THE ECOLOGY OF WASTE STABILIZATION PONDS

by

Bradley Duncan Mitchell, B.Sc.(Hons.)

being a thesis submitted
in fulfilment of the
requirements for the
Degree of Doctor of Philosophy
in the Department of Zoology,
University of Adelaide

January 1980
CONTENTS

Summary i
Declaration iv
Acknowledgements v

Chapter 1. General Introduction 1
 1.1 The Potential of Waste Stabilization Ponds 1
 1.2 Project Aims 3
 1.3 Waste Stabilization Ponds - Advantages 4
 1.4 Pond Usage in Australia 6
 1.5 Problems in Waste Stabilization Ponds 7
 1.6 The Biology of Pond Function 10
 1.6.1 Algae-Bacteria Interactions 10
 1.6.2 Protozoa 13
 1.6.3 Rotifera 13
 1.6.4 Crustacea 13
 1.6.5 Insecta 13
 1.6.6 Fish 14
 1.6.7 Macrophytes 14

Chapter 2. Study Site and Physico-Chemical Characteristics 16
 2.1 Study Site 16
 2.2 Physico-Chemical Characteristics 17
 2.2.1 Methods 17
 2.2.2 Results 18
 Retention Time 18
 Temperature 19
 Dissolved Oxygen 20
 pH and Total Dissolved Solids 23
 Biochemical Oxygen Demand 23
 Suspended Solids 24
 Total Carbon and Total Organic Carbon 25
 Total Inorganic Carbon 26
 Ammonia 27
 Total Kjeldahl and Organic Nitrogen 27
 Nitrate 28
 Orthophosphate 29
 Phosphorus Retention Coefficients 32
 2.2.3 Discussion 33
Chapter 3. Algae and Macrophytes

3.1 Introduction 45

3.2 Methods 51

3.2.1 Chlorophyll a 51
3.2.2 Algal Counts 52
3.2.3 Filamentous Algal Mats 52
3.2.4 Submerged Macrophytes 53

3.3 Results 55

3.3.1 Chlorophyll a 55
3.3.2 Composition of Algal Communities 58
3.3.3 Algal Counts 60
3.3.4 Phytoplankton Production 60
3.3.5 Dynamics and Production of Cladophora 64
3.3.6 Dynamics and Production of Potamogeton ochreatus 67

3.4 Discussion 73

Chapter 4. Zooplankton 90

4.1 Introduction 90

4.2 Seasonality and Abundance of Zooplankton 95

4.2.1 Methods 95

4.2.2 Results 100

4.2.2.1 Composition of the Zooplankton Community 100
4.2.2.2 Zooplankton Dispersion 103
4.2.2.3 Seasonal Abundance 106

4.2.3 Discussion 122

4.3 Population Dynamics and Production of Daphnia carinata 134

4.3.1 Methods 134

4.3.1.1 Size Distribution 134
4.3.1.2 Reproduction 136
4.3.1.3 Population Parameters 136
4.3.1.4 Calculation of Production: Population Turnover-time Model 138
4.3.1.5 Egg Development Time 139
4.3.1.6 Length-Dry Weight Relationship 141
4.3.1.7 Calculation of Production: Biomass Turnover Model 141
4.3.1.8 Growth 143
4.3.1.9 Nitrogen and Phosphorus Content 144
4.3.2 Results
 4.3.2.1 Size Distribution 144
 4.3.2.2 Reproduction 148
 4.3.2.3 Egg Development Time 152
 4.3.2.4 Population Parameters 153
 4.3.2.5 Length-Dry Weight Relationship 155
 4.3.2.6 Growth 156
 4.3.2.7 Nitrogen and Phosphorus Content 157
 4.3.2.8 Production 158
4.3.3 Discussion 165
4.4 Population Dynamics and Production of Simocephalus expinosus 173
 4.4.1 Methods 173
 4.4.2 Results 174
 4.4.2.1 Size Distribution 174
 4.4.2.2 Reproduction 176
 4.4.2.3 Population Parameters 178
 4.4.2.4 Length-Dry Weight Relationship 180
 4.4.2.5 Production 181
 4.4.3 Discussion 183
4.5 General Discussion 186

Chapter 5. Fish 192
 5.1 Introduction 192
 5.2 Methods 196
 5.2.1 Enclosures and Experimental Design 196
 5.2.2 Experimental Fish 197
 5.2.3 Experimental Procedure 198
 5.3 Results 200
 5.3.1 Physico-Chemical Characteristics in Enclosures 201
 5.3.2 Phytoplankton in Enclosures 202
 5.3.3 Zooplankton in Enclosures 204
 5.3.4 Fish Growth and Production in Enclosures 205
 5.4 Discussion 210

Chapter 6. Concluding Discussion 215

Appendices 220

Bibliography 240
SUMMARY

Ecological interactions were studied in two waste stabilization ponds at Gumeracha, South Australia, to relate the dynamics of the major organisms present to effluent quality and, therefore, the efficiency of pond function. The roles of those organisms in algal control, the stabilization of organic material, and nutrient removal were evaluated to assess their usefulness as tools for the management of WSPs. In this manner, biological principles for pond management were evaluated.

The seasonal dynamics of the phytoplankton were related to effluent quality. Phytoplankton blooms were triggered by increasing water temperature and resulted in a significant decrease in effluent quality. Effluent concentrations of BOD, SS, TOC, and organic nitrogen exceeded influent values during phytoplankton blooms. Removal of soluble PO$_4$-P and NO$_3^-$ was highest during phytoplankton blooms. Estimated annual net production of the phytoplankton in pond 2 represented a nutrient store equivalent to over 100% of total nitrogen and total PO$_4$-P retained annually. The dynamics of filamentous algae (Cladophora) and the submerged macrophyte Potamogeton ochreatus were related to phytoplankton abundance and effluent quality. Floating algal mats and submerged macrophytes inhibited the development of phytoplankton blooms and improved effluent quality. Estimated annual net production of Cladophora in pond 1 represented a nutrient store equivalent to 47% of total PO$_4$-P and 12% of total nitrogen retained in the pond annually. Annual net production of P. ochreatus represented less than 3% of total PO$_4$-P and total nitrogen retained annually.

The population dynamics of the major zooplankton were related to phytoplankton abundance and effluent quality. Although temperature was the major factor determining the occurrence of zooplankton, competition and predation also appeared to be important in structuring
were terminated by zooplankton grazing. The dominant herbivore, *Daphnia carinata*, was a cold water form. High water temperatures increased mortality and reduced the growth rate of *D. carinata* and prevented it from controlling phytoplankton during the summer. The dominant zooplankter during phytoplankton blooms was the carnivore *Mesocyclops leuckarti*. *D. carinata* was a "facultative browser" and ingested the sediments during periods of low phytoplankton abundance. *D. carinata* and *Simocephalus exspinosus* were both food limited at high population densities. Total annual net production of *D. carinata* in pond 1 during 1977 (345 g dry weight/m²), calculated using the population turnover-time model, was the highest yet recorded for any planktonic cladoceran. Annual net production of *D. carinata* determined using the population turnover-time model exceeded annual production determined using the biomass turnover model by 100%. Overestimation of daily production rate was highest during periods of high egg mortality. Total annual net production of *D. carinata* (biomass turnover model) represented a nutrient store equivalent to less than 5% of total P₀₄-P and total nitrogen retained in the ponds annually.

A fish introduction experiment was conducted in enclosures within the ponds. *Carassius auratus* had no significant effect upon phytoplankton and zooplankton populations or on effluent quality. Growth of *C. auratus* increased after introduction to the pond despite decreasing water temperature. Annual net production of *C. auratus* was high compared to fish production in natural waters but probably represented a nutrient store equivalent to less than 2% of total P₀₄-P and total nitrogen retained in the ponds annually.

Filamentous algae and zooplankton (to a lesser degree) are useful for controlling unicellular algae in waste stabilization ponds. Harvest of unicellular algae is the most effective pathway of nutrient
removal, but reasonable removal could be achieved using filamentous algae. The harvest of submerged macrophytes, zooplankton, and fish is not useful for nutrient removal.