Initial infection of barley crops by *Rhynchosporium secalis* and effects of scald disease on grain yield

by

Allan Hiram Mayfield
B. Ag. Sc. Adelaide

Department of Plant Pathology,
Waite Agricultural Research Institute,
University of Adelaide,
South Australia

A dissertation submitted to the University of Adelaide in partial fulfilment of the requirements for the degree of Doctor of Philosophy

March, 1982.
CONTENTS

SUMMARY

vi

STATEMENT

viii

ACKNOWLEDGEMENTS

x1

GENERAL INTRODUCTION

1

LITERATURE REVIEW

2

- The disease: *nomenclature and symptoms*
 2

- Distribution
 3

- Economic importance
 3

- *Rhynchosporium secalis; nomenclature and morphology*
 4

- Growth and development *in vitro*
 6

- Infection of barley
 7

- Factors affecting lesion development on barley
 10

- Sporulation *in vivo and in vitro*
 12

- Epidemiology
 13

 - Survival of *R. secalis* between barley growing seasons
 13

 - Sources of primary inoculum
 15

 - Development of scald disease in barley crops
 16

- Disease control
 20

 - Sanitation
 20

 - Fungicides
 21

 - Resistant cultivars
 22

GENERAL METHODS

25

- Growth of barley seedlings and designation of growth stages
 25

- Production of *R. secalis* inoculum
 25

- Measurement of disease
 26

- Measurement of barley grain quality
 27

- Statistical analyses
 27
EXPERIMENTS AND RESULTS

Chapter 1

Amounts of primary inoculum at crop emergence and subsequent development of scald disease in barley crops

Section 1

R. secalis in dead host tissue in the field

Introduction

Materials and methods

Trial 1

Source and placement of infected leaves

Measurements of sporulation and infectivity

Trial 2

Trial 3

Placement of infected leaves

Measurement of infectivity

Results

Maximum duration of infectivity

Survival of leaf pieces

Sporulation and infectivity, Trials 1 and 2

Infectivity of material placed above, on or below soil level

Weather conditions at each site

Discussion

Section 2

Effects of common stubble treatments and sowing sequences on scald disease in barley crops

Introduction

Materials and methods

Stubble treatment experiments

Treatments applied
Plot preparation and sowing 55
Disease assessments 55
Sowing sequence experiment 55
Treatments 55
Plot preparation and sowing 56
Disease assessments 57
Results 57
Stubble treatment experiments 57
Sowing sequence experiment 57
Discussion 60

Section 3
R. solani on volunteer hosts during summer and autumn 62
a) Field observations 62
 Introduction 62
 Materials and methods 62
 Results and discussion 62
b) Effects of high temperatures, following inoculation, on development of scald lesions and on subsequent sporulation 66
 Introduction 66
 Materials and methods 66
 Growth and inoculation of seedlings 66
 High temperature treatments 67
 Measurements of disease and sporulation 67
 Results 68
 Discussion 68

Section 4
Effects of different amounts of primary inoculum on severity of scald disease 72
Introduction 72
Chapter II

Effects of scald disease on yield and quality of barley grain 78

Section 1

Losses in yield resulting from disease at different plant growth stages in a controlled environment 78

Introduction 78

Materials and methods 79

Growth of barley 79

Inoculations 80

Harvests 81

Measurements of plant growth and disease 82

Measurement of carbohydrates 82

Results 83

Disease severity 83

Plant growth 83

Dry weight 83

Leaf area 83

Date of anthesis 87

Water use 87

Grain yield 87

Carbohydrates 87

Discussion 91
Section 2

Losses in yield and quality of barley grain, in the field, resulting from different amounts of scald disease 94

Introduction 94

Materials and methods 95
 Measurement of plot yields 95
 Measurements of disease and yield of single-tillers 95

Results 96
 Plot trials 96
 Single-tiller trials 97

Discussion 99

GENERAL DISCUSSION 102

REFERENCES 109

APPENDICES 125
SUMMARY

The importance of *Rhynchosporium secalis* in plant debris, as a source of scald disease in barley crops was investigated. The fungus survived between growing seasons in dead leaves of hosts on the soil surface in the field in a range of barley-growing environments. Survival of inoculum was longer in tissue above the soil surface, and if infected tissue was buried, survival of inoculum was apparently insufficient to enable infection of barley sown at the start of the following growing season.

In a field experiment it was found that the commonly used practices of burning or grazing barley stubble reduced the amount of scald disease at early but not at later crop growth stages. However, different amounts of *R. secalis* inoculum applied to barley plots at seedling emergence in a field experiment produced different levels of scald disease at both early and late growth stages. Possible interactions between the effects of management practices on development of scald disease are discussed.

Absence of hosts for 18 months eliminated detectable levels of *R. secalis* from treated areas in another experiment.

The fungus did not appear to multiply in irrigated volunteer barley growing during late summer. Possible detrimental effects of high temperatures on the development of scald disease were investigated. Post-inoculation temperatures of 40°C, but not 35°C, inhibited lesion production and sporulation of *R. secalis* in barley leaves.

To evaluate effects on grain yield of disease severity at specific plant growth stages, grain yields of diseased and healthy barley were compared under controlled environmental and field
conditions. In the controlled environment experiment greatest losses occurred when plants were inoculated after stem elongation growth stage. These were associated with reductions in root weight, leaf area, water use and in a delay in anthesis. No significant effects of scald disease on the amount of non-reducing sugars in roots or leaves of diseased plants were measured. But analyses of scald disease severities and components of grain yield of barley in a field experiment indicated that the disease at early crop growth stages reduced grain yield more than at later growth stages. These analyses also suggested that reductions in grain yield in the field may be a result of interactions of effects of scald disease with other factors affecting grain yield.

Relationships between scald disease severities and grain yields of individual barley tillers were compared with those obtained from plots. In this instance, the plot assessment was the better method for evaluating disease/yield loss relationships.