminary Experimental Apparatus and Procedure</td>
<td>47</td>
</tr>
<tr>
<td>6.1.2</td>
<td>The Experimental Apparatus for Use with Hydrogen and Hydrogen-Nitrogen Mixtures</td>
<td>47</td>
</tr>
<tr>
<td>6.1.2.1</td>
<td>The Design of the Apparatus</td>
<td>49</td>
</tr>
<tr>
<td>6.1.2.2</td>
<td>The Supporting Bed for the Lead Monoxide</td>
<td>51</td>
</tr>
<tr>
<td>6.1.2.3</td>
<td>The Hydrogen Flowrate</td>
<td>52</td>
</tr>
<tr>
<td>6.1.3</td>
<td>The Experimental Procedure with Hydrogen or Hydrogen-Nitrogen Mixtures</td>
<td>52</td>
</tr>
<tr>
<td>6.1.4</td>
<td>The Experimental Apparatus for Use with Hydrogen-Water Vapour Mixtures</td>
<td>54</td>
</tr>
<tr>
<td>6.1.5</td>
<td>The Experimental Procedure with Hydrogen-Water Vapour Mixtures</td>
<td>58</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6:6</td>
<td>The Accuracy of the Results</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>THE EXPERIMENTAL PROGRAMME</td>
<td></td>
</tr>
<tr>
<td>7:1</td>
<td>Preliminary Series</td>
<td>61</td>
</tr>
<tr>
<td>7:2</td>
<td>Series $A_1 - A_16$ and $B_1 - B_2$</td>
<td>61</td>
</tr>
<tr>
<td>7:3</td>
<td>The C Series of Runs</td>
<td>61</td>
</tr>
<tr>
<td>7:4</td>
<td>The D Series of Runs</td>
<td>62</td>
</tr>
<tr>
<td>7:5</td>
<td>The E Series of Runs</td>
<td>63</td>
</tr>
<tr>
<td>7:6</td>
<td>The F Series of Runs</td>
<td>64</td>
</tr>
<tr>
<td>7:7</td>
<td>The H to N Series of Runs</td>
<td>65</td>
</tr>
<tr>
<td>8:1</td>
<td>RESULTS</td>
<td></td>
</tr>
<tr>
<td>8:1:1</td>
<td>The C Series of Runs</td>
<td>67</td>
</tr>
<tr>
<td>8:1:1:1</td>
<td>The Dependence of the Reaction Rate upon Time and the percentage Reduction of the Lead Monoxide</td>
<td>67</td>
</tr>
<tr>
<td>8:1:2</td>
<td>The Effect of Temperature on the Reaction Rate</td>
<td>71</td>
</tr>
<tr>
<td>8:1:3</td>
<td>The Effect of Particle Size on the Reaction Rate</td>
<td>73</td>
</tr>
<tr>
<td>8:2</td>
<td>The D Series of Runs</td>
<td>74</td>
</tr>
<tr>
<td>8:2:1</td>
<td>The Dependence of the Reaction Rate upon Time and the percentage Reduction of the Lead Monoxide</td>
<td>75</td>
</tr>
<tr>
<td>8:2:2</td>
<td>The Effect of Temperature on the Reaction Rate</td>
<td>78</td>
</tr>
<tr>
<td>8:2:3</td>
<td>The Effect of Particle Size on the Reaction Rate</td>
<td>78</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont.)

8:13 The E Series of Runs

8:13:1 The Shape of the Reaction Rate—per cent. Reduction Curves 82
8:13:2 The Effect of Temperature on the Reaction Rate 83
8:13:3 The Effect of the Hydrogen Partial Pressure on the Reaction Rate 86
8:13:4 The Effect of Particle Size on the Reaction Rate 92

8:14 The F Series of Runs 94

8:14:1 The Shape of the Reaction Rate—per cent. Reduction Curves 94
8:14:2 The Effect of the Hydrogen Partial Pressure on the Reaction Rate 96

8:15 The H to N Series of Runs 99

8:15:1 The Rate of Reduction 101
8:15:1:1 The Reaction Rate for the H, I, and J Series of Runs 103
8:15:1:2 The Reaction Rate for the K, L, M, and N Series of Runs 104
8:15:2 The Effect of Temperature on the Reaction Rate 105
8:15:3 The Effect of the Hydrogen Partial Pressure on the Reaction Rate 105
8:15:4 The Effect of Particle Size on the Reaction Rate 107
TABLE OF CONTENTS (cont.)

8:6 Additional Experimental Results
8:6:1 Photo-micrographs
8:6:2 The Specific Surface Area

9. ANALYSIS OF THE RESULTS
9:1 The Empirical Order of the Reaction Rate for the Reduction of Lead Monoxide with Hydrogen and Hydrogen-Nitrogen Mixtures
9:2 The Correlation of the Reaction Rate with the percentage Lead Monoxide Unreduced
9:2:1 The Correlation for the C, D, and E Series of Runs
9:2:2 The Correlation for the F Series of Runs
9:2:3 The Dependence of the Reaction Rate upon the Hydrogen Partial Pressure in Hydrogen-Nitrogen Mixtures Predicted by the Correlation
9:2:4 The Correlation and the Particle Size
9:3 The Order of the Temperature Dependence of the Reaction Rate
9:5 Investigation of the Reaction Mechanism for the Reduction of Lead Monoxide
9:5:1 The Rate Controlling Mechanism
9:5:1:1 Introduction
TABLE OF CONTENTS (cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:5:1:2 Gas Film Diffusion</td>
<td>143</td>
</tr>
<tr>
<td>9:5:1:3 Diffusion through the Product Phase</td>
<td>145</td>
</tr>
<tr>
<td>9:5:1:4 Lattice Defect Diffusion</td>
<td>147</td>
</tr>
<tr>
<td>9:5:1:5 Conclusion</td>
<td>148</td>
</tr>
<tr>
<td>9:5:2 Investigation of the Chemical Reaction as the Intrinsic Rate Controlling Process</td>
<td>148</td>
</tr>
<tr>
<td>9:5:2:1 Introduction</td>
<td>148</td>
</tr>
<tr>
<td>9:5:2:2 Derivation of the Rate Equations for Heterogeneous Reactions</td>
<td>151</td>
</tr>
<tr>
<td>9:5:2:3 Reduction with Hydrogen-Nitrogen Mixtures</td>
<td>156</td>
</tr>
<tr>
<td>9:5:2:3:1 Examination of the Rate Equations for Hydrogen-Nitrogen Mixtures</td>
<td>159</td>
</tr>
<tr>
<td>9:5:2:4 Reduction with Hydrogen-Water Vapour Mixtures</td>
<td>161</td>
</tr>
<tr>
<td>9:5:2:4:1 Discussion of the Rate Equations for Hydrogen-Water Vapour Mixtures</td>
<td>164</td>
</tr>
<tr>
<td>9:5:2:5 Résumé and Conclusion</td>
<td>168</td>
</tr>
<tr>
<td>9:6 Alternative Kinetic Analysis of the Reaction Rate Data</td>
<td>169</td>
</tr>
<tr>
<td>9:6:1 Introduction</td>
<td>169</td>
</tr>
<tr>
<td>9:6:2 The Correlation of the Reaction Rate with the Hydrogen and Water Vapour Partial Pressures</td>
<td>171</td>
</tr>
<tr>
<td>9:7 The Effect of the Impurities in the Lead Monoxide upon the Reaction Rate</td>
<td>173</td>
</tr>
<tr>
<td>9:8 Comparison of the Effect of Nitrogen and Water Vapour on the Rate of Reduction of Lead Monoxide by Hydrogen</td>
<td>175</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont.)

9:9 Discussion of the Shape of the Plot of the Reaction Rate against the per cent. Lead Monoxide Reduced 178

9:10 The Significance of the Relation between the Reaction Rate and the per cent. Lead Monoxide Unreduced 179

9:11 The Steps in the Reduction of Lead Monoxide with Hydrogen 183

9:12 Comparison of the Characteristics of the Reduction of Lead Monoxide with Those of Other Oxides 183

10. SUMMARY AND CONCLUSIONS 187

APPENDICES 192

I. THE THERMODYNAMIC CALCULATIONS 193

I:1 The Reduction of Yellow Lead Monoxide - a Type Example 193

I:2 The Reduction of Red Lead Monoxide 199

I:3 List of O_p Values 201

II. THE EXPERIMENTAL TECHNIQUE 203

II:1 Introduction 204

II:2 Measurement of the Volume of Hydrogen Consumed 204

II:3 Determination of the Weight Lost 206

II:4 Chemical Analysis 207

II:5 Measurement of the Change in Composition 207
TABLE OF CONTENTS (cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>III:1</td>
<td>The Preliminary Apparatus</td>
<td>211</td>
</tr>
<tr>
<td>III:2</td>
<td>The Preliminary Experimental Technique</td>
<td>213</td>
</tr>
<tr>
<td>III:3</td>
<td>Difficulties with the Preliminary Experimental Technique</td>
<td>214</td>
</tr>
<tr>
<td>III:3:1</td>
<td>Temperature Control of the Preheater</td>
<td>214</td>
</tr>
<tr>
<td>III:3:2</td>
<td>The Nitrogen Backflow</td>
<td>215</td>
</tr>
<tr>
<td>III:3:3</td>
<td>The Temperature Control of the Reactor Bed</td>
<td>216</td>
</tr>
<tr>
<td>III:3:4</td>
<td>The Design of the Reactor Furnace</td>
<td>216</td>
</tr>
<tr>
<td>III:3:5</td>
<td>Replacement of the Drierite Drying Tubes</td>
<td>217</td>
</tr>
<tr>
<td>III:3:6</td>
<td>The Method of Determination of the Carryover</td>
<td>219</td>
</tr>
<tr>
<td>III:3:7</td>
<td>Purging of the Drying Tubes with Nitrogen</td>
<td>219</td>
</tr>
<tr>
<td>IV:1</td>
<td>The Experimental Apparatus for Use with Hydrogen and Hydrogen-Nitrogen Mixtures</td>
<td>221</td>
</tr>
<tr>
<td>IV:2</td>
<td>The Experimental Apparatus for Use with Hydrogen-Water Vapour Mixtures</td>
<td>222</td>
</tr>
<tr>
<td>IV:3</td>
<td>The Circuit Diagram of the Temperature Controller</td>
<td>222</td>
</tr>
<tr>
<td>IV:4</td>
<td>The Accuracy of the Results</td>
<td>226</td>
</tr>
<tr>
<td>IV:4:1</td>
<td>The Temperature Measurements</td>
<td>229</td>
</tr>
<tr>
<td>IV:4:2</td>
<td>The Flowrates</td>
<td>232</td>
</tr>
<tr>
<td>IV:4:3</td>
<td>The Time</td>
<td>233</td>
</tr>
<tr>
<td>IV:4:4</td>
<td>The Weighing Accuracy</td>
<td>233</td>
</tr>
<tr>
<td>Section</td>
<td>Page No.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>IV:4:5 The Accuracy of the Chemical Analysis</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>V. CHEMICAL ANALYSIS OF THE REACTION PRODUCTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V:1 Introduction</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>V:2 Investigation of the Method of Chemical Analysis</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>V:3 The Calculation of the per cent. Reduction of the Lead Monoxide</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>V:4 The Method of Chemical Analysis</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>V:4:1 Sample Preparation</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>V:4:2 Reagents</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>V:4:3 Assay Method</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>V:4:3:1 Step (a)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>V:4:3:2 Step (b)</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>V:4:4 The Analysis for Total Lead</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>V:4:5 The Gravimetric Analysis for Lead</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>V:4:6 The Volumetric Analysis for Lead</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>VI. RESULTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII:1 General Conditions and Notation</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>VII:2 The C Series</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>VII:3 The D Series</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>VII:4 The E Series</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>VII:5 The F Series</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>VII:6 Series H to N</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.</td>
<td>PHOTO-MICROGRAPHIC TECHNIQUE</td>
<td>301</td>
</tr>
<tr>
<td>VIII:1</td>
<td>Specimen Preparation</td>
<td>302</td>
</tr>
<tr>
<td>VIII:2</td>
<td>Examination and Photography</td>
<td>302</td>
</tr>
<tr>
<td>VIII.</td>
<td>TYPE EXAMPLES FOR THE DERIVATION OF THE RATE</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>VIII:1</td>
<td>Adsorption Control without Dissociation of Gas A₂</td>
<td>305</td>
</tr>
<tr>
<td>VIII:2</td>
<td>Adsorption Control with Dissociation of Gas A₂</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>STATUTORY STATEMENT</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>317</td>
</tr>
</tbody>
</table>

ABSTRACT

The kinetics of the reduction of yellow lead monoxide by hydrogen according to the reaction

\[\text{PbO (s) + H}_2(\text{g}) \rightarrow \text{Pb (l) + H}_2\text{O (g)} \]

have been investigated. The reaction rates have been measured by one of two different experimental techniques, depending upon the composition of the gaseous reductants. Particles of various sizes lying with the limits 5 to 52 B.S.S. have been reduced with pure hydrogen, hydrogen-nitrogen, and hydrogen-water vapour mixtures.

The reaction rate is increased markedly by an increase in the temperature, being approximately proportional to the twenty-second power of the absolute temperature. The activation energy is 40 ± 4 kcal/g-mole. The reaction rate is approximately directly proportional to the hydrogen partial pressure for reduction with hydrogen-nitrogen mixtures, but with hydrogen-water vapour mixtures the reaction rate is depressed to a greater extent than with nitrogen. The correlation \(R = x/(Ax + B) \), where \(R \) is the reaction rate, \(x \) is the percentage of lead monoxide unreduced, and \(A \) and \(B \) are constants, applies for most conditions, but only for values of \(x \) between 0 and 90.

The reaction exhibits none of the characteristics of mass transfer control and accordingly the chemical reaction must be rate controlling. By fitting the experimental data to rate equations derived using the concepts of the extended Langmuir-
Hinshelwood theory, it is demonstrated that the adsorption of hydrogen, either as a dissociated or an undissociated molecule, is the indicated rate controlling step.

Microscopic examination reveals that the zones of metallization are irregularly distributed throughout the particles of lead monoxide.