THE STRUCTURAL PETROLOGY

of an area

EAST OF SPRINGTON, SOUTH AUSTRALIA

by

KINGSLEY JOHN MILLS

B.Sc. (Hons.) Adelaide.

Department of Geology,

The University of Adelaide.

December, 1964.
TABLE OF CONTENTS.

SUMMARY

ACKNOWLEDGMENTS

INTRODUCTION

Purpose and Aims of the Present Study

Relation of the Cambrai Area to the Geological Pattern of the Mount Lofty Ranges

Metamorphism, Orogenesis and Age

The Kanmantoo Group

Previous Investigations in the Present Area

Physiography and Geography

SECTION A. SEDIMENTATION

CHAPTER 1. STRATIGRAPHY AND SEDIMENTATION

(a) The Stratigraphic Sequence

(b) Correlation of the Cambrai stratigraphy with other portions of the Mt. Lofty Ranges

(c) Sedimentation Structures in the Cambrai Succession

(d) Palaeocurrent Data

Conclusions

SECTION B. METAMORPHISM

CHAPTER 2. QUARTZO-FELDSPATHIC SCHISTS

Introduction

(a) Appearance and Structure

(b) Mineralogy and Mineral Assemblages

Page.

1.

2.

3.

5.

7.

8.

11.

12.

13.

15.

20.

22.

25.

31.

31.

31.

33.
(c) Progressive Metamorphism of the Quartzo-felspathic Schists 34.

CHAPTER 3. SEMI-PELITIC AND PELITIC SCHISTS 49.
(a) Minerals and Mineral Assemblages 49.
(b) Micaceous Pelitic Schists 50.
(c) Porphyroblastic Mica Schists 54.
(d) Graphitic Schists 55.
(e) Garnetiferous Schists 55.
(f) Porphyroblastic Felspar Schists of the Kanappa Mine Region. 59.

CHAPTER 4. ALUMINOUS PELITIC SCHISTS 63.
A. Aluminous Pelitic Schists from the Eastern Portion of the Area 63.
B. Aluminous Pelitic Schists from the Western Portion of the Area 74.
C. Discussion 78.

CHAPTER 5. ANTHOPHYLLITE AND CORDIERITE SCHISTS 89.
Introduction 89.
(a) Anthophyllite and Cordierite Rocks from the Cambrai Area 91.
(b) Anthophyllite and Cordierite Rocks from the Eastern Part of the Area 93.
(c) Anthophyllite and Cordierite Rocks from the Western Part of the Area 106.
(d) Mineralogy 112.
(e) Discussion 117.
CHAPTER 6. METAMORPHISM OF LIMESTONES

Introduction

A. Marbles of the Eastern Part of the Area
B. Marbles of the Western Part of the Area
C. Comparison of the Western and Eastern Marbles
D. Silica Deficient Magnesian-Carbonate Rocks

CHAPTER 7. METAMORPHISM OF THE CALC-SILICATE ROCKS

Introduction

A. Calc-silicate Rocks from the Eastern Part of the Area
B. Calc-silicates from the Western Part of the Area
 (a) The Clinopyroxene-Scapolite Calc-silicates
 (b) The Hastingsite-Plagioclase Calc-silicates

Conclusions

CHAPTER 8. MINERALOGICAL STUDIES IN CALC-SILICATE ROCKS

A. Scapolite
B. Plagioclase-Epidote Equilibrium Studies

CHAPTER 9. METAMORPHIC SEGREGATION VEINS

(a) Aluminosilicate Segregations
(b) Garnet-Quartz Segregations
(c) Muscovite-Calcite-Quartz Segregations
(d) Scapolite Segregations
(e) Potash Felspar - Quartz Veins

Conclusions
CHAPTER 10. METASOMATISM

(a) Quartz-Albite Rocks 251.
(b) Quartz-Potash Felspar Rocks 268.
(c) Hydrous Metasomatism of Marbles and Calc-silicates 273.
(d) Skarns and other Rocks ascribed to Alteration and Replacement 276.
(e) Tourmaline Metasomatism 283.
(f) Post-tectonic Muscovite Porphyroblasts 286.
(g) Potash Deficient Schists 287.
Conclusions 291.

CHAPTER 11. INTRUSIVE ROCKS. 292.

Introduction. 292.
(a) Metadolerites 296.
(b) The granodiorite-aplogranite-aplite-pegmatite suite 339.
(c) Syenites and Diorites 369.
(d) Quartz Veins 380.
General Conclusions 382.

SECTION C. STRUCTURE. 386.

CHAPTER 12. FOLDING. 387.

Introduction 387.
(a) Nomenclature 387.
(b) Descriptive features of Folding and Fold Style 389.
(c) Structural Analysis 397.
Conclusions 401.
CHAPTER 13. PETROFABRICS

Introduction

(a) Quartz Petrofabrics
(b) Calcite Petrofabrics
(c) Mica Petrofabrics
(d) Cordierite Petrofabrics

CHAPTER 14. TIME RELATIONS BETWEEN CRYSTAL GROWTH AND DEFORMATION

Introduction

(a) Phases of Deformation
(b) The relationship of mineral growth to Deformation
(c) Late stage Structures and Mineral Growth

Conclusions

CHAPTER 15. FAULTS, FAULT PATTERN AND STRESS SYSTEMS

Introduction

(a) Description of the field relationships of the older bedrock faults
(b) Description of the field relationships of the younger Milendella Fault
(c) Comparison with other faults in the Mt. Lofty Ranges
(d) Discussion of stress orientations
(e) Application of calcite twin analysis in the determination of the stresses involved in the
faulting 452.

Conclusions 456.

REFERENCES 457.

APPENDIX I. REFRACTIVE INDEX DETERMINATIONS ON SCAPOLITE A1.

APPENDIX II. OPTICAL DATA ON THE HASTINGSITE-PLAGIOCLASE CALC-SILICATES A5.

APPENDIX III. REFRACTIVE INDEX DETERMINATIONS ON BIOTITES AND CLINOPYROXENES FROM MARBLES A16.

APPENDIX IV. ANALYSIS OF CALCITE TWINNING IN MARBLES A17.
SUMMARY.

The structure and petrology of 50 square miles of folded and metamorphosed early Palaeozoic sediments on the eastern edge of the Mount Lofty Ranges, 40 miles east-north-east of Adelaide, South Australia, have been studied in detail. The purpose of this investigation has been to ascertain the character of the metamorphism and the time relation of metamorphism to deformation in the eastern portion of the Mount Lofty Range metamorphic belt. The rock units, showing a wide range of chemical variety, have been demonstrated to cross the metamorphic zones from the biotite zone to the sillimanite-potash felspar zone.

A variety of sedimentation structures have been recognised within the rock sequence.

Zonation of the metamorphism has been achieved through the establishment of metamorphic mineral facies boundaries. The metamorphism is of the low to intermediate pressure andalusite-staurolite-cordierite-sillimanite type. The appearance of kyanite along with andalusite and sillimanite in the aluminous pelitic schists on the western edge of the area, and the apparent repression of a number of metamorphic reactions releasing volatile components in the associated rocks, suggests that pressures were higher in the western part of the area during metamorphism. The progressive metamorphism of quartzo-
felspathic schists, pelitic schists, aluminous pelitic schists, cordierite and anthophyllite schists, marbles and calc-silicate rocks is described and various metamorphic mineral reactions are discussed. An optical study has been conducted on the plagioclase-epidote equilibrium relations in calc-silicate rocks.

Metamorphic segregation veins are common throughout the whole area.

A number of rocks of metasomatic origin have been described. Of these, fine-grained quartz-albite rocks replacing quartzo-felspathic schists, marbles and calc-silicate rocks are the most abundant. Narrow zones of quartz-potash felspar rocks on the western edge of the area are closely associated with potash deficient schists containing anthophyllite, chlorite and minor muscovite in place of the biotite and potash felspar of the normal quartzo-felspathic schists.

A variety of intrusive rocks in the form of small widely distributed bodies include dolerites, diorites, syenites and granodiorites. Swarms of aplite and pegmatite dykes appear to have been derived from the granodiorites.

Two phases of folding are recognised, the earlier having slaty cleavage as axial surface and the later crenulation cleavage as axial surface. Two apparently coeval crenulation cleavages of differing orientation are found in different
parts of the area. Petrofabric studies were conducted on quartz, calcite, mica and cordierite.

A study of porphyroblast growth has indicated that metamorphism occurred throughout, and outlasted, the two phases of folding.

In the dying stages of metamorphism a compound fault system displaced the metamorphic mineral isograds. The recently active Milendella Fault is considered to have a complex history commencing in Palaeozoic times.